Accelerated Aging Test of Sterilized Acidic Pudding: Combined Effects of Temperature, Headspace Volume, and Agitation

  • Anne-Laure Moufle
  • Pierre-Alexis François
  • Julie Jamet
  • Romdhane Karoui
Original Paper
  • 23 Downloads

Abstract

The objective of the present study was to reproduce in 4 months the quality changes that occur in shelf-stable strawberry pudding after 1 year of storage. A full factorial experiment 23 was used to investigate the effect of storage temperature (16 and 30 °C), headspace volume (9.5 and 18 cm3), and agitation (no/yes—pouches turned upside down twice a week) on aging. Sensory, rheological, pH, and fluorescence measurements were performed on samples subjected to accelerated aging tests (up to 4 months) or stored in standard conditions (up to 1 year). Although storage at 30 °C induced a slight decrease in apparent viscosity and thickness—in contrast with samples stored at 16 °C—it showed the best results for most of the studied parameters, regardless of the headspace volume and agitation. Hence, storage at 30 °C could be used for accelerated shelf-life or stability studies of sterilized pudding.

Keywords

Shelf-stable acidic pudding Accelerated aging Fluorescence Sensory evaluation Rheology 

Notes

Acknowledgements

This work has been carried out in the framework of Alibiotech project which is financed by the European Union, French State, and the French Region of Hauts-de-France.

Supplementary material

11947_2018_2100_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)
11947_2018_2100_MOESM2_ESM.docx (385 kb)
ESM 2 (DOCX 385 kb)
11947_2018_2100_MOESM3_ESM.docx (9 kb)
ESM 3 (DOCX 8.98 kb)

References

  1. Al-Attabi, Z., D’Arcy, B. R., & Deeth, H. C. (2009). Volatile sulphur compounds in UHT milk. Critical Reviews in Food Science and Nutrition, 49(1), 28–47.  https://doi.org/10.1080/10408390701764187.CrossRefGoogle Scholar
  2. Birlouez-Aragon, I., Nicolas, M., Metais, A., Marchond, N., Grenier, J., & Calvo, D. (1998). A rapid fluorimetric method to estimate the heat treatment of liquid milk. International Dairy Journal, 8(9), 771–777.  https://doi.org/10.1016/S0958-6946(98)00119-8.CrossRefGoogle Scholar
  3. Cardelli, C., & Labuza, T. P. (2001). Application of Weibull hazard analysis to the determination of the shelf life of roasted and ground coffee. LWT - Food Science and Technology, 34(5), 273–278.  https://doi.org/10.1006/fstl.2000.0732.CrossRefGoogle Scholar
  4. Catauro, P. M., & Perchonok, M. H. (2012). Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. Journal of Food Science, 77(1), S29–S39.  https://doi.org/10.1111/j.1750-3841.2011.02445.x.CrossRefGoogle Scholar
  5. Clare, D. A., Bang, W. S., Cartwright, G., Drake, M. A., Coronel, P., & Simunovic, J. (2005). Comparison of sensory, microbiological, and biochemical parameters of microwave versus indirect UHT fluid skim milk during storage. Journal of Dairy Science, 88(12), 4172–4182.  https://doi.org/10.3168/jds.S0022-0302(05)73103-9.CrossRefGoogle Scholar
  6. Depypere, F., Verbeken, D., Torres, J. D., & Dewettinck, K. (2009). Rheological properties of dairy desserts prepared in an indirect UHT pilot plant. Journal of Food Engineering, 91(1), 140–145.  https://doi.org/10.1016/j.jfoodeng.2008.08.017.CrossRefGoogle Scholar
  7. Diaz, J. V., Anthon, G. E., & Barrett, D. M. (2007). Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: effects of pH, temperature, and degree of methyl esterification. Journal of Agricultural and Food Chemistry, 55(13), 5131–5136.  https://doi.org/10.1021/jf0701483.CrossRefGoogle Scholar
  8. Dufour, E., Mazerolles, G., Devaux, M. F., Duboz, G., Duployer, M. H., & Mouhous Riou, N. (2000). Phase transition of triglycerides during semi-hard cheese ripening. International Dairy Journal, 10(1–2), 81–93.  https://doi.org/10.1016/S0958-6946(00)00025-X.CrossRefGoogle Scholar
  9. Gaucher, I., Mollé, D., Gagnaire, V., & Gaucheron, F. (2008). Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocolloids, 22(1), 130–143.  https://doi.org/10.1016/j.foodhyd.2007.04.007.CrossRefGoogle Scholar
  10. Grewal, M. K., Chandrapala, J., Donkor, O., Apostolopoulos, V., Stojanovska, L., & Vasiljevic, T. (2017). Fourier transform infrared spectroscopy analysis of physicochemical changes in UHT milk during accelerated storage. International Dairy Journal, 66, 99–107.  https://doi.org/10.1016/j.idairyj.2016.11.014.CrossRefGoogle Scholar
  11. Hammami, M., Rouissi, H., Salah, N., Selmi, H., Al-Otaibi, M., Blecker, C., & Karoui, R. (2010). Fluorescence spectroscopy coupled with factorial discriminant analysis technique to identify sheep milk from different feeding systems. Food Chemistry, 122, 1344–1350.CrossRefGoogle Scholar
  12. Hansen, E., & Skibsted, L. H. (2000). Light-induced oxidative changes in a model dairy spread. Wavelength dependence of quantum yields.  https://doi.org/10.1021/JF991232O.
  13. Herbert, S., Riaublanc, A., Bouchet, B., Gallant, D. J., & Dufour, E. (1999). Fluorescence spectroscopy investigation of acid-or rennet-induced coagulation of milk. Journal of Dairy Science, 82(10), 2056–2062.  https://doi.org/10.3168/jds.S0022-0302(99)75446-9.CrossRefGoogle Scholar
  14. Herbert, S., Riou, N. M., Devaux, M. F., Riaublanc, A., Bouchet, B., Gallant, D. J., & Dufour, E. (2000). Monitoring the identity and the structure of soft cheeses by fluorescence spectroscopy. Le Lait, 80(6), 621–634.  https://doi.org/10.1051/lait:2000149.CrossRefGoogle Scholar
  15. Huang, R., Choe, E., & Min, D. b. (2004). Kinetics for singlet oxygen formation by riboflavin photosensitization and the reaction between riboflavin and singlet oxygen. Journal of Food Science, 69(9), C726–C732.  https://doi.org/10.1111/j.1365-2621.2004.tb09924.x.CrossRefGoogle Scholar
  16. Intawiwat, N., Pettersen, M. K., Rukke, E. O., Meier, M. A., Vogt, G., Dahl, A. V., Skaret, J., Keller, D., & Wold, J. P. (2010). Effect of different colored filters on photooxidation in pasteurized milk. Journal of Dairy Science, 93(4), 1372–1382.  https://doi.org/10.3168/jds.2009-2542.CrossRefGoogle Scholar
  17. Jha, A., Murli, Patel, A. A., Gopal, T. K. S., & Ravishankar, C. N. (2012). Development of a process for shelf stable dairy dessert dalia and its physico-chemical properties. LWT - Food Science and Technology, 49(1), 80–88.  https://doi.org/10.1016/j.lwt.2012.05.004.CrossRefGoogle Scholar
  18. Kamal, M., & Karoui, R. (2017). Monitoring of mild heat treatment of camel milk by front-face fluorescence spectroscopy. LWT - Food Science and Technology, 79, 586–593.  https://doi.org/10.1016/j.lwt.2016.11.013.CrossRefGoogle Scholar
  19. Karoui, R., & Dufour, E. (2003). Dynamic testing rheology and fluorescence spectroscopy investigations of surface to centre differences in ripened soft cheeses. International Dairy Journal, 13(12), 973–985.  https://doi.org/10.1016/S0958-6946(03)00121-3.CrossRefGoogle Scholar
  20. Karoui, R., Laguet, A., & Dufour, E. (2003). Fluorescence spectroscopy: a tool for the investigation of cheese melting—correlation with rheological characteristics. Le Lait, 83(3), 251–264.  https://doi.org/10.1051/lait:2003014.CrossRefGoogle Scholar
  21. Karoui, R., Dufour, E., & De Baerdemaeker, J. (2006a). Front face fluorescence spectroscopy coupled with chemometric tools for monitoring the oxidation of semi-hard cheeses throughout ripening. Food Chemistry, 101(3), 1305–1314.  https://doi.org/10.1016/j.foodchem.2006.01.028.CrossRefGoogle Scholar
  22. Karoui, R., Mouazen, A. M., Dufour, E., Pillonel, L., Picque, D., Bosset, J.-O., & De Baerdemaeker, J. (2006b). Mid-infrared spectrometry: a tool for the determination of chemical parameters in Emmental cheeses produced during winter. Le Lait, 86(1), 83–97.CrossRefGoogle Scholar
  23. Karoui, R., Dufour, E., & De Baerdemaeker, J. (2007). Monitoring the molecular changes by front face fluorescence spectroscopy throughout ripening of a semi-hard cheese. Food Chemistry, 104(1), 409–420.  https://doi.org/10.1016/j.foodchem.2006.09.020.CrossRefGoogle Scholar
  24. Karoui, R., De Baerdemaeker, J., & Dufour, E. (2008). A comparison and joint use of mid infrared and fluorescence spectroscopic methods for differentiating between manufacturing processes and sampling zones of ripened soft cheeses. European Food Research and Technology, 226(4), 861–870.  https://doi.org/10.1007/s00217-007-0608-x.CrossRefGoogle Scholar
  25. Kokkinidou, S., & Peterson, D. G. (2014). Control of Maillard-type off-flavor development in ultrahigh-temperature- processed bovine milk by phenolic chemistry. Journal of Agricultural and Food Chemistry, 62(32), 8023–8033.  https://doi.org/10.1021/jf501919y.CrossRefGoogle Scholar
  26. Kozak, W., & Samotyja, U. (2013). The use of oxygen content determination method based on fluorescence quenching for rapeseed oil shelf-life assessment. Food Control, 33(1), 162–165.  https://doi.org/10.1016/j.foodcont.2013.02.028.CrossRefGoogle Scholar
  27. Kulmyrzaev, A. A., Levieux, D., & Dufour, É. (2005). Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins. Journal of Agricultural and Food Chemistry, 53(3), 502–507.  https://doi.org/10.1021/jf049224h.CrossRefGoogle Scholar
  28. Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Berlin: Springer.CrossRefGoogle Scholar
  29. Leriche, F., Bordessoules, A., Fayolle, K., Karoui, R., Laval, K., Leblanc, L., & Dufour, E. (2004). Alteration of raw-milk cheese by Pseudomonas spp.: Monitoring the sources of contamination using fluorescence spectroscopy and metabolic profiling. Journal of Microbiological Methods, 59(1), 33–41.  https://doi.org/10.1016/j.mimet.2004.05.009.CrossRefGoogle Scholar
  30. Maldonado, J. A., Bruins, R. B., Yang, T., Wright, A., Dunne, C. P., & Karwe, M. V. (2015). Browning and ascorbic acid degradation in meals ready-to-eat pear rations in accelerated shelf life. Journal of Food Processing and Preservation, 39(6), 2035–2042.  https://doi.org/10.1111/jfpp.12446.CrossRefGoogle Scholar
  31. Mestdagh, F., De Meulenaer, B., De Clippeleer, J., Devlieghere, F., & Huyghebaert, A. (2005). Protective influence of several packaging materials on light oxidation of milk. Journal of Dairy Science, 88(2), 499–510.  https://doi.org/10.3168/jds.S0022-0302(05)72712-0.CrossRefGoogle Scholar
  32. Miquel Becker, E., Christensen, J., Frederiksen, C. S., Haugaard, V. K., Riou, N. M., Dufour, E., & Dufour, E. (2003). Front-face fluorescence spectroscopy and chemometrics in analysis of yogurt: rapid analysis of riboflavin. Journal of Dairy Science, 86(8), 2508–2515.  https://doi.org/10.3168/jds.S0022-0302(03)73845-4.CrossRefGoogle Scholar
  33. Moufle, A.-L., Jamet, J., & Karoui, R. (2017). Impact of temperature cycling and isothermal storage on the quality of acidic and neutral shelf-stable dairy desserts packaged in flexible pouches. Food and Bioprocess Technology, 11(2), 1–19.  https://doi.org/10.1007/s11947-017-2018-9.Google Scholar
  34. Nicoli, M. C. (2012). An introduction to food shelf life: definitions, basic concepts, and regulatory aspects. In M. C. Nicoli (Ed.), Shelf life assessment of food (pp. 1–16). Boca Raton: CRC Press.CrossRefGoogle Scholar
  35. Ramírez-Sucre, M. O., & Vélez-Ruiz, J. F. (2014). Effect of formulation and storage on physicochemical and flow properties of custard flavored with caramel jam. Journal of Food Engineering, 142, 221–227.  https://doi.org/10.1016/j.jfoodeng.2014.06.013.CrossRefGoogle Scholar
  36. Richards, M., De Kock, H. L., & Buys, E. M. (2014). Multivariate accelerated shelf-life test of low fat UHT milk. International Dairy Journal, 36(1), 38–45.  https://doi.org/10.1016/j.idairyj.2013.12.012.CrossRefGoogle Scholar
  37. Semagoto, H. M., Liu, D., Koboyatau, K., Hu, J., Lu, N., Liu, X., Regenstein, J. M., & Zhou, P. (2014). Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Research International, 62, 580–588.  https://doi.org/10.1016/j.foodres.2014.04.012.CrossRefGoogle Scholar
  38. Sila, D. N., Van Buggenhout, S., Duvetter, T., Fraeye, I., De Roeck, A., Van Loey, A., & Hendrickx, M. (2009). Pectins in processed fruits and vegetables: part II-structure function relationships. Comprehensive Reviews in Food Science and Food Safety, 8(2), 105–117.  https://doi.org/10.1111/j.1541-4337.2009.00072.x.CrossRefGoogle Scholar
  39. Simpson, B. K. (2012). Food biochemistry and food processing. Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  40. Smet, K., Raes, K., De Block, J., Herman, L., Dewettinck, K., & Coudijzer, K. (2008). A change in antioxidative capacity as a measure of onset to oxidation in pasteurized milk. International Dairy Journal, 18(5), 520–530.  https://doi.org/10.1016/j.idairyj.2007.11.012.CrossRefGoogle Scholar
  41. Smet, K., De Block, J., De Campeneere, S., De Brabander, D., Herman, L., Raes, K., et al. (2009). Oxidative stability of UHT milk as influenced by fatty acid composition and packaging. International Dairy Journal, 19(6–7), 372–379.  https://doi.org/10.1016/j.idairyj.2009.02.006.CrossRefGoogle Scholar
  42. Verbeken, D., Bael, K., Thas, O., & Dewettinck, K. (2006). Interactions between κ-carrageenan, milk proteins and modified starch in sterilized dairy desserts. International Dairy Journal, 16(5), 482–488.  https://doi.org/10.1016/j.idairyj.2005.06.006.CrossRefGoogle Scholar
  43. Weerawatanakorn, M., Wu, J. C., Pan, M. H., & Ho, C. T. (2015). Reactivity and stability of selected flavor compounds. Journal of Food and Drug Analysis, 23(2), 176–190.  https://doi.org/10.1016/j.jfda.2015.02.001.CrossRefGoogle Scholar
  44. Wold, J. P., Jørgensen, K., & Lundby, F. (2002). Nondestructive measurement of light-induced oxidation in dairy products by fluorescence spectroscopy and imaging. Journal of Dairy Science, 85(7), 1693–1704.  https://doi.org/10.3168/jds.S0022-0302(02)74242-2.CrossRefGoogle Scholar
  45. Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein oxidation: basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191–1201.  https://doi.org/10.1080/10408398.2011.577540.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut Charles ViolletteUniversité ArtoisLensFrance
  2. 2.MOM GroupParisFrance
  3. 3.Institut Charles ViolletteISA LilleLilleFrance
  4. 4.Institut Charles ViolletteUlcoBoulogne sur MerFrance
  5. 5.Institut Charles ViolletteUniversité LilleLilleFrance
  6. 6.ADRIANORTilloy Les MofflainesFrance

Personalised recommendations