Advertisement

An Update on the Treatment of Chorea

  • Erin Feinstein
  • Ruth Walker
Movement Disorders (A Videnovich, Section Editor)
  • 107 Downloads
Part of the following topical collections:
  1. Topical Collection on Movement Disorders

Abstract

Purpose of review

There are many causes for chorea, including genetic, autoimmune, pharmacological, and structural lesions. Where appropriate, treatment is based on reversing the underlying cause of chorea; many cases are self-limited, resolving when the primary disorder is treated. This review focuses on the management of chorea due to untreatable causes.

Recent findings

There are a limited number of double-blind randomized control trials assessing the efficacy of specific chorea treatments. Most therapeutic recommendations are based on small open-label studies, case reports, and expert opinion. This is in part due to the heterogeneity of chorea and chorea-associated syndromes and the variety of neurodegenerative phenotypes with variable progression rates.

Summary

Chorea can be treated with a variety of medications ranging from antiepileptics to antipsychotics. The recent development of selective vesicular monoamine transporter blocking agents has allowed for targeted chorea management with minimal side effects. Neurosurgical interventions such as deep brain surgery (DBS) and pallidotomy are reserved for medication-refractory chorea. As a symptom of neurodegenerative disease, chorea is only one aspect of the basal ganglia syndromes, and often, a multidisciplinary approach tailored to individual patient needs provides the best management.

Keywords

Chorea Deutetrabenazine Valbenazine Deep brain stimulation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Erin Feinstein declares no conflict of interest. Ruth Walker has received consulting fees from the manufacturers of valbenazine, Neurocrine Biosciences, Inc. She has also received honoraria from Advance Medical Opinion, the International Parkinson Disease and Movement Disorders Society, and GE Healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Hermann A, Walker RH. Diagnosis and treatment of chorea syndromes. Curr Neurol Neurosci Rep. 2015;15  https://doi.org/10.1007/s11910-014-0514-0.
  2. 2.
    Mink JW. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol. 2003;60:1365–8.CrossRefGoogle Scholar
  3. 3.
    Khouzam HR. Identification and management of tardive dyskinesia: a case series and literature review. Postgrad Med. 2015;127:726–37.CrossRefGoogle Scholar
  4. 4.
    Vijayakumar D, Jankovic J. Drug-induced dyskinesia, part 2: treatment of tardive dyskinesia. Drugs. 2016;76:779–87.CrossRefGoogle Scholar
  5. 5.
    Waln O, Jankovic J. An Update on Tardive Dyskinesia: From Phenomenology to Treatment. Tremor and Other Hyperkinetic Movements. 2013;1–11.Google Scholar
  6. 6.
    Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. Br Med J. 1996;312:71–2.CrossRefGoogle Scholar
  7. 7.
    Guay DRP. Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother. 2010;8:331–73.CrossRefGoogle Scholar
  8. 8.
    Frank S. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington study group/TETRA-HD investigators. BMC Neurol. 2009;9:62.CrossRefGoogle Scholar
  9. 9.
    Killoran A, Biglan KM. Current therapeutic options for Huntington’s disease: good clinical practice versus evidence-based approaches? Mov Disord. 2014;29:1404–13.CrossRefGoogle Scholar
  10. 10.
    Ondo WG, Adam OR, Jankovic J, Chinnery PF. Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov Disord. 2010;25:2470–2.CrossRefGoogle Scholar
  11. 11.
    Qayyum Rana A, Chaudry ZM, Blanchet PJ. New and emerging treatment options for symptomatic tardive d. Drug Des Devel Ther. 2013;7:1329–40.CrossRefGoogle Scholar
  12. 12.
    Chinnery PF, Crompton DE, Birchall D, Jackson MJ, Coulthard A, Lombès A, et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain. 2007;130:110–9.CrossRefGoogle Scholar
  13. 13.
    Ong B, Devathasan G, Chong PN. Choreoacanthocytosis in a Chinese patient--a case report. Singap Med J. 1989;30:506–8.Google Scholar
  14. 14.
    Walker RH. Management of Neuroacanthocytosis Syndromes. Tremor Other Hyperkinet Mov (N Y). 2015;5:346.Google Scholar
  15. 15.
    Hawkes C, Nourse C. Tetabenazine in Sydenham’s chorea. Br Med J. 1977;28:1391–2.CrossRefGoogle Scholar
  16. 16.
    Calabrò RS, Polimeni G, Gervasi G, Bramanti P. Postthalamic stroke dystonic choreoathetosis responsive to tetrabenazine. Ann Pharmacother. 2011;45:e65.CrossRefGoogle Scholar
  17. 17.
    •• Frank S, Testa CM, Stamler D, et al. Effect of Deutetrabenazine on chorea among patients with Huntington disease: a randomized clinical trial. JAMA. 2016;316:40–50. This is curently the largest double-blind, randomized, placebo-controlled study of the effects of deutetrabenazine on patients with Huntington's diseae.CrossRefGoogle Scholar
  18. 18.
    •• Fernandez HH, Factor SA, Hauser RA, Jimenez-Shahed J, Ondo WG, Jarskog LF, et al. Randomized controlled trial of deutetrabenazine for tardive dyskinesia: the ARM-TD study. Neurology. 2017;88:2003–10. This paper is the largest multicenter double-blind, randomized, placebo-controlled study of the effects of deutetrabenazine on tardive dyskinesia.CrossRefGoogle Scholar
  19. 19.
    •• Anderson KE, Stamler D, Davis MD, Factor SA, Hauser RA, Isojärvi J, et al. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): a double-blind, randomised, placebo-controlled, phase 3 trial. The lancet Psychiatry. 2017;4:595–604. This paper is the only double-blind, randomized, placebo-controlled study using deutetrabenazine to specifically treat movements from tardive dyskinesia.CrossRefGoogle Scholar
  20. 20.
    Grigoriadis DE, Smith E, Hoare SRJ, Madan A, Bozigian H. Pharmacologic characterization of Valbenazine (NBI-98854) and its metabolites. J Pharmacol Exp Ther. 2017;361:454–61.CrossRefGoogle Scholar
  21. 21.
    •• Hauser RA, Factor SA, Marder SR, Knesevich MA, Ramirez PM, Jimenez R, et al. KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of Valbenazine for tardive dyskinesia. Am J Psychiatry. 2017;174:476–84. This paper is the only double-blind, placebo-controlled study uding valbenazine for tardive dysinesia.CrossRefGoogle Scholar
  22. 22.
    Factor SA, Remington G, Comella CL, Correll CU, Burke J, Jimenez R, et al. The effects of Valbenazine in participants with tardive dyskinesia. J Clin Psychiatry. 2017;78:1344–50.CrossRefGoogle Scholar
  23. 23.
    Deroover J, Baro F, Bourguignon RP, Smets P. Tiapride versus placebo: a double-blind comparative study in the management of Huntington’s chorea. Curr Med Res Opin. 1984;9:329–38.CrossRefGoogle Scholar
  24. 24.
    Girotti F, Carella F, Scigliano G, Grassi MP, Soliveri P, Giovannini P, et al. Effect of neuroleptic treatment on involuntary movements and motor performances in Huntington’s disease. J Neurol Neurosurg Psychiatry. 1984;47:848–52.CrossRefGoogle Scholar
  25. 25.
    Marsden CD. Drug treatment of diseases characterized by abnormal movements. Proc R Soc Med. 1973;66:871–3.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Seeman P, Tallerico T. Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry. 1998;3:123–34.CrossRefGoogle Scholar
  27. 27.
    Candelise L. Haloperidol, reserpine, l-dopa and amantidine in the treatment of Huntington chorea (author’s transl). Riv Patol Nerv Ment. 1976;96:54–62.PubMedGoogle Scholar
  28. 28.
    Giménez-Roldán S, Mateo D. Huntington disease: tetrabenazine compared to haloperidol in the reduction of involuntary movements. Neurol (Barcelona, Spain). 1989;4:282–7.Google Scholar
  29. 29.
    Leonard DP, Kidson MA, Brown JG, Shannon PJ, Taryan S. A double blind trial of lithium carbonate and haloperidol in Huntington’s chorea. Aust N Z J Psychiatry. 1975;9:115–8.CrossRefGoogle Scholar
  30. 30.
    Demiroren K, Yavuz H, Cam L, Oran B, Karaaslan S, Demiroren S. Sydenham’s chorea: a clinical follow-up of 65 patients. J Child Neurol. 2007;22:550–4.CrossRefGoogle Scholar
  31. 31.
    Walker KG, Wilmshurst JM. An update on the treatment of Sydenham’s chorea: the evidence for established and evolving interventions. Ther Adv Neurol Disord. 2010;3:301–9.CrossRefGoogle Scholar
  32. 32.
    Ford JB, Albertson TE, Owen KP, Sutter ME, McKinney WB. Acute, sustained chorea in children after supratherapeutic dosing of amphetamine-derived medications. Pediatr Neurol. 2012;47:216–8.CrossRefGoogle Scholar
  33. 33.
    Park K, Lee Y, Park H. Chorea in the both lower limbs associated with Nonketotic hyperglycemia. Magn Reson Imaging. 2009;2:98–100.Google Scholar
  34. 34.
    Sutamtewagul G, Sood V, Nugent K. Sympathomimetic syndrome, choreoathetosis, and acute kidney injury following "bath salts" injection. Clin Nephrol. 2014;81:63–6.CrossRefGoogle Scholar
  35. 35.
    Armstrong MJ, Miyasaki JM, Suchowersky O, Armstrong MJ, Miyasaki JM. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2013;79:597–603.CrossRefGoogle Scholar
  36. 36.
    Seeman P, Van Tol HHM. Dopamine receptor pharmacology. Trends Pharmacol Sci. 1994;15:264–70.CrossRefGoogle Scholar
  37. 37.
    Bonuccelli U, Ceravolo R, Maremmani C, Nuti A, Rossi G, Muratorio A. Clozapine in Huntington’s chorea. Neurology. 1994;44:821–3.CrossRefGoogle Scholar
  38. 38.
    Li C-R, Chung Y-C, Park T-W, Yang J-C, Kim K-W, Lee K-H, et al. Clozapine-induced tardive dyskinesia in schizophrenic patients taking clozapine as a first-line antipsychotic drug. World J Biol Psychiatry. 2009;10:919–24.CrossRefGoogle Scholar
  39. 39.
    Molho ES, Factor SA. Possible tardive dystonia resulting from clozapine therapy. Mov Disord. 1999;14:873–4.CrossRefGoogle Scholar
  40. 40.
    Ryu S, Yoo JH, Kim JH, Choi JS, Baek JH, Ha K, et al. Tardive dyskinesia and tardive dystonia with second-generation antipsychotics in non-elderly schizophrenic patients unexposed to first-generation antipsychotics: a cross-sectional and retrospective study. J Clin Psychopharmacol. 2015;35:13–21.CrossRefGoogle Scholar
  41. 41.
    Grover S, Hazari N, Kate N, Chakraborty K, Sharma A, Singh D, et al. Management of tardive syndromes with clozapine: a case series. Asian J Psychiatr. 2014;8:111–4.CrossRefGoogle Scholar
  42. 42.
    Kando JC, Shepski JC, Satterlee W, Patel JK, Reams SG, Green AI. Olanzapine: a new antipsychotic agent with efficacy in the management of schizophrenia. Ann Pharmacother. 1997;31:1325–34.CrossRefGoogle Scholar
  43. 43.
    Bonelli RM, Niederwieser G, Tribl GG, Költringer P. High-dose olanzapine in Huntington’s disease. Int Clin Psychopharmacol. 2002;17:91–3.CrossRefGoogle Scholar
  44. 44.
    Paleacu D, Anca M, Giladi N. Olanzapine in Huntington’s disease. Acta Neurol Scand. 2002;105:441–4.CrossRefGoogle Scholar
  45. 45.
    Mason SL, Barker RA. Advancing pharmacotherapy for treating Huntington’s disease: a review of the existing literature. Expert Opin Pharmacother. 2015;6566:1–12.Google Scholar
  46. 46.
    Zádori D, Geisz A, Vámos E, Vécsei L, Klivényi P. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease. Pharmacol Biochem Behav. 2009;94:148–53.CrossRefGoogle Scholar
  47. 47.
    Symington GR, Leonard DP, Shannon PJ, Vajda FJ. Sodium valproate in Huntington’s disease. Am J Psychiatry. 1978;135:352–4.CrossRefGoogle Scholar
  48. 48.
    Grove VE, Quintanilla J, DeVaney GT. Improvement of Huntington’s disease with olanzapine and valproate. N Engl J Med. 2000;343:973–4.CrossRefGoogle Scholar
  49. 49.
    Peña J, Mora E, Cardozo J, Molina O, Montiel C. Comparison of the efficacy of carbamazepine, haloperidol and valproic acid in the treatment of children with Sydenham’s chorea: clinical follow-up of 18 patients. Arq Neuropsiquiatr. 2002;60:374–7.CrossRefGoogle Scholar
  50. 50.
    Schwarz JR, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia. 1989;30:286–94.CrossRefGoogle Scholar
  51. 51.
    Zhang JD, Saito K. Carbamazepine facilitates effects of GABA on rat hippocampus slices. Zhongguo Yao Li Xue Bao. 1997;18:230–3.PubMedGoogle Scholar
  52. 52.
    Thapa L, Bhattarai S, Shrestha MP, Panth R, Gongal DN, Devkota UP. Chorea-acanthocytosis: a case report. Int Med Case Rep J. 2016;9:39–42.CrossRefGoogle Scholar
  53. 53.
    Rudolph U, Möhler H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol. 2006;6:18–23.CrossRefGoogle Scholar
  54. 54.
    Mohapatra S. Successful Management of Tardive Dyskinesia with quetiapine and clonazepam in a patient of schizophrenia with type 2 diabetes mellitus. Clin Psychopharmacol Neurosci. 2016;14:218–20.CrossRefGoogle Scholar
  55. 55.
    Thaker GK, Nguyen JA, Strauss ME, Jacobson R, Kaup BA, Tamminga CA. Clonazepam treatment of tardive dyskinesia: a practical GABAmimetic strategy. Am J Psychiatry. 1990;147:445–51.CrossRefGoogle Scholar
  56. 56.
    Vogl C, Mochida S, Wolff C, Whalley BJ, Stephens GJ. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol Pharmacol. 2012;82:199–208.CrossRefGoogle Scholar
  57. 57.
    Fukuyama K, Tanahashi S, Nakagawa M, Yamamura S, Motomura E, Shiroyama T, et al. Levetiracetam inhibits neurotransmitter release associated with CICR. Neurosci Lett. 2012;518:69–74.CrossRefGoogle Scholar
  58. 58.
    Zesiewicz TA, Sullivan KL, Hauser RA, Sanchez-Ramos J. Open-label pilot study of levetiracetam (Keppra) for the treatment of chorea in Huntington’s disease. Mov Disord. 2006;21:1998–2001.CrossRefGoogle Scholar
  59. 59.
    Woods SW, Saksa JR, Baker CB, Cohen SJ, Tek C. Effects of levetiracetam on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2008;69:546–54.CrossRefGoogle Scholar
  60. 60.
    Şahin S, Cansu A. A new alternative drug with fewer adverse effects in the treatment of Sydenham chorea: Levetiracetam efficacy in a child. Clin Neuropharmacol. 2015;38:144–6.CrossRefGoogle Scholar
  61. 61.
    Verhagen L, Morris MJ, Farmer C, Gillespie M, Mosby K, Wuu J, et al. Huntington’s disease: a randomized, controlled trial using the NMDA-antagonist amantadine. Neurology. 2002;59:694–9.CrossRefGoogle Scholar
  62. 62.
    O’Suilleabhain P, Dewey RB. A randomized trial of amantadine in Huntington disease. Arch Neurol. 2003;60:996–8.CrossRefGoogle Scholar
  63. 63.
    Heckmann J, Legg P, Sklar D, Fine J, Bryer A, Kies B. IV amantadine improves chorea in Huntington’s disease: an acute randomized, controlled study. Neurology. 2004;63:597–8.CrossRefGoogle Scholar
  64. 64.
    Alblowi MA, Alosaimi FD. Tardive dyskinesia occurring in a young woman after withdrawal of an atypical antipsychotic drug. Neurosciences (Riyadh). 2015;20:376–9.CrossRefGoogle Scholar
  65. 65.
    Pappa S, Tsouli S, Apostolou G, Mavreas V, Konitsiotis S. Effects of amantadine on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol. 2010;33:271–5.CrossRefGoogle Scholar
  66. 66.
    Bergerot A, Shortland PJ, Anand P, Hunt SP, Carlstedt T. Co-treatment with riluzole and GDNF is necessary for functional recovery after ventral root avulsion injury. Exp Neurol. 2004;187:359–66.CrossRefGoogle Scholar
  67. 67.
    Boireau A, Meunier M, Imperato A. Ouabain-induced increase in dopamine release from mouse striatal slices is antagonized by riluzole. J Pharm Pharmacol. 1998;50:1293–7.CrossRefGoogle Scholar
  68. 68.
    Dorsey ER, Shoulson I, Leavitt B, et al. Dosage effects of riluzole in Huntington’s disease a multicenter placebo-controlled study. Neurology. 2003;61:1551–6.CrossRefGoogle Scholar
  69. 69.
    Landwehrmeyer GB, Dubois B, De Yébenes JG, et al. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol. 2007;62:262–72.CrossRefGoogle Scholar
  70. 70.
    Bedi G, Cooper ZD, Haney M. Subjective, cognitive and cardiovascular dose-effect profile of nabilone and dronabinol in marijuana smokers. Addict Biol. 2013;18:872–81.CrossRefGoogle Scholar
  71. 71.
    Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord. 2015;30:313–27.CrossRefGoogle Scholar
  72. 72.
    Rabinak CA, Angstadt M, Lyons M, Mori S, Milad MR, Liberzon I, et al. Cannabinoid modulation of prefrontal–limbic activation during fear extinction learning and recall in humans. Neurobiol Learn Mem. 2014;113:125–34.CrossRefGoogle Scholar
  73. 73.
    Glass M, Brotchie JM, Maneuf Y. Modulation of neurotransmission by cannabinoids in the basal ganglia. Eur J Neurosci. 1997;9:199–203.CrossRefGoogle Scholar
  74. 74.
    Denovan-Wright EM, Robertson HA. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience. 2000;98:705–13.CrossRefGoogle Scholar
  75. 75.
    Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24:2254–9.CrossRefGoogle Scholar
  76. 76.
    López-Sendón Moreno JL, García Caldentey J, Trigo Cubillo P, Ruiz Romero C, García Ribas G, Alonso Arias MAA, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol. 2016;263:1390–400.CrossRefGoogle Scholar
  77. 77.
    Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43:707–28.CrossRefGoogle Scholar
  78. 78.
    Beste C, Mückschel M, Elben S, J Hartmann C, McIntyre CC, Saft C, et al. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct Funct. 2015;220:2441–8.CrossRefGoogle Scholar
  79. 79.
    Gruber D, Kuhn AA, Schoenecker T, Kopp UA, Kivi A, Huebl J, et al. Quadruple deep brain stimulation in Huntington’s disease, targeting pallidum and subthalamic nucleus: case report and review of the literature. J Neural Transm. 2014;121:1303–12.CrossRefGoogle Scholar
  80. 80.
    Sharma M, Deogaonkar M. Deep brain stimulation in Huntington’s disease: assessment of potential targets. J Clin Neurosci. 2015;22:812–907.CrossRefGoogle Scholar
  81. 81.
    Delorme C, Rogers A, Lau B, Francisque H, Welter M-L, Fernandez Vidal S, et al. Deep brain stimulation of the internal pallidum in Huntington’s disease patients: clinical outcome and neuronal firing patterns. J Neurol. 2016;263:290–8.CrossRefGoogle Scholar
  82. 82.
    Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivoglio AR. GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord. 2008;23:1289–92.CrossRefGoogle Scholar
  83. 83.
    Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E, et al. Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg. 2014;121:114–22.CrossRefGoogle Scholar
  84. 84.
    Velez-Lago FM, Thompson A, Oyama G, Hardwick A, Sporrer JM, Zeilman P, et al. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact Funct Neurosurg. 2013;91:129–33.CrossRefGoogle Scholar
  85. 85.
    Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62:1250–5.CrossRefGoogle Scholar
  86. 86.
    Huys D, Bartsch C, Poppe P, Lenartz D, Huff W, Prütting J, et al. Management and outcome of pallidal deep brain stimulation in severe Huntington’s disease. Fortschr Neurol Psychiatr. 2013;81:202–5.CrossRefGoogle Scholar
  87. 87.
    Kang GA, Heath S, Rothlind J, Starr PA. Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2011;82:272–7.CrossRefGoogle Scholar
  88. 88.
    • Vedam-Mai V, Martinez-Ramirez D, Hilliard JD, Carbunaru S, Yachnis AT, Bloom J, et al. Post-mortem findings in Huntington’s deep brain stimulation: a moving target due to atrophy. Tremor Other Hyperkinet Mov (N Y). 2016;6:372. This paper highlights some of the difficulties with using deep brain stimulation to treat neurodegenerative diseases, such as Huntington's disease.Google Scholar
  89. 89.
    • Wojtecki L, Groiss SJ, Ferrea S, et al. A prospective pilot trial for Pallidal deep brain stimulation in Huntington’s disease. Front Neurol. 2015;6:177. This paper reports on using deep brain stimulation to use deep brain stimulation to treat Huntington's disease.CrossRefGoogle Scholar
  90. 90.
    Zittel S, Tadic V, Moll CKE, Bäumer T, Fellbrich A, Gulberti A, et al. Prospective evaluation of Globus pallidus internus deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord. 2018;51:96–100.  https://doi.org/10.1016/j.parkreldis.2018.02.030.CrossRefPubMedGoogle Scholar
  91. 91.
    Miquel M, Spampinato U, Latxague C, Aviles-Olmos I, Bader B, Bertram K, et al. Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. PLoS One. 2013;8:e79241.  https://doi.org/10.1371/journal.pone.0079241.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Wihl G, Volkmann J, Allert N, Lehrke R, Sturm V, Freund HJ. Deep brain stimulation of the internal pallidum did not improve chorea in a patient with neuro-acanthocytosis. Mov Disord. 2001;16:572–5.CrossRefGoogle Scholar
  93. 93.
    Hasegawa H, Mundil N, Samuel M, Jarosz J, Ashkan K. The treatment of persistent vascular hemidystonia-hemiballismus with unilateral GPi deep brain stimulation. Mov Disord. 2009;24:1697–8.CrossRefGoogle Scholar
  94. 94.
    Dy ME, Chang FCF, De Jesus S, et al. Treatment of ADCY5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: a multicenter case series. J Child Neurol. 2016;31:1027–35.CrossRefGoogle Scholar
  95. 95.
    van Coller R, Slabbert P, Vaidyanathan J, Schutte C. Successful treatment of disabling paroxysmal nonkinesigenic dyskinesia with deep brain stimulation of the globus pallidus internus. Stereotact Funct Neurosurg. 2014;92:388–92.CrossRefGoogle Scholar
  96. 96.
    Nakano N, Uchiyama T, Okuda T, Kitano M, Taneda M. Successful long-term deep brain stimulation for hemichorea-hemiballism in a patient with diabetes. Case report. J Neurosurg. 2005;102:1137–41.CrossRefGoogle Scholar
  97. 97.
    Damier P, Thobois S, Witjas T, Cuny E, Derost P, Raoul S, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64:170–6.CrossRefGoogle Scholar
  98. 98.
    • Pouclet-Courtemanche H, Rouaud T, Thobois S, Nguyen JM, Brefel-Courbon C, Chereau I, et al. Long-term efficacy and tolerability of bilateral pallidal stimulation to treat tardive dyskinesia. Neurology. 2016;86:651–9. This paper reports uding deep brain stimulation to treat tardive dyskinesia.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyRutgers New Jersey Medical SchoolNewarkUSA
  2. 2.Veterans Affairs Medical Center, Department of NeurologyBronx Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations