Advertisement

Food and Bioprocess Technology

, Volume 11, Issue 10, pp 1934–1939 | Cite as

Effect of Microwave Frying on Acrylamide Generation, Mass Transfer, Color, and Texture in French Fries

  • M. Sansano
  • R. De los Reyes
  • A. Andrés
  • A. Heredia
Communication
  • 159 Downloads

Abstract

The objective of this work was to evaluate the effect of microwave power on acrylamide generation, as well as moisture and oil fluxes and quality attributes of microwave-fried potatoes. Concretely, 25 g of potato strips, in 250 mL of fresh oil (at room temperature), were subjected to three different microwave powers (315, 430, and 600 W) in a conventional microwave oven. Microwave frying resulted in an acrylamide reduction ranged from 37 to 83% compared to deep-oil frying. Microwave-fried French fries presented lower moisture and higher fat content than deep-oil fried potatoes. Concretely, microwave-fried potatoes presented values of moisture and texture more similar to potato chips than French fries, nonetheless with lower fat levels (less than 20 g/100 g wb) and acrylamide content (lower than 100 μg/kg wb) at the reference time. This study presents an alternative way of frying to address the production of healthier potato chips.

Keywords

Microwave frying French fries Acrylamide Mass flows Food quality 

Notes

Acknowledgments

The authors would like to thank the Universitat Politécnica de València for the PhD scholarship given to Mariola Sansano Tomás.

References

  1. AACC. (1995). Approved methods of the American association of cereal chemists (9th ed.). St. Paul: The Association.Google Scholar
  2. Adedeji, A. A., Ngadi, M. O., & Raghavan, G. S. V. (2009). Kinetics of mass transfer in microwave precooked and deep-fat fried chicken nuggets. Journal of Food Engineering, 91(1), 146–153.CrossRefGoogle Scholar
  3. Ahrné, L., Andersson, C.-G., Floberg, P., Rosén, J., & Lingnert, H. (2007). Effect of crust temperature and water content on acrylamide formation during baking of white bread: steam and falling temperature baking. LWT-Food Science and Technology, 40(10), 1708–1715.CrossRefGoogle Scholar
  4. Amrein, T. M., Limacher, A., Conde-Petit, B., Amadò, R., & Escher, F. (2006). Influence of thermal processing conditions on acrylamide generation and Browning in a potato model system. Journal of Agricultural and Food Chemistry, 54(16), 5910–5916.CrossRefPubMedGoogle Scholar
  5. Andrés, A., Arguelles, Á., Castelló, M. L., & Heredia, A. (2013). Mass transfer and volume changes in French fries during air frying. Food and Bioprocess Technology, 6(8), 1917–1924.CrossRefGoogle Scholar
  6. Barutcu, I., Sahin, S., & Sumnu, G. (2009). Acrylamide formation in different batter formulations during microwave frying. LWT - Food Science and Technology, 42(1), 17–22.CrossRefGoogle Scholar
  7. Belgin Erdoǧdu, S., Palazoǧlu, T. K., Gökmen, V., Şenyuva, H. Z., & Ekiz, H. İ. (2007). Reduction of acrylamide formation in French fries by microwave pre-cooking of potato strips. Journal of the Science of Food and Agriculture, 87(1), 133–137.CrossRefGoogle Scholar
  8. Biedermann, M., Noti, A., Biedermann-Brem, S., Mozzetti, V., & GROB, K. (2002). Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene, 93(6), 668–687.Google Scholar
  9. Bråthen, E., & Knutsen, S. H. (2005). Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), 693–700.CrossRefGoogle Scholar
  10. Buffler, C. R. (1993). Microwave cooking and processing: Engineering fundamentals for the food scientist. (A. Books, Ed.). New York: Van Nostrand Reinhold.CrossRefGoogle Scholar
  11. Datta, A. K. (1990). Heat and mass transfer in the microwave processing of food. Chemical Engineering Progress, 86(6), 47–53.Google Scholar
  12. Datta, A. K. (2001). Handbook of microwave technology for food application. CRC Press.Google Scholar
  13. De los Reyes, R., Heredia, A., Fito, P., De los Reyes, E., & Andrés, A. (2007). Dielectric spectroscopy of osmotic solutions and osmotically dehydrated tomato products. Journal of Food Engineering, 80(4), 1218–1225. 2.CrossRefGoogle Scholar
  14. Granda, C., & Moreira, R. G. (2005). Kinetics of acrylamide formation during traditional and vacuum frying of potato chips. Journal of Food Process Engineering, 28(5), 478–493.CrossRefGoogle Scholar
  15. Lizhi, H., Toyoda, K., & Ihara, I. (2008). Dielectric properties of edible oils and fatty acids as a function of frequency, temperature, moisture and composition. Journal of Food Engineering, 88(2), 151–158.CrossRefGoogle Scholar
  16. Oztop, M. H., Sahin, S., & Sumnu, G. (2007). Optimization of microwave frying of potato slices by using Taguchi technique. Journal of Food Engineering, 79(1), 83–91.CrossRefGoogle Scholar
  17. Parikh, A., & Takhar, P. S. (2016). Comparison of microwave and conventional frying on quality attributes and fat content of potatoes. Journal of Food Science, 81(11), E2743–E2755.CrossRefPubMedGoogle Scholar
  18. Pedreschi, F., & Moyano, P. (2005). Oil uptake and texture development in fried potato slices. Journal of Food Engineering, 70(4), 557–563.CrossRefGoogle Scholar
  19. Sahin, S., Sumnu, G., & Oztop, M. H. (2007). Effect of osmotic pretreatment and microwave frying on acrylamide formation in potato strips. Journal of the Science of Food and Agriculture, 87(15), 2830–2836.  https://doi.org/10.1002/jsfa.3034.CrossRefGoogle Scholar
  20. Sansano, M., Juan-Borrás, M., Escriche, I., Andrés, A., & Heredia, A. (2015). Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. Journal of Food Science, 80(5), 1120–1128.CrossRefGoogle Scholar
  21. Sansano, M., Heredia, A., Peinado, I., & Andrés, A. (2017). Dietary acrylamide: What happens during digestion. Food Chemistry, 237, 58–64.CrossRefPubMedGoogle Scholar
  22. Schiffmann, R. (2017). 7 - Microwave-assisted frying. In The microwave processing of foods (2nd edn, pp. 142–151). Sawston: Woodhead Publishing.Google Scholar
  23. Tang, J., Feng, H., & Lau, M. (2002). Microwave heating in food processing. In X.Young, J. Tang, C. Zhang, & W. Xin (Eds.), Advances in Agricultural Engineering (pp. 1–44). New York: Scientific Press.Google Scholar
  24. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998–5006.CrossRefPubMedGoogle Scholar
  25. Taubert, D., Harlfinger, S., Henkes, L., Berkels, R., & Schömig, E. (2004). Influence of processing parameters on acrylamide formation during frying of potatoes. Journal of Agricultural and Food Chemistry, 52(9), 2735–2739.CrossRefPubMedGoogle Scholar
  26. Venkatesh, M. S., & Raghavan, G. S. V. (2004). An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering, 88(1), 1–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Sansano
    • 1
  • R. De los Reyes
    • 1
  • A. Andrés
    • 1
  • A. Heredia
    • 1
  1. 1.Universitat Politècnica de ValènciaInstitute of Food Engineering for DevelopmentValenciaSpain

Personalised recommendations