Textural, Color, Hygroscopic, Lipid Oxidation, and Sensory Properties of Cookies Containing Free and Microencapsulated Chia Oil
- 115 Downloads
Abstract
Encapsulation of chia oil might protect omega-3 and omega-6 from lipid oxidation when producing baked foods. However, the actual gain in stability given by chia oil must be determined. In this work, chia oil or chia oil-loaded microparticles were added to a cookie formulation in order to evaluate the ability of the microcapsules in protecting chia oil from deterioration. Texture, color, water sorption isotherms, and sensorial properties were also evaluated. A hot homogenization technique was used with carnauba wax as an encapsulant, and the freeze-dried microparticles were incorporated into the cookie dough. Principal component analyses were carried out to evaluate lipid oxidation using the medium infrared spectra of the lipid fraction extracted from the baked cookies. It was found that the microencapsulated chia oil was better protected from oxidative deterioration during baking compared to the sample containing non-encapsulated chia oil. Textural analysis showed that chia oil (free and microencapsulated) acted as a coating on the wheat flour particles. Control cookies (no chia oil loaded) presented a more hydrophilic character. In the case of oil-loaded samples (free and microencapsulated), the isosteric heat of sorption behavior indicated an initial swelling step of the food polymers, resulting in the exposure of sorption sites of higher binding energies not previously available, and that this is because of the wheat particles being covered by the chia oil and the solid lipid microparticles. Furthermore, food acceptability did not change when the oil-loaded microparticles were added to the cookie formulation.
Keywords
Hot homogenization Conjugated dienes and trienes PCA Water sorption isotherms Isosteric heat of sorption, Salvia hispanica LReferences
- Bachtsi, A. R., Boutris, C. J., & Kiparissides, C. (1996). Production of oil-containing crosslinked poly (vinyl alcohol) microcapsules by phase separation: effect of process parameters on the capsule size distribution. Journal of Applied Polymer Science, 60(1), 9–20. https://doi.org/10.1002/(SICI)1097-4628(19960404)60:1<9::AID-APP2>3.0.CO;2-T.CrossRefGoogle Scholar
- Bastıoğlu, A. Z., Koç, M., & Ertekin, F. K. (2017). Moisture sorption isotherm of microencapsulated extra virgin olive oil by spray drying. Journal of Food Measurement and Characterization, 11(3), 1–11. https://doi.org/10.1007/s11694-017-9507-4.Google Scholar
- Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and physical approach. Journal of Food Engineering, 65(4), 489–495. https://doi.org/10.1016/j.jfoodeng.2004.02.012.CrossRefGoogle Scholar
- Bligh, E., & Dyer, W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry, 37(8), 911–917.Google Scholar
- Bodoira, R. M., Penci, M. C., Ribotta, P. D., & Martínez, M. L. (2017). Chia (Salvia hispanica L.) oil stability: study of the effect of natural antioxidants. LWT - Food Science and Technology, 75, 107–113. https://doi.org/10.1016/j.lwt.2016.08.031.CrossRefGoogle Scholar
- Chen, L., & Opara, U. L. (2013). Texture measurement approaches in fresh and processed foods—a review. Food Research International, 51(2), 823–835. https://doi.org/10.1016/j.foodres.2013.01.046.CrossRefGoogle Scholar
- Cofrades, S., Santos-López, J. A., Freire, M., Benedí, J., Sánchez-Muniz, F. J., & Jiménez-Colmenero, F. (2014). Oxidative stability of meat systems made with W1/O/W2 emulsions prepared with hydroxytyrosol and chia oil as lipid phase. LWT - Food Science and Technology, 59(2P1), 941–947. https://doi.org/10.1016/j.lwt.2014.06.051.CrossRefGoogle Scholar
- Corrêa, P. C., Goneli, A. L. D., Júnior, P. C. A., de Oliveira, G. H. H., & Valente, D. S. M. (2010). Moisture sorption isotherms and isosteric heat of sorption of coffee in different processing levels. International Journal of Food Science and Technology, 45(10), 2016–2022. https://doi.org/10.1111/j.1365-2621.2010.02373.x.CrossRefGoogle Scholar
- Costantini, L., Lukšič, L., Molinari, R., Kreft, I., Bonafaccia, G., Manzi, L., & Merendino, N. (2014). Development of gluten-free bread using tartary buckwheat and chia flour rich in flavonoids and omega-3 fatty acids as ingredients. Food Chemistry, 165, 232–240. https://doi.org/10.1016/j.foodchem.2014.05.095.CrossRefGoogle Scholar
- da Costa, J. M. C., de Medeiros, M. F. D., & da Mata, A. L. M. L. (2003). A comparative study on the adsorption isotherms of beetroot (Beta vulgaris, L.), pumpkin (Cucurbita moschata) and carrot (Daucus carota) powder. Revista Ciência Agronômica, 34(1), 5–9.Google Scholar
- Davidov-Pardo, G., Moreno, M., Arozarena, I., Marín-Arroyo, M. R., Bleibaum, R. N., & Bruhn, C. M. (2012). Sensory and consumer perception of the addition of grape seed extracts in cookies. Journal of Food Science, 77(12), S430–S438. https://doi.org/10.1111/j.1750-3841.2012.02991.x.CrossRefGoogle Scholar
- Demczuk, B., & Ribani, R. H. (2012). Effects of environmental conditions on characteristics of annatto seed by-product. Quality Assurance and Safety of Crops and Foods, 4(5), 20–28. https://doi.org/10.1111/qas.12003.CrossRefGoogle Scholar
- Fasolin, L. H., De Almeida, G. C., Castanho, P. S., & Netto-Oliveira, E. R. (2007). Biscoitos produzidos com farinha de banana: avaliações química, física e sensorial. Ciência e Tecnologia de Alimentos, 27(3), 524–529. https://doi.org/10.1590/S0101-20612007000300016.CrossRefGoogle Scholar
- Ferreira, C. D., & Pena, R. S. (2003). Hygroscopic behavior of the pupunha flour (Bactris gasipaes). Food Science and Technology, 23(2), 251–255. https://doi.org/10.1590/S0101-20612003000200025.CrossRefGoogle Scholar
- Freitas, C. A. S., Vieira, Í. G. P., Sousa, P. H. M., Muniz, C. R., Gonzaga, M. L. D. C., & Guedes, M. I. F. (2016). Carnauba wax p-methoxycinnamic diesters: characterisation, antioxidant activity and simulated gastrointestinal digestion followed by in vitro bioaccessibility. Food Chemistry, 196, 1293–1300. https://doi.org/10.1016/j.foodchem.2015.10.101.CrossRefGoogle Scholar
- Gohara, A. K., Souza, A. H. P., Rodrigues, Â. C., Stroher, G. L., Gomes, S. T. M., Souza, N. E., Visentainer, J. V., & Matsushita, M. (2013). Chemometric methods applied to the mineral content increase in chocolate cakes containing chia and azuki. Journal of the Brazilian Chemical Society, 24(5), 771–776. https://doi.org/10.5935/0103-5053.20130101.Google Scholar
- Gonzalez-Mira, E., Egea, M. A., Garcia, M. L., & Souto, E. B. (2010). Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids and Surfaces B: Biointerfaces, 81(2), 412–421. https://doi.org/10.1016/j.colsurfb.2010.07.029.CrossRefGoogle Scholar
- González, A. G., Herrador, M. A., & Asuero, A. G. (1999). Intra-laboratory testing of method accuracy from recovery assays. Talanta, 48(3), 729–736. https://doi.org/10.1016/S0039-9140(98)00271-9.CrossRefGoogle Scholar
- Granato, D., & Ellendersen, L. D. S. N. (2009). Almond and peanut flours supplemented with iron as potential ingredients to develop gluten-free cookies. Ciência e Tecnologia de Alimentos, 29(2), 395–400. https://doi.org/10.1590/S0101-20612009000200026.CrossRefGoogle Scholar
- Guillén, M. D., & Cabo, N. (1997). Characterization of edible oils and lard by fourier transform infrared spectroscopy. Relationships between composition and frequency of concrete bands in the fingerprint region. Journal of the American Oil Chemists’ Society, 74(10), 1281–1286. https://doi.org/10.1007/s11746-997-0058-4.CrossRefGoogle Scholar
- Guillén, M. D., & Cabo, N. (2002). Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chemistry, 77(4), 503–510. https://doi.org/10.1016/S0308-8146(01)00371-5.CrossRefGoogle Scholar
- Harrison, K., & Were, L. M. (2007). Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of almond skin extracts. Food Chemistry, 102(3), 932–937. https://doi.org/10.1016/j.foodchem.2006.06.034.CrossRefGoogle Scholar
- Inácio, A. G., Francisco, C. R. L., Rojas, V. M., Leone, R. S., Valderrama, P., Bona, E., et al. (2017). Evaluation of the oxidative stability of chia oil-loaded microparticles by thermal, spectroscopic and chemometric methods. LWT - Food Science and Technology, 87, 498–506.CrossRefGoogle Scholar
- Inglett, G. E., Chen, D., & Liu, S. (2014). Physical properties of sugar cookies containing chia-oat composites. Journal of the Science of Food and Agriculture, 94(15), 3226–3233. https://doi.org/10.1002/jsfa.6674.CrossRefGoogle Scholar
- Ixtaina, V. Y., Julio, L. M., Wagner, J. R., Nolasco, S. M., & Tomás, M. C. (2015). Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. Powder Technology, 271, 26–34. https://doi.org/10.1016/j.powtec.2014.11.006.CrossRefGoogle Scholar
- Javidnia, K., Parish, M., Karimi, S., & Hemmateenejad, B. (2013). Discrimination of edible oils and fats by combination of multivariate pattern recognition and FT-IR spectroscopy: a comparative study between different modeling methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 104, 175–181. https://doi.org/10.1016/j.saa.2012.11.067.CrossRefGoogle Scholar
- Joseph, J. D., & Ackman, R. G. (1992). Capillary column gas chromatography method for analysis of encapsulated fish oil and fish oil ethyl esters: collaborative study. Journal Association of Official Analytical Chemists, 75(3), 488–506.Google Scholar
- Kim, E. H. J., Corrigan, V. K., Wilson, A. J., Waters, I. R., Hedderley, D. I., & Morgenstern, M. P. (2012). Fundamental fracture properties associated with sensory hardness of brittle solid foods. Journal of Texture Studies, 43(1), 49–62. https://doi.org/10.1111/j.1745-4603.2011.00316.x.CrossRefGoogle Scholar
- Laguna, L., Primo-Martín, C., Salvador, A., & Sanz, T. (2013). Inulin and erythritol as sucrose replacers in short-dough cookies: sensory, fracture, and acoustic properties. Journal of Food Science, 78(5), S777–S784. https://doi.org/10.1111/1750-3841.12119.CrossRefGoogle Scholar
- Leimann, F. V., Gonçalves, O. H., Machado, R. A. F., & Bolzan, A. (2009). Antimicrobial activity of microencapsulated lemongrass essential oil and the effect of experimental parameters on microcapsules size and morphology. Materials Science and Engineering C, 29(2), 430–436. https://doi.org/10.1016/j.msec.2008.08.025.CrossRefGoogle Scholar
- Martínez, M. L., Curti, M. I., Roccia, P., Llabot, J. M., Penci, M. C., Bodoira, R. M., & Ribotta, P. D. (2015). Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray drying. Powder Technology, 270(Part A), 271–277. https://doi.org/10.1016/j.powtec.2014.10.031.CrossRefGoogle Scholar
- Mclaughlin, C. P., & Magee, T. R. A. (1998). The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Joumul of Food Engineering, 35(98), 261–262. https://doi.org/10.1016/S0260-8774(98)00025-9.Google Scholar
- Meilgaard, M., Civille, G. V., & Carr, B. (1999). Sensory evaluation techniques (3rd ed.). London: CRC Press. https://doi.org/10.1201/9781439832271.CrossRefGoogle Scholar
- Milinsk, M. C., Matsushita, M., Visentainer, J. V., De Oliveira, C. C., & De Souza, N. E. (2008). Comparative analysis of eight esterification methods in the quantitative determination of vegetable oil fatty acid methyl esters (FAME). Journal of the Brazilian Chemical Society, 19(8), 1475–1483. https://doi.org/10.1590/S0103-50532008000800006.CrossRefGoogle Scholar
- Moreira, I., & Scarminio, I. S. (2013). Chemometric discrimination of genetically modified Coffea arabica cultivars using spectroscopic and chromatographic fingerprints. Talanta, 107, 416–422. https://doi.org/10.1016/j.talanta.2013.01.053.CrossRefGoogle Scholar
- Noello, C., Carvalho, A. G. S., Silva, V. M., & Hubinger, M. D. (2016). Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition. Food Research International, 89(Pt 1), 549–557. https://doi.org/10.1016/j.foodres.2016.09.003.CrossRefGoogle Scholar
- Oliveira, R. B., Nascimento, T. L., & Lima, E. M. (2012). Design and characterization of sustained release ketoprofen entrapped carnauba wax microparticles. Drug Development and Industrial Pharmacy, 38(1), 1–11. https://doi.org/10.3109/03639045.2011.587433.CrossRefGoogle Scholar
- Oriani, V. B., Alvim, I. D., Consoli, L., Molina, G., Pastore, G. M., & Hubinger, M. D. (2016). Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: structure and compound retention. Food Research International, 80, 41–49. https://doi.org/10.1016/j.foodres.2015.12.015.CrossRefGoogle Scholar
- Palipane, K. B., & Driscoll, R. H. (1993). Moisture sorption characteristics of in-shell macadamia nuts. Journal of Food Engineering, 18(1), 63–76. https://doi.org/10.1016/0260-8774(93)90075-U.CrossRefGoogle Scholar
- Palou, E., López-Malo, a., & Argaiz, a. (1997). Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. Journal of Food Engineering, 31(1), 85–93. https://doi.org/10.1016/S0260-8774(96)00019-2.CrossRefGoogle Scholar
- Rodrigues, M. G. G., Santos, E. F., Sanches, F. L. F. Z., Novello, D., Manhani, M. R., & Neumann, M. (2014). Desenvolvimento de cookies adicionados de farinha de yacon (Smallanthus sonchifolius): caracterização química e aceitabilidade sensorial entre portadores de Diabetes Mellitus. Revista do Instituto Adolfo Lutz, 73(2), 219–225. https://doi.org/10.18241/0073-98552014731608.Google Scholar
- Samapundo, S., Devlieghere, F., De Meulenaer, B., Atukwase, A., Lamboni, Y., & Debevere, J. M. (2007). Sorption isotherms and isosteric heats of sorption of whole yellow dent corn. Journal of Food Engineering, 79(1), 168–175. https://doi.org/10.1016/j.jfoodeng.2006.01.040.CrossRefGoogle Scholar
- Šaponjac, V. T., Ćetković, G., Čanadanović-Brunet, J., Pajin, B., Djilas, S., Petrović, J., et al. (2016). Sour cherry pomace extract encapsulated in whey and soy proteins: incorporation in cookies. Food Chemistry, 207, 27–33. https://doi.org/10.1016/j.foodchem.2016.03.082.CrossRefGoogle Scholar
- Scalia, S., Haghi, M., Losi, V., Trotta, V., Young, P. M., & Traini, D. (2013). Quercetin solid lipid microparticles: a flavonoid for inhalation lung delivery. European Journal of Pharmaceutical Sciences, 49(2), 278–285. https://doi.org/10.1016/j.ejps.2013.03.009.CrossRefGoogle Scholar
- Škrbić, B., & Cvejanov, J. (2011). The enrichment of wheat cookies with high-oleic sunflower seed and hull-less barley flour: impact on nutritional composition, content of heavy elements and physical properties. Food Chemistry, 124(4), 1416–1422. https://doi.org/10.1016/j.foodchem.2010.07.101.CrossRefGoogle Scholar
- Sudha, M. L., Srivastava, A. K., Vetrimani, R., & Leelavathi, K. (2007). Fat replacement in soft dough biscuits: its implications on dough rheology and biscuit quality. Journal of Food Engineering, 80(3), 922–930. https://doi.org/10.1016/j.jfoodeng.2006.08.006.CrossRefGoogle Scholar
- Umesha, S. S., Manohar, R. S., Indiramma, A. R., Akshitha, S., & Naidu, K. A. (2015). Enrichment of biscuits with microencapsulated omega-3 fatty acid (alpha-linolenic acid) rich garden cress (Lepidium sativum) seed oil: physical, sensory and storage quality characteristics of biscuits. LWT - Food Science and Technology, 62(1), 654–661. https://doi.org/10.1016/j.lwt.2014.02.018.CrossRefGoogle Scholar
- Van den Berg, C., & Bruin, S. (1981). Water activity and its estimation in food systems. In L. B. Rockland & G. F. Stewart (Eds.), Water activity: influences on food quality (pp. 147–177). New York: Academic Press. https://doi.org/10.1016/B978-0-12-591350-8.50007-3.Google Scholar
- Villalobos-Hernández, J. R., & Müller-Goymann, C. C. (2005). Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media. European Journal of Pharmaceutics and Biopharmaceutics, 60(1), 113–122. https://doi.org/10.1016/j.ejpb.2004.11.002.CrossRefGoogle Scholar
- Whitworth, M. B., & Gates, F. K. (2013). Measuring and addressing texture challenges in healthy baked products. Cereal Foods World, 58(3), 120–125. https://doi.org/10.1094/CFW-58-3-0120.CrossRefGoogle Scholar
- Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52. https://doi.org/10.1201/9781420059496.ch3.CrossRefGoogle Scholar
- Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R., & Enser, M. (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66(1), 21–32. https://doi.org/10.1016/S0309-1740(03)00022-6.CrossRefGoogle Scholar
- Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT - Food Science and Technology, 42(10), 1688–1695. https://doi.org/10.1016/j.lwt.2009.05.010.CrossRefGoogle Scholar
- Yoon, S. H., Kim, S. K., Shin, M. G., & Kim, K. H. (1985). Comparative study of physical methods for lipid oxidation measurement in oils. Journal of American Oil Chemists’ Society, 62(10), 1487–1489. https://doi.org/10.1007/BF02541899.CrossRefGoogle Scholar
- Zahir, E., Saeed, R., Hameed, M. A., & Yousuf, A. (2014). Study of physicochemical properties of edible oil and evaluation of frying oil quality by Fourier transform-infrared (FT-IR) spectroscopy. Arabian Journal of Chemistry., 10, S3870–S3876. https://doi.org/10.1016/j.arabjc.2014.05.025.CrossRefGoogle Scholar