Stereotactic Radiosurgery for Multiple Brain Metastases

  • Johannes KraftEmail author
  • Jaap Zindler
  • Giuseppe Minniti
  • Matthias Guckenberger
  • Nicolaus Andratschke
Neuro-oncology (R Soffietti, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology


Purpose of review

To give an overview on the current evidence for stereotactic radiosurgery of brain metastases with a special focus on multiple brain metastases.

Recent findings

While the use of stereotactic radiosurgery in patients with limited brain metastases has been clearly defined, its role in patients with multiple lesions (> 4) is still a matter of controversy. Whole-brain radiation therapy (WBRT) has been the standard treatment approach for patients with multiple brain lesions and is still the most commonly used treatment approach worldwide. Although distant brain failure is improved by WBRT, the overall survival is not readily impacted. As WBRT is associated with significant neurocognitive decline compared to stereotactic radiosurgery (SRS), SRS has been explored and increasingly utilized for selected patients with multiple brain metastases. Recent clinical data indicated the feasibility of stereotactic radiosurgery to multiple brain metastases with a similar survival in patients with more than 4 brain metastases versus patients with a maximum of 4 brain metastases. Also, neurocognitive function and quality of life was maintained after stereotactic radiosurgery which is essential in a palliative setting.


The application of stereotactic radiosurgery with Gamma Knife, Cyberknife, or LINAC-based equipment has emerged as an effective and widely available treatment option for patients with limited brain metastases. Although not formally proven in prospective studies, SRS may also be considered as a safe and effective treatment option in selected patients with multiple brain metastases. Especially in patients with a favorable prognosis, survival over several years is observed also in the setting of multiple BM. For these patients, avoidance of the neurocognitive damage of WBRT is desirable, and SRS is often a more appropriate treatment in the current multimodality treatment of BM in which systemic treatment is often the cornerstone of the treatment. For patients with an intermediate (3–12 months) and poor prognosis (< 3 months), the application of WBRT becomes more and more controversial, because of its acute side effects, such as hair loss and fatigue and, thereby, detrimental effect on quality of life. For these patients, best supportive care, primary systemic treatment, and even SRS may be preferred over WBRT on an individualized patient basis.


Brain metastases Multiple brain metastases Stereotactic radiosurgery 


Compliance with Ethical Standards

Conflict of Interest

Johannes Kraft and Matthias Guckenberger each declare no potential conflicts of interest. Nicolaus Andratschke reports grants from Brainlab AG, outside the submitted work. Giuseppe Minniti reports personal fees from BrainLAb, outside the submitted work. Jaap Zindler has no personal conflicts of interest—MAASTRO Clinic has a research agreement with Varian Medical Systems Palo Alto USA.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hardesty DA, Nakaji P. The current and future treatment of brain metastases. Front Surg. 2016;3(30).
  2. 2.
    Posner JB. Management of brain metastases. Rev Neurol. 1992;148(6–7):477–87.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tabouret E, Chinot O, Metellus P, Tallet A, Viens P, Goncalves A. Recent trends in epidemiology of brain metastases: an overview. Anticancer Res. 2012;32(11):4655–62.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Nieder C, Spanne O, Mehta MP, Grosu AL, Geinitz H. Presentation, patterns of care, and survival in patients with brain metastases: what has changed in the last 20 years? Cancer. 2011;117(11):2505–12.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Langer CJ, Mehta MP. Current management of brain metastases, with a focus on systemic options. J Clin Oncol. 2005;23(25):6207–19.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Borgelt B, Gelber R, Kramer S, Brady LW, Chang CH, Davis LW, et al. The palliation of brain metastases: final results of the first two studies by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys. 1980;6(1):1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    • Brown PD, Ahluwalia MS, Khan OH, Asher AL, Wefel JS, Gondi V. Whole-brain radiotherapy for brain metastases: evolution or revolution? J Clin Oncol. 2018;36(5):483–91 This recently published review critically outlines the treatment of WBRT in patients with brain metastases and gives an overview about toxicity considerations and alternative therapies in the management of brain metastases.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    •• Mulvenna P, Nankivell M, Barton R, Faivre-Finn C, Wilson P, McColl E, et al. Dexamethasone and supportive care with or without whole brain radiotherapy in treating patients with non-small cell lung cancer with brain metastases unsuitable for resection or stereotactic radiotherapy (QUARTZ): results from a phase 3, non-inferiority, randomised trial. Lancet. 2016;388(10055):2004–14 This study was a phase 3 randomized non-inferiority trial showing neither overall survival benefit nor improved quality of life in poor non-small cell lung cancer patients with whole brain radiotherapy compared to best supportive care and dexamethasone.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Halasz LM, Uno H, Hughes M, D’Amico T, Dexter EU, Edge SB, et al. Comparative effectiveness of stereotactic radiosurgery versus whole-brain radiation therapy for patients with brain metastases from breast or non-small cell lung cancer. Cancer. 2016;122(13):2091–100.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sahgal A, Ruschin M, Ma L, Verbakel W, Larson D, Brown PD. Stereotactic radiosurgery alone for multiple brain metastases? A review of clinical and technical issues. Neuro-oncology. 2017;19(suppl_2):ii2–ii15.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Badiyan SN, Regine WF, Mehta M. Stereotactic radiosurgery for treatment of brain metastases. J Oncol Pract. 2016;12(8):703–12.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sahgal A, Aoyama H, Kocher M, Neupane B, Collette S, Tago M, et al. Individual patient data (IPD) meta-analysis of randomized controlled trials (RCT) comparing stereotactic radiosurgery alone to SRS plus whole brain radiation therapy in patients with brain metastasis. Int J Radiat Oncol Biol Phys. 2013;87(5):1187.CrossRefGoogle Scholar
  13. 13.
    Tsao MN, Rades D, Wirth A, Lo SS, Danielson BL, Gaspar LE, et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): an American Society for Radiation Oncology evidence-based guideline. Pract Radiat Oncol. 2012;2(3):210–25.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Davies MA, Saiag P, Robert C, Grob JJ, Flaherty KT, Arance A, et al. Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18(7):863–73.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–83.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Long GV, Atkinson V, Lo S, Sandhu S, Guminski AD, Brown MP, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018;19(5):672–81.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Tawbi HA, Forsyth PA, Algazi A, Hamid O, Hodi FS, Moschos SJ, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379(8):722–30.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lindquist C. Gamma knife surgery for recurrent solitary metastasis of a cerebral hypernephroma: case report. Neurosurgery. 1989;25(5):802–4.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    •• Brown PD, Jaeckle K, Ballman KV, et al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA. 2016;316(4):401–9 This trial showed significant cognitive decline with WBRT added to stereotactic radiosurgery in patients with 1–3 brain metastases compared with patients receiving only stereotactic radiosurgery without added WBRT.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kocher M, Soffietti R, Abacioglu U, Villa S, Fauchon F, Baumert BG, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26,001 study. J Clin Oncol. 2011;29(2):134–41.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, Hatano K, et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA. 2006;295(21):2483–91.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Andrews DW, Scott CB, Sperduto PW, Flanders AE, Gaspar LE, Schell MC, et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: phase III results of the RTOG 9508 randomised trial. Lancet (London, England). 2004;363(9422):1665–72.CrossRefGoogle Scholar
  24. 24.
    Sperduto PW, Shanley R, Luo X, Andrews D, Werner-Wasik M, Valicenti R, et al. Secondary analysis of RTOG 9508, a phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1–3 brain metastases; poststratified by the graded prognostic assessment (GPA). Int J Radiat Oncol Biol Phys. 2014;90(3):526–31.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Yamamoto M, Serizawa T, Shuto T, Akabane A, Higuchi Y, Kawagishi J, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15(4):387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Nabors LB, Portnow J, Ammirati M, Brem H, Brown P, Butowski N, et al. Central nervous system cancers, version 2.2014. Featured updates to the NCCN Guidelines. J Natl Compr Cancer Netw. 2014;12(11):1517–23.CrossRefGoogle Scholar
  28. 28.
    Lester SC, Taksler GB, Kuremsky JG, Lucas JT Jr, Ayala-Peacock DN, Randolph DM 2nd, et al. Clinical and economic outcomes of patients with brain metastases based on symptoms: An argument for routine brain screening of those treated with upfront radiosurgery. Cancer. 2014;120(3):433–41.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Shultz DB, Modlin LA, Jayachandran P, Von Eyben R, Gibbs IC, Choi CYH, et al. Repeat courses of stereotactic radiosurgery (SRS), deferring whole-brain irradiation, for new brain metastases after initial SRS. Int J Radiat Oncol Biol Phys. 2015;92(5):993–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hall MD, McGee JL, McGee MC, Hall KA, Neils DM, Klopfenstein JD, et al. Cost-effectiveness of stereotactic radiosurgery with and without whole-brain radiotherapy for the treatment of newly diagnosed brain metastases. J Neurosurg. 2014;121(Suppl):84–90.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med. 1990;322(8):494–500.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    •• Brown PD, Ballman KV, Cerhan JH, Anderson SK, Carrero XW, Whitton AC, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): a multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1049–60 This randomized, controlled, phase 3 trial reports on radiotherapy in the postoperative setting of brain metastases and favors stereotactic radiosurgery to the resection cavity compared to whole brain radiotherapy with less toxic effects to the brain and same overall survival.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    •• Mahajan A, Ahmed S, McAleer MF, Weinberg JS, Li J, Brown P, et al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, phase 3 trial. Lancet Oncol. 2017;18(8):1040–8 This study highlights the use of post-operative stereotactic radiosurgery to the resection cavity in brain metastases with significantly improved local control rates compared to observation.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    • Soffietti R, Abacioglu U, Baumert B, Combs SE, Kinhult S, Kros JM, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neuro-oncology. 2017;19(2):162–74 Amongst others, this guideline recommends stereotactic radiosurgery as the favored treatment for patients with limited brain metastases in good clinical performance status and favorable prognostic factors.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lin X, DeAngelis LM. Treatment of brain metastases. J Clin Oncol. 2015;33(30):3475–84.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Chang WS, Kim HY, Chang JW, Park YG, Chang JH. Analysis of radiosurgical results in patients with brain metastases according to the number of brain lesions: is stereotactic radiosurgery effective for multiple brain metastases? J Neurosurg. 2010;113(Suppl):73–8.PubMedCrossRefGoogle Scholar
  37. 37.
    • Levy A, Faivre-Finn C, Hasan B, De Maio E, Berghoff AS, Girard N, et al. Diversity of brain metastases screening and management in non-small cell lung cancer in Europe: results of the European Organisation for Research and Treatment of Cancer Lung Cancer Group survey. Eur J Cancer (Oxford, England: 1990). 2018;93:37–46 This online survey-based report gives an overview about the diversity in screening and management of brain metastases of non-small cell lung cancer patients in Europe.CrossRefGoogle Scholar
  38. 38.
    Saiki R, Brill A, Breeze RE. Four-year Survival (and Counting) after Stereotactic radiosurgery to nearly 100 brain metastases: a case report. Cureus. 2018;10(1):e2103.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Moriarty TMLJ, PMCL B, Shrieve DS, Wen PY, Fine HA, Kooy HM, et al. Long-term follow-up of patients treated with stereotactic radiosurgery for single or multiple brain metastases. In: Kondziolka D, editor. Radiosurgery. Basel: Karger; 1995. p. 83–91.Google Scholar
  40. 40.
    Young REJD, Duma C, Rand RW, Henderson J, Vermeulen SS, Grimm P, et al. Gamma Knife radio-surgery for treatment of multiple brain metastases. In: Kondziolka D, editor. Radiosurgery. Basel: Karger; 1995. p. 92–101.Google Scholar
  41. 41.
    Yamamoto M, Ide M, Jimbo M, Aiba M, Ito M, Hirai T, et al. Gamma Knife radiosurgery with numerous target points for intracranially disseminated metastases. Radiosurgery 1997. 2: Karger Publishers; 1998. p. 94–109.Google Scholar
  42. 42.
    Nam TK, Lee JI, Jung YJ, Im YS, An HY, Nam DH, et al. Gamma Knife surgery for brain metastases in patients harboring four or more lesions: survival and prognostic factors. J Neurosurg. 2005;102(Suppl):147–50.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bhatnagar AK, Flickinger JC, Kondziolka D, Lunsford LD. Stereotactic radiosurgery for four or more intracranial metastases. Int J Radiat Oncol Biol Phys. 2006;64(3):898–903.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kim CH, Im YS, Nam DH, Park K, Kim JH, Lee JI. Gamma knife radiosurgery for ten or more brain metastases. J Korean Neurosurg Soc. 2008;44(6):358–63.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mohammadi AM, Recinos PF, Barnett GH, Weil RJ, Vogelbaum MA, Chao ST, et al. Role of Gamma Knife surgery in patients with 5 or more brain metastases. J Neurosurg. 2012;117(Suppl):5–12.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Salvetti DJ, Nagaraja TG, McNeill IT, Xu Z, Sheehan J. Gamma Knife surgery for the treatment of 5 to 15 metastases to the brain: clinical article. J Neurosurg. 2013;118(6):1250–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    • Nichol A, Ma R, Hsu F, Gondara L, Carolan H, Olson R, et al. Volumetric radiosurgery for 1 to 10 brain metastases: a multicenter, single-arm, phase 2 study. Int J Radiat Oncol Biol Phys. 2016;94(2):312–21 This phase II study reports on feasibility, tolerability, and toxicity of hypo-fractionated radiosurgery in five fractions for up to 10 BMs.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Riechelmann RP, Alex A, Cruz L, Bariani GM, Hoff PM. Non-inferiority cancer clinical trials: scope and purposes underlying their design. Ann Oncol. 2013;24(7):1942–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Weintraub WS. Cutting through the statistical fog: understanding and evaluating non-inferiority trials. Int J Clin Pract. 2010;64(10):1359–66.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yamamoto M, Kawabe T, Sato Y, Higuchi Y, Nariai T, Barfod BE, et al. A case-matched study of stereotactic radiosurgery for patients with multiple brain metastases: comparing treatment results for 1–4 vs >/= 5 tumors: clinical article. J Neurosurg. 2013;118(6):1258–68.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Yamamoto M, Kawabe T, Sato Y, Higuchi Y, Nariai T, Watanabe S, et al. Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2–9 versus 10 or more tumors. J Neurosurg. 2014;121(Suppl):16–25.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Muacevic A, Kreth FW, Tonn JC, Wowra B. Stereotactic radiosurgery for multiple brain metastases from breast carcinoma. Cancer. 2004;100(8):1705–11.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Pfeffer RM, Levin D, Spiegelmann R. Linac-based radiosurgery for multiple brain metastases: a quality assurance and feasibility study. J Clin Oncol. 2017;35(15_suppl):2077.CrossRefGoogle Scholar
  54. 54.
    Baschnagel AM, Meyer KD, Chen PY, Krauss DJ, Olson RE, Pieper DR, et al. Tumor volume as a predictor of survival and local control in patients with brain metastases treated with Gamma Knife surgery. J Neurosurg. 2013;119(5):1139–44.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    de Azevedo Santos TR, Tundisi CF, Ramos H, Maia MAC, Pellizzon ACA, Silva MLG, et al. Local control after radiosurgery for brain metastases: predictive factors and implications for clinical decision. Radiat Oncol (London, England). 2015;10:63.CrossRefGoogle Scholar
  56. 56.
    Routman DM, Bian SX, Diao K, Liu JL, Yu C, Ye J, et al. The growing importance of lesion volume as a prognostic factor in patients with multiple brain metastases treated with stereotactic radiosurgery. Cancer Med. 2018;7(3):757–64.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hunter GK, Suh JH, Reuther AM, Vogelbaum MA, Barnett GH, Angelov L, et al. Treatment of five or more brain metastases with stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;83(5):1394–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Limon D, McSherry F, Herndon J, Sampson J, Fecci P, Adamson J, et al. Single fraction stereotactic radiosurgery for multiple brain metastases. Adv Radiat Oncol. 2017;2(4):555–63.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Likhacheva A, Pinnix CC, Parikh NR, Allen PK, McAleer MF, Chiu MS, et al. Predictors of survival in contemporary practice after initial radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys. 2013;85(3):656–61.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sandler KA, Shaverdian N, Cook RR, Kishan AU, King CR, Yang I, et al. Treatment trends for patients with brain metastases: does practice reflect the data? Cancer. 2017;123(12):2274–82.PubMedCrossRefGoogle Scholar
  61. 61.
    Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008;70(2):510–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Nieder C, Bremnes RM, Andratschke NH. Prognostic scores in patients with brain metastases from non-small cell lung cancer. J Thorac Oncol. 2009;4(11):1337–41.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Likhacheva A, Pinnix CC, Parikh N, Allen PK, Guha-Thakurta N, McAleer M, et al. Validation of recursive partitioning analysis and diagnosis-specific graded prognostic assessment in patients treated initially with radiosurgery alone. J Neurosurg. 2012;117(0):38–44.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sperduto PW, Chao ST, Sneed PK, Luo X, Suh J, Roberge D, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4259 patients. Int J Radiat Oncol Biol Phys. 2010;77(3):655–61.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    •• Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung cancer and brain metastases: an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol. 2017;3(6):827–31 This paper reports on the Lung-molGPA, an updated prognostic tool of the Diagnosis-Specific Graded Prognostic Assessment (DS-GPA) for patients with non-small-cell lung cancer (NSCLC) and brain metastases, which incorporates gene alteration data into the DS-GPA.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Venur VA, Ahluwalia MS. Prognostic scores for brain metastasis patients: use in clinical practice and trial design. Chin Clin Oncol. 2015;4(2):18.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Sperduto PW, Kased N, Roberge D, Xu Z, Shanley R, Luo X, et al. Summary report on the graded prognostic assessment: an accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. J Clin Oncol. 2012;30(4):419–25.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ayala-Peacock DN, Peiffer AM, Lucas JT, Isom S, Kuremsky JG, Urbanic JJ, et al. A nomogram for predicting distant brain failure in patients treated with gamma knife stereotactic radiosurgery without whole brain radiotherapy. Neuro-Oncology. 2014;16(9):1283–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Rodrigues G, Warner A, Zindler J, Slotman B, Lagerwaard F. A clinical nomogram and recursive partitioning analysis to determine the risk of regional failure after radiosurgery alone for brain metastases. Radiother Oncol. 2014;111(1):52–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Press RH, Prabhu RS, Nickleach DC, Liu Y, Shu HK, Kandula S, et al. Novel risk stratification score for predicting early distant brain failure and salvage whole-brain radiotherapy after stereotactic radiosurgery for brain metastases. Cancer. 2015;121(21):3836–43.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Farris M, McTyre ER, Cramer CK, Hughes R, Randolph DM 2nd, Ayala-Peacock DN, et al. Brain metastasis velocity: a novel prognostic metric predictive of overall survival and freedom from whole-brain radiation therapy after distant brain failure following upfront radiosurgery alone. Int J Radiat Oncol Biol Phys. 2017;98(1):131–41.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    McTyre E, Farris M, Ayala-Peacock DN, Page BR, Shen C, Kleinberg LR, et al. Multi-institutional validation of brain metastasis velocity, a recently defined predictor of outcomes following stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2017;99(2):E93.CrossRefGoogle Scholar
  73. 73.
    Zindler JD, Bruynzeel AME, Eekers DBP, Hurkmans CW, Swinnen A, Lambin P. Whole brain radiotherapy versus stereotactic radiosurgery for 4–10 brain metastases: a phase III randomised multicentre trial. BMC Cancer. 2017;17(1):500.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kazda T, Jancalek R, Pospisil P, Sevela O, Prochazka T, Vrzal M, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9(1):139.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32(34):3810.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Prokic V, Wiedenmann N, Fels F, Schmucker M, Nieder C, Grosu A-L. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys. 2013;85(1):264–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Brastianos HC, Cahill DP, Brastianos PK. Systemic therapy of brain metastases. Curr Neurol Neurosci Rep. 2015;15(2):518.PubMedCrossRefGoogle Scholar
  78. 78.
    Venur VA, Ahluwalia MS. Targeted therapy in brain metastases: ready for primetime? Am Soc Clin Oncol Educ Book. 2016;35:e123–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Schuette W. Treatment of brain metastases from lung cancer: chemotherapy. Lung Cancer (Amsterdam, Netherlands). 2004;45(Suppl 2):S253–7.CrossRefGoogle Scholar
  80. 80.
    •• Mok T, Ahn M-J, Han J-Y, Kang JH, Katakami N, Kim H, et al. CNS response to osimertinib in patients (pts) with T790 M-positive advanced NSCLC: data from a randomized phase III trial (AURA3). J Clin Oncol. 2017;35(15_suppl):9005 This study highlights the effectivity of osimertinib in brain metastases in driver-mutated non-small cell lung cancer.CrossRefGoogle Scholar
  81. 81.
    •• Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus crizotinib in untreated ALK-positive non-small-cell lung cancer. N Engl J Med. 2017;377(9):829–38 This study highlights the superior efficacy and lower toxicity in primary treatment of ALK-positive NSCLC with alectinib compared to crizotinib.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kim DW, Tiseo M, Ahn MJ, Reckamp KL, Hansen KH, Kim SW, et al. Brigatinib in patients with crizotinib-refractory anaplastic lymphoma kinase-positive non-small-cell lung cancer: a randomized, multicenter phase II trial. J Clin Oncol. 2017;35(22):2490–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol. 2017;18(12):1590–9.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Novello S, Barlesi F, Califano R, on behalf of the EGC, et al. Metastatic non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl_5):v1–v27.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    •• Magnuson WJ, Lester-Coll NH, Wu AJ, Yang TJ, Lockney NA, Gerber NK, et al. Management of brain metastases in tyrosine kinase inhibitor-naive epidermal growth factor receptor-mutant non-small-cell lung cancer: a retrospective multi-institutional analysis. J Clin Oncol. 2017;35(10):1070–7 This large retrospective multi-institutional study analyzed NSCLC patients with EGFR mutation and brain metastases and showed a significant OS benefit in patients with newly diagnosed BMs receiving upfront radiotherapy plus EGFR-TKI treatment.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Johannes Kraft
    • 1
    Email author
  • Jaap Zindler
    • 2
  • Giuseppe Minniti
    • 3
    • 4
  • Matthias Guckenberger
    • 1
  • Nicolaus Andratschke
    • 1
  1. 1.Department of Radiation Oncology, University Hospital of ZurichUniversity of ZurichZurichSwitzerland
  2. 2.Erasmus MC Rotterdam/Holland Proton Therapy Center DelftMAASTRO Clinic MaastrichtMaastrichtThe Netherlands
  3. 3.Radiation Oncology Unit, UPMC Hillman Cancer CenterSan Pietro HospitalRomeItaly
  4. 4.IRCCS NeuromedPozzilliItaly

Personalised recommendations