Advertisement

Albumin in Cirrhosis: More Than a Colloid

  • Cary H. PaineEmail author
  • Scott W. Biggins
  • Raimund H. Pichler
Liver (J Bajaj, Section Editor)
  • 72 Downloads
Part of the following topical collections:
  1. Topical Collection on Liver

Abstract

Purpose of review

Albumin has repeatedly been shown to be beneficial in treating patients with decompensated cirrhosis. We reviewed the medical literature regarding indications for the use of intravenous albumin in cirrhosis, with particular focus on the ways in which albumin can help mitigate hepatorenal physiology.

Recent findings

Albumin has long been used as the preferred agent for volume expansion in patients with decompensated cirrhosis. It is used in conjunction with vasoconstrictors for the treatment of type 1 hepatorenal syndrome, and in combination with antibiotics for the treatment of spontaneous bacterial peritonitis. When given at the time of large volume paracentesis, albumin is known to help reduce the incidence of post-paracentesis circulatory dysfunction. Recently, albumin has been shown to improve outcomes in hospitalized patients with cirrhosis and hyponatremia, and has also shown promise in reducing mortality and hospitalizations in outpatients with both diuretic resistant and uncomplicated ascites. It is increasingly clear that these benefits derive from a combination of the oncotic and non-oncotic properties of albumin, and from the effects of albumin administration on effective arterial blood volume.

Summary

Albumin is an effective treatment for multiple complications encountered in patients with decompensated cirrhosis.

Keywords

Cirrhosis Albumin Hepatorenal syndrome Ascites Hyponatremia 

Notes

Compliance with Ethical Standards

Conflict of Interest

Cary H. Paine declares that he has no conflict of interest. Scott W. Biggins declares that he has no conflict of interest. Raimund H. Pichler declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Chapter XII: The bovine and human albumin programs. In: US Army Medical Department, Office of Medical History. 2018 https://history.amedd.army.mil/booksdocs/wwii/blood/chapter12.htm. Accessed 24 Dec 2018.
  2. 2.
    Skillman JJ, Restall DS, Salzman EW. Randomized trial of albumin vs. electrolyte solutions during abdominal aortic operations. Surgery. 1975;78:291–303.Google Scholar
  3. 3.
    Goldwasser P, Feldman J. Association of serum albumin and mortality risk. J Clin Epidemiol. 1997;50:693–703.CrossRefGoogle Scholar
  4. 4.
    Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomised controlled trials. BMJ (Clinical research ed). 1998;317:235–40.CrossRefGoogle Scholar
  5. 5.
    Nightingale SL. Questions raised regarding benefit of albumin for seriously ill patients. JAMA. 1998;280:1128.CrossRefGoogle Scholar
  6. 6.
    Angeli P, Bernardi M, Villanueva C, Francoz C, Mookerjee RP, Trebicka J, et al. EASL clinical practice guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;69:406–60.CrossRefGoogle Scholar
  7. 7.
    Runyon BA. Management of adult patients with ascites due to cirrhosis: an update. Hepatology. 2009;49:2087–107.CrossRefGoogle Scholar
  8. 8.
    •• Di Pascoli M, Fasolato S, Piano S, Bolognesi M, Angeli P. Long-term administration of human albumin improves survival in patients with cirrhosis and refractory ascites. Liver Int. 2019;39:98–105. Recent randomized controlled trial showing a mortality benefit from outpatient albumin administration in diuretic-resistant ascites. CrossRefGoogle Scholar
  9. 9.
    •• Bajaj, JS TP, O’Leary JG, et al. The impact of albumin use on resolution of hyponatremia in hospitalized patients with cirrhosis. Am J Gastroenterol. 2018;113:1339–44 Recent retrospective study showing an association between albumin administration and improved outcomes in cirrhotic patients with hyponatremia. CrossRefGoogle Scholar
  10. 10.
    •• Caraceni P, Riggio O, Angeli P, et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet. 2018;391:2417–29 The first randomized controlled trial showing a benefit from albumin administration in uncomplicated ascites. CrossRefGoogle Scholar
  11. 11.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.CrossRefGoogle Scholar
  12. 12.
    Safety of Albumin Administration in Critically Ill Patients. 2018 https://www.fda.gov/BiologicsBloodVaccines/SafetyAvailability/BloodSafety/ucm095539.htm. Accessed 24 Dec 2018.
  13. 13.
    Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412–21.CrossRefGoogle Scholar
  14. 14.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2016. Intensive Care Med. 2017;43:304–77.CrossRefGoogle Scholar
  15. 15.
    Peters T. All about albumin. San Diego, CA: Academic Press; 1996.Google Scholar
  16. 16.
    Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.CrossRefGoogle Scholar
  17. 17.
    Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.CrossRefGoogle Scholar
  18. 18.
    Jacob M, Chappell D. Reappraising Starling: the physiology of the microcirculation. Curr Opin Crit Care. 2013;19:282–9.CrossRefGoogle Scholar
  19. 19.
    Zaidi N, Ahmad E, Rehan M, Rabbani G, Ajmal MR, Zaidi Y, et al. Biophysical insight into furosemide binding to human serum albumin: a study to unveil its impaired albumin binding in uremia. J Phys Chem B. 2013;117:2595–604.CrossRefGoogle Scholar
  20. 20.
    Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50:99–110.CrossRefGoogle Scholar
  21. 21.
    Zhivkova ZD. Studies on drug–human serum albumin binding: the current state of the matter. Curr Pharm Des. 2015;21:1817–30.CrossRefGoogle Scholar
  22. 22.
    Arroyo V, García-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61:396–407.CrossRefGoogle Scholar
  23. 23.
    Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Asp Med. 2012;33:209–90.CrossRefGoogle Scholar
  24. 24.
    Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008;582:1783–7.CrossRefGoogle Scholar
  25. 25.
    Taverna M, Marie A-L, Mira J-P, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3:4.CrossRefGoogle Scholar
  26. 26.
    Martin P-Y, Ginès P, Schrier RW. Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med. 1998;339:533–41.CrossRefGoogle Scholar
  27. 27.
    Byl B, Roucloux I, Crusiaux A, Dupont E, Devière J. Tumor necrosis factor α and interleukin 6 plasma levels in infected cirrhotic patients. Gastroenterology. 1993;104:1492–7.CrossRefGoogle Scholar
  28. 28.
    Navasa M, Follo A, Filella X, Jiménez W, Francitorra A, Planas R, et al. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology. 2003;27:1227–32.CrossRefGoogle Scholar
  29. 29.
    Ros J, Clària J, To–Figueras J, et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology. 2002;122:85–93.CrossRefGoogle Scholar
  30. 30.
    Wiest R, Lawson M, Geuking M. Pathological bacterial translocation in liver cirrhosis. J Hepatol. 2014;60:197–209.CrossRefGoogle Scholar
  31. 31.
    Schrier RW, Arroyo V, Bernardi M, Epstein M, Henriksen JH, Rodés J. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology. 1988;8:1151–7.CrossRefGoogle Scholar
  32. 32.
    Shapiro MD, Nicholls KM, Groves BM, Kluge R, Chung HM, Bichet DG, et al. Interrelationship between cardiac output and vascular resistance as determinants of effective arterial blood volume in cirrhotic patients. Kidney Int. 1985;28:206–11.CrossRefGoogle Scholar
  33. 33.
    Bernardi M, Moreau R, Angeli P, Schnabl B, Arroyo V. Mechanisms of decompensation and organ failure in cirrhosis: from peripheral arterial vasodilation to systemic inflammation hypothesis. J Hepatol. 2015;63:1272–84.CrossRefGoogle Scholar
  34. 34.
    Garcia-Martinez R, Caraceni P, Bernardi M, Gines P, Arroyo V, Jalan R. Albumin: pathophysiologic basis of its role in the treatment of cirrhosis and its complications. Hepatology. 2013;58:1836–46.CrossRefGoogle Scholar
  35. 35.
    Nanda A, Reddy R, Safraz H, Salameh H, Singal AK. Pharmacological therapies for hepatorenal syndrome: a systematic review and meta-analysis. J Clin Gastroenterol. 2018;52:360–7.CrossRefGoogle Scholar
  36. 36.
    Ortega R, Ginès P, Uriz J, et al. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. Hepatology. 2003;36:941–8.CrossRefGoogle Scholar
  37. 37.
    Brinch K, Møller S, Bendtsen F, Becker U, Henriksen JH. Plasma volume expansion by albumin in cirrhosis. Relation to blood volume distribution, arterial compliance and severity of disease. J Hepatol. 2003;39:24–31.CrossRefGoogle Scholar
  38. 38.
    Salerno F, Guevara M, Bernardi M, Moreau R, Wong F, Angeli P, et al. Refractory ascites: pathogenesis, definition and therapy of a severe complication in patients with cirrhosis. Liver Int. 2010;30:937–47.CrossRefGoogle Scholar
  39. 39.
    Rodriguez E, Henrique Pereira G, Solà E, Elia C, Barreto R, Pose E, et al. Treatment of type 2 hepatorenal syndrome in patients awaiting transplantation: effects on kidney function and transplantation outcomes. Liver Transpl. 2015;21:1347–54.CrossRefGoogle Scholar
  40. 40.
    Alessandria C, Ottobrelli A, Debernardi-Venon W, Todros L, Cerenzia MT, Martini S, et al. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J Hepatol. 2007;47:499–505.CrossRefGoogle Scholar
  41. 41.
    Gentilini P, Casini-Raggi V, Fiore GD, Romanelli RG, Buzzelli G, Pinzani M, et al. Albumin improves the response to diuretics in patients with cirrhosis and ascites: results of a randomized, controlled trial. J Hepatol. 1999;30:639–45.CrossRefGoogle Scholar
  42. 42.
    Schindler C, Ramadori G. Albumin substitution improves urinary sodium excretion and diuresis in patients with liver cirrhosis and refractory ascites. J Hepatol. 1999;31:1131.CrossRefGoogle Scholar
  43. 43.
    Duffy M, Jain S, Harrell N, Kothari N, Reddi SA. Albumin and furosemide combination for management of edema in nephrotic syndrome: a review of clinical studies. Cells. 2015;4:622–30.CrossRefGoogle Scholar
  44. 44.
    Ginès P, Titó L, Arroyo V, et al. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. Gastroenterology. 1988;94:1493–502.Google Scholar
  45. 45.
    Ruiz-Del-Arbol L, Monescillo A, Jimenez W, Garcia-Plaza A, Arroyo V, Rodes J. Paracentesis-induced circulatory dysfunction: mechanism and effect on hepatic hemodynamics in cirrhosis. Gastroenterology. 1997;113:579–86.CrossRefGoogle Scholar
  46. 46.
    Gines A, Fernandez-Esparrach G, Monescillo A, Vila C, Domenech E, Abecasis R, et al. Randomized trial comparing albumin, dextran 70, and polygeline in cirrhotic patients with ascites treated by paracentesis. Gastroenterology. 1996;111:1002–10.CrossRefGoogle Scholar
  47. 47.
    Planas R, Ginès P, Arroyo V, Llach J, Panés J, Vargas V, et al. Dextran-70 versus albumin as plasma expanders in cirrhotic patients with tense ascites treated with total paracentesis: results of a randomized study. Gastroenterology. 1990;99:1736–44.CrossRefGoogle Scholar
  48. 48.
    Bernardi M, Caraceni P, Navickis RJ, Wilkes MM. Albumin infusion in patients undergoing large-volume paracentesis: a meta-analysis of randomized trials. Hepatology. 2011;55:1172–81.CrossRefGoogle Scholar
  49. 49.
    Patel S, Nguyen D-S, Rastogi A, Nguyen M-K, Nguyen MK. Treatment of cirrhosis-associated hyponatremia with midodrine and octreotide. Front Med. 2017;4:17.CrossRefGoogle Scholar
  50. 50.
    Nguyen MK, Ornekian V, Kao L, Butch AW, Kurtz I. Defining the role of albumin infusion in cirrhosis-associated hyponatremia. Am J Physiol-Gastrointest Liver Physiol. 2014;307:G229–32.CrossRefGoogle Scholar
  51. 51.
    Paine CH, Pichler RH. Treatment of hyponatremia in end-stage liver disease: new tools in the shed. Am J Gastroenterol. 2018;113:1728–9.CrossRefGoogle Scholar
  52. 52.
    Salerno F, Navickis RJ, Wilkes MM. Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials. Clin Gastroenterol Hepatol. 2013;11:123–130.e1.CrossRefGoogle Scholar
  53. 53.
    Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341:403–9.CrossRefGoogle Scholar
  54. 54.
    Guevara M, Terra C, Nazar A, Solà E, Fernández J, Pavesi M, et al. Albumin for bacterial infections other than spontaneous bacterial peritonitis in cirrhosis. A randomized, controlled study. J Hepatol. 2012;57:759–65.CrossRefGoogle Scholar
  55. 55.
    Thévenot T, Bureau C, Oberti F, Anty R, Louvet A, Plessier A, et al. Effect of albumin in cirrhotic patients with infection other than spontaneous bacterial peritonitis. A randomized trial. J Hepatol. 2015;62:822–30.CrossRefGoogle Scholar
  56. 56.
    Chen T-A, Tsao Y-C, Chen A, Lo G-H, Lin C-K, Yu H-C, et al. Effect of intravenous albumin on endotoxin removal, cytokines, and nitric oxide production in patients with cirrhosis and spontaneous bacterial peritonitis. Scand J Gastroenterol. 2009;44:619–25.CrossRefGoogle Scholar
  57. 57.
    Fernández J, Navasa M, Garcia-Pagan JC, G-Abraldes J, Jiménez W, Bosch J, et al. Effect of intravenous albumin on systemic and hepatic hemodynamics and vasoactive neurohormonal systems in patients with cirrhosis and spontaneous bacterial peritonitis. J Hepatol. 2004;41:384–90.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cary H. Paine
    • 1
    Email author
  • Scott W. Biggins
    • 2
    • 3
  • Raimund H. Pichler
    • 1
  1. 1.Division of Nephrology (Kidney-Liver Program), Department of MedicineUniversity of WashingtonSeattleUSA
  2. 2.Division of Gastroenterology, Department of MedicineUniversity of WashingtonSeattleUSA
  3. 3.Center for Liver Investigation Fostering discovEry (C-LIFE)University of WashingtonSeattleUSA

Personalised recommendations