Advertisement

Role of PFO Closure in Ischemic Stroke Prevention

  • Nicholas D. OsteraasEmail author
  • Alejandro Vargas
  • Laurel Cherian
  • Sarah Song
Cerebrovascular Disease and Stroke (S Silverman, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cerebrovascular Disease and Stroke

Abstract

Purpose of review

To highlight recent advancements in the management of acute ischemic stroke patients with patent foramen ovale (PFO).

Recent findings

One significant recent development was publication of long-term follow-up data from the RESPECT trial demonstrating evidence in favor of PFO closure over medical management. This data subsequently led to FDA approval for AMPLATZER™ septal occluder in the treatment of patients aged 18 to 60 years with both PFO and no other determined etiology for ischemic stroke, otherwise referred to as embolic stroke of undetermined source. Several subsequent closure trial results have recently been published, which also demonstrated benefit of PFO closure over medical management for ischemic stroke risk reduction in select patients. Based on the results of the more recently published REDUCE trial, the FDA granted approval for the GORE™ septal occluder.

Summary

There is current, well-established evidence that PFO closure for secondary stroke prevention is effective in select cases.

Keywords

PFO closure Ischemic stroke Secondary prevention 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Yaghi S, Bernstein RA, Passman R, Okin PM, Furie KL. Cryptogenic stroke: research and practice. Circ Res. 2017;120(3):527–40.  https://doi.org/10.1161/CIRCRESAHA.116.308447.CrossRefPubMedGoogle Scholar
  2. 2.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.  https://doi.org/10.1161/CIR.0000000000000485.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Adams HP Jr, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10,172 in Acute Stroke Treatment. Stroke. 1993;24(1):35–41.CrossRefGoogle Scholar
  4. 4.
    Saver JL. Cryptogenic stroke in patients with patent foramen ovale. Curr Atheroscler Rep. 2007;9(4):319–25.CrossRefGoogle Scholar
  5. 5.
    Calvert PA, Rana BS, Kydd AC, Shapiro LM. Patent foramen ovale: anatomy, outcomes, and closure. Nat Rev Cardiol. 2011;8(3):148–60.  https://doi.org/10.1038/nrcardio.2010.224.CrossRefPubMedGoogle Scholar
  6. 6.
    Giblett JP, Abdul-Samad O, Shapiro LM, Rana BS, Calvert PA. Patent foramen ovale closure in 2019. Interv Cardiol. 2019;14(1):34–41.  https://doi.org/10.15420/icr.2018.33.2.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, et al. Closure or medical therapy for cryptogenic stroke with patent foramen ovale. N Engl J Med. 2012;366(11):991–9.  https://doi.org/10.1056/NEJMoa1009639.CrossRefPubMedGoogle Scholar
  8. 8.
    Meier B, Kalesan B, Mattle HP, Khattab AA, Hildick-Smith D, Dudek D, et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med. 2013;368(12):1083–91.  https://doi.org/10.1056/NEJMoa1211716.CrossRefPubMedGoogle Scholar
  9. 9.
    Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med. 2013;368(12):1092–100.  https://doi.org/10.1056/NEJMoa1301440.CrossRefPubMedGoogle Scholar
  10. 10.
    Saver JL, Carroll JD, Thaler DE, Smalling RW, MacDonald LA, Marks DS, et al. Long-term outcomes of patent foramen ovale closure or medical therapy after stroke. N Engl J Med. 2017;377(11):1022–32.  https://doi.org/10.1056/NEJMoa1610057.CrossRefPubMedGoogle Scholar
  11. 11.
    •• Sondergaard L, Kasner SE, Rhodes JF, Andersen G, Iversen HK, Nielsen-Kudsk JE, et al. Patent foramen ovale closure or antiplatelet therapy for cryptogenic stroke. N Engl J Med. 2017;377(11):1033–42.  https://doi.org/10.1056/NEJMoa1707404.The REDUCE trial is among the recent generation of trials with positive initial results, and enrolled over 600 patients with moderate to large shunt size.CrossRefPubMedGoogle Scholar
  12. 12.
    •• Mas JL, Derumeaux G, Guillon B, Massardier E, Hosseini H, Mechtouff L, et al. Patent foramen ovale closure or anticoagulation vs. antiplatelets after stroke. N Engl J Med. 2017;377(11):1011–21.  https://doi.org/10.1056/NEJMoa1705915.CLOSE was uniquire among PFO closure trials in that a dedicated anticoagulation arm was ultized in addiiton to an antipaltelet regimen.CrossRefPubMedGoogle Scholar
  13. 13.
    •• Lee PH, Song JK, Kim JS, Heo R, Lee S, Kim DH, et al. Cryptogenic stroke and high-risk patent foramen ovale: the DEFENSE-PFO trial. J Am Coll Cardiol. 2018;71(20):2335–42.  https://doi.org/10.1016/j.jacc.2018.02.046.The Defense trial was the most recently published PFO trial; and made a point of enrolling only patients with high risk anatomic characteristics.CrossRefPubMedGoogle Scholar
  14. 14.
    Ahmad Y, Howard JP, Arnold A, Shin MS, Cook C, Petraco R, et al. Patent foramen ovale closure vs. medical therapy for cryptogenic stroke: a meta-analysis of randomized controlled trials. Eur Heart J. 2018;39(18):1638–49.  https://doi.org/10.1093/eurheartj/ehy121.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Nasir UB, Qureshi WT, Jogu H, Wolfe E, Dutta A, Majeed CN, et al. Updated meta-analysis of closure of patent foramen ovale versus medical therapy after cryptogenic stroke. Cardiovasc Revasc Med. 2019;20(3):187–93.  https://doi.org/10.1016/j.carrev.2018.06.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Anantha-Narayanan M, Anugula D, Das G. Patent foramen ovale closure reduces recurrent stroke risk in cryptogenic stroke: a systematic review and meta-analysis of randomized controlled trials. World J Cardiol. 2018;10(6):41–8.  https://doi.org/10.4330/wjc.v10.i6.41.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Turc G, Calvet D, Guerin P, Sroussi M, Chatellier G, Mas JL, et al. Closure, Anticoagulation, or antiplatelet therapy for cryptogenic stroke with patent foramen ovale: systematic review of randomized trials, sequential meta-analysis, and new insights from the CLOSE study. J Am Heart Assoc. 2018;7(12).  https://doi.org/10.1161/JAHA.117.008356.
  18. 18.
    Smer A, Salih M, Mahfood Haddad T, Guddeti R, Saadi A, Saurav A, et al. Meta-analysis of randomized controlled trials on patent foramen ovale closure versus medical therapy for secondary prevention of cryptogenic stroke. Am J Cardiol. 2018;121(11):1393–9.  https://doi.org/10.1016/j.amjcard.2018.02.021.CrossRefPubMedGoogle Scholar
  19. 19.
    Tsivgoulis G, Katsanos AH, Mavridis D, Frogoudaki A, Vrettou AR, Ikonomidis I, et al. Percutaneous patent foramen ovale closure for secondary stroke prevention: network meta-analysis. Neurology. 2018;91(1):e8–e18.  https://doi.org/10.1212/WNL.0000000000005739.CrossRefPubMedGoogle Scholar
  20. 20.
    De Rosa S, Sievert H, Sabatino J, Polimeni A, Sorrentino S, Indolfi C. Percutaneous closure versus medical treatment in stroke patients with patent foramen ovale: a systematic review and meta-analysis. Ann Intern Med. 2018;168(5):343–50.  https://doi.org/10.7326/M17-3033.CrossRefPubMedGoogle Scholar
  21. 21.
    Pristipino C, Sievert H, D’Ascenzo F, Louis Mas J, Meier B, Scacciatella P, et al. European position paper on the management of patients with patent foramen ovale. General approach and left circulation thromboembolism. Eur Heart J. 2018.  https://doi.org/10.1093/eurheartj/ehy649.CrossRefGoogle Scholar
  22. 22.
    Kuijpers T, Spencer FA, Siemieniuk RAC, Vandvik PO, Otto CM, Lytvyn L, et al. Patent foramen ovale closure, antiplatelet therapy or anticoagulation therapy alone for management of cryptogenic stroke? A clinical practice guideline. BMJ. 2018;362:k2515.  https://doi.org/10.1136/bmj.k2515.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vitarelli A. Patent foramen ovale: pivotal role of transesophageal echocardiography in the indications for closure, assessment of varying anatomies and post-procedure follow-up. Ultrasound Med Biol. 2019;45(8):1882–95.  https://doi.org/10.1016/j.ultrasmedbio.2019.04.015.CrossRefPubMedGoogle Scholar
  24. 24.
    Thiagaraj AK, Hughes-Doichev R, Biederman RWW. Provocative maneuvers to improve patent foramen ovale detection: a brief review of the literature. Echocardiography. 2019;36(4):783–6.  https://doi.org/10.1111/echo.14297.CrossRefPubMedGoogle Scholar
  25. 25.
    Mazzucco S, Li L, Binney L, Rothwell PM. Oxford Vascular Study Phenotyped C. Prevalence of patent foramen ovale in cryptogenic transient ischaemic attack and non-disabling stroke at older ages: a population-based study, systematic review, and meta-analysis. Lancet Neurol. 2018;17(7):609–17.  https://doi.org/10.1016/S1474-4422(18)30167-4.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Calderon VJ, Kasturiarachi BM, Lin E, Bansal V, Zaidat OO. Review of the mobile stroke unit experience worldwide. Interv Neurol. 2018;7(6):347–58.  https://doi.org/10.1159/000487334.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.  https://doi.org/10.1056/NEJMoa1804355.CrossRefPubMedGoogle Scholar
  28. 28.
    Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21.  https://doi.org/10.1056/NEJMoa1706442.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hart RG, Diener HC, Coutts SB, Easton JD, Granger CB, O’Donnell MJ, et al. Embolic strokes of undetermined source: the case for a new clinical construct. Lancet Neurol. 2014;13(4):429–38.  https://doi.org/10.1016/S1474-4422(13)70310-7.CrossRefPubMedGoogle Scholar
  30. 30.
    Collado FMS, Poulin MF, Murphy JJ, Jneid H, Kavinsky CJ. Patent foramen ovale closure for stroke prevention and other disorders. J Am Heart Assoc. 2018;7(12).  https://doi.org/10.1161/JAHA.117.007146.
  31. 31.
    Zaman MO, Mojaddedi S, Nietlispach F, Meier B, Mojadidi MK. PFO-mediated stroke: exposing the misnomer of “cryptogenic” stroke. Am J Cardiol. 2019;123(12):2059–60.  https://doi.org/10.1016/j.amjcard.2019.03.031.CrossRefPubMedGoogle Scholar
  32. 32.
    Thaler DE, Di Angelantonio E, Di Tullio MR, Donovan JS, Griffith J, Homma S, et al. The risk of paradoxical embolism (RoPE) study: initial description of the completed database. Int J Stroke. 2013;8(8):612–9.  https://doi.org/10.1111/j.1747-4949.2012.00843.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Thaler DE, Ruthazer R, Weimar C, Mas JL, Serena J, Di Angelantonio E, et al. Recurrent stroke predictors differ in medically treated patients with pathogenic vs. other PFOs. Neurology. 2014;83(3):221–6.  https://doi.org/10.1212/WNL.0000000000000589.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Medin J, Nordlund A, Ekberg K. Swedish Hospital Discharge R. Increasing stroke incidence in Sweden between 1989 and 2000 among persons aged 30 to 65 years: evidence from the Swedish Hospital Discharge Register. Stroke. 2004;35(5):1047–51.  https://doi.org/10.1161/01.STR.0000125866.78674.96. CrossRefPubMedGoogle Scholar
  35. 35.
    Bejot Y, Aouba A, de Peretti C, Grimaud O, Aboa-Eboule C, Chin F, et al. Time trends in hospital-referred stroke and transient ischemic attack: results of a 7-year nationwide survey in France. Cerebrovasc Dis. 2010;30(4):346–54.  https://doi.org/10.1159/000319569.CrossRefPubMedGoogle Scholar
  36. 36.
    George MG, Tong X, Kuklina EV, Labarthe DR. Trends in stroke hospitalizations and associated risk factors among children and young adults, 1995–2008. Ann Neurol. 2011;70(5):713–21.  https://doi.org/10.1002/ana.22539.CrossRefPubMedGoogle Scholar
  37. 37.
    Bejot Y, Daubail B, Jacquin A, Durier J, Osseby GV, Rouaud O, et al. Trends in the incidence of ischaemic stroke in young adults between 1985 and 2011: the Dijon Stroke Registry. J Neurol Neurosurg Psychiatry. 2014;85(5):509–13.  https://doi.org/10.1136/jnnp-2013-306,203.CrossRefPubMedGoogle Scholar
  38. 38.
    Ramirez L, Kim-Tenser MA, Sanossian N, Cen S, Wen G, He S, et al. Trends in acute ischemic stroke hospitalizations in the United States. J Am Heart Assoc. 2016;5(5).  https://doi.org/10.1161/JAHA.116.003233.
  39. 39.
    Swerdel JN, Rhoads GG, Cheng JQ, Cosgrove NM, Moreyra AE, Kostis JB, et al. Ischemic stroke rate increases in young adults: evidence for a generational effect? J Am Heart Assoc. 2016;5(12).  https://doi.org/10.1161/JAHA.116.004245.
  40. 40.
    von Sarnowski B, Putaala J, Grittner U, Gaertner B, Schminke U, Curtze S, et al. Lifestyle risk factors for ischemic stroke and transient ischemic attack in young adults in the Stroke in Young Fabry Patients study. Stroke. 2013;44(1):119–25.  https://doi.org/10.1161/STROKEAHA.112.665190.CrossRefGoogle Scholar
  41. 41.
    Vlachos K, Letsas KP, Korantzopoulos P, Liu T, Georgopoulos S, Bakalakos A, et al. Prediction of atrial fibrillation development and progression: current perspectives. World J Cardiol. 2016;8(3):267–76.  https://doi.org/10.4330/wjc.v8.i3.267.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gladstone DJ, Spring M, Dorian P, Panzov V, Thorpe KE, Hall J, et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med. 2014;370(26):2467–77.  https://doi.org/10.1056/NEJMoa1311376.CrossRefPubMedGoogle Scholar
  43. 43.
    Sanna T, Diener HC, Passman RS, Di Lazzaro V, Bernstein RA, Morillo CA, et al. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med. 2014;370(26):2478–86.  https://doi.org/10.1056/NEJMoa1313600.CrossRefPubMedGoogle Scholar
  44. 44.
    Turakhia MP, Desai M, Hedlin H, Rajmane A, Talati N, Ferris T, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am Heart J. 2019;207:66–75.  https://doi.org/10.1016/j.ahj.2018.09.002.CrossRefPubMedGoogle Scholar
  45. 45.
    Nakashima MO, Rogers HJ. Hypercoagulable states: an algorithmic approach to laboratory testing and update on monitoring of direct oral anticoagulants. Blood Res. 2014;49(2):85–94.  https://doi.org/10.5045/br.2014.49.2.85.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Meier B, Frank B, Wahl A, Diener HC. Secondary stroke prevention: patent foramen ovale, aortic plaque, and carotid stenosis. Eur Heart J 2012;33(6):705–13, 13a, 13b. doi: https://doi.org/10.1093/eurheartj/ehr443.CrossRefGoogle Scholar
  47. 47.
    Stortecky S, da Costa BR, Mattle HP, Carroll J, Hornung M, Sievert H, et al. Percutaneous closure of patent foramen ovale in patients with cryptogenic embolism: a network meta-analysis. Eur Heart J. 2015;36(2):120–8.  https://doi.org/10.1093/eurheartj/ehu292.CrossRefPubMedGoogle Scholar
  48. 48.
    Leppert MH, Poisson SN, Carroll JD, Thaler DE, Kim CH, Orjuela KD, et al. Cost-effectiveness of patent foramen ovale closure versus medical therapy for secondary stroke prevention. Stroke. 2018;49(6):1443–50.  https://doi.org/10.1161/STROKEAHA.117.020322.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Volpi JJ, Ridge JR, Nakum M, Rhodes JF, Sondergaard L, Kasner SE. Cost-effectiveness of percutaneous closure of a patent foramen ovale compared with medical management in patients with a cryptogenic stroke: from the US payer perspective. J Med Econ 2019:1–8. doi: https://doi.org/10.1080/13696998.2019.1611587.CrossRefGoogle Scholar
  50. 50.
    Hildick-Smith D, Turner M, Shaw L, Nakum M, Hartaigh BO, Evans RM, et al. Evaluating the cost-effectiveness of percutaneous closure of a patent foramen ovale versus medical management in patients with a cryptogenic stroke: from the UK payer perspective. J Med Econ. 2019;22(2):131–9.  https://doi.org/10.1080/13696998.2018.1548355.CrossRefPubMedGoogle Scholar
  51. 51.
    Gaspardone A, De Marco F, Sgueglia GA, De Santis A, Iamele M, D’Ascoli E, et al. Novel percutaneous suture-mediated patent foramen ovale closure technique: early results of the NobleStitch EL Italian Registry. EuroIntervention. 2018;14(3):e272–e9.  https://doi.org/10.4244/EIJ-D-18-00023.CrossRefPubMedGoogle Scholar
  52. 52.
    Aral M, Mullen M. The Flatstent versus the conventional umbrella devices in the percutaneous closure of patent foramen ovale. Catheter Cardiovasc Interv. 2015;85(6):1058–65.  https://doi.org/10.1002/ccd.25750.CrossRefPubMedGoogle Scholar
  53. 53.
    Happel CM, Laser KT, Sigler M, Kececioglu D, Sandica E, Haas NA. Single center experience: implantation failures, early, and late complications after implantation of a partially biodegradable ASD/PFO-device (BioStar(R)). Catheter Cardiovasc Interv. 2015;85(6):990–7.  https://doi.org/10.1002/ccd.25783.CrossRefPubMedGoogle Scholar
  54. 54.
    Van den Branden BJ, Post MC, Plokker HW, ten Berg JM, Suttorp MJ. Patent foramen ovale closure using a bioabsorbable closure device: safety and efficacy at 6-month follow-up. JACC Cardiovasc Interv. 2010;3(9):968–73.  https://doi.org/10.1016/j.jcin.2010.06.012.CrossRefPubMedGoogle Scholar
  55. 55.
    Dearani JA, Ugurlu BS, Danielson GK, Daly RC, McGregor CG, Mullany CJ, et al. Surgical patent foramen ovale closure for prevention of paradoxical embolism-related cerebrovascular ischemic events. Circulation. 1999;100(19 Suppl):II171–5.  https://doi.org/10.1161/01.cir.100.suppl_2.ii-171.CrossRefPubMedGoogle Scholar
  56. 56.
    Krasuski RA, Hart SA, Allen D, Qureshi A, Pettersson G, Houghtaling PL, et al. Prevalence and repair of intraoperatively diagnosed patent foramen ovale and association with perioperative outcomes and long-term survival. JAMA. 2009;302(3):290–7.  https://doi.org/10.1001/jama.2009.1012.CrossRefPubMedGoogle Scholar
  57. 57.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.  https://doi.org/10.1161/STR.0000000000000158.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Rothwell PM, Cook NR, Gaziano JM, Price JF, Belch JFF, Roncaglioni MC, et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. Lancet. 2018;392(10145):387–99.  https://doi.org/10.1016/S0140-6736(18)31133-4.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Feghaly J, Al Hout AR, Mercieca Balbi M. Aspirin safety in glucose-6-phosphate dehydrogenase deficiency patients with acute coronary syndrome undergoing percutaneous coronary intervention. BMJ Case Rep 2017;2017. doi: https://doi.org/10.1136/bcr-2017-220,483.
  60. 60.
    Schror K. Aspirin and Reye syndrome: a review of the evidence. Paediatr Drugs. 2007;9(3):195–204.  https://doi.org/10.2165/00148581-200,709,030-00008.CrossRefPubMedGoogle Scholar
  61. 61.
    Iqbal AM, Hai O. Antiplatelet Medications. StatPearls. Treasure Island (FL)2019.Google Scholar
  62. 62.
    Ringleb PA, Schwark C, Schwaninger M, Schellinger PD. Efficacy and costs of secondary prevention with antiplatelets after ischaemic stroke. Expert Opin Pharmacother. 2005;6(3):359–67.  https://doi.org/10.1517/14656566.6.3.359.CrossRefPubMedGoogle Scholar
  63. 63.
    Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379(3):215–25.  https://doi.org/10.1056/NEJMoa1800410.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365(11):993–1003.  https://doi.org/10.1056/NEJMoa1105335.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Weinberger J. Adverse effects and drug interactions of antithrombotic agents used in prevention of ischaemic stroke. Drugs. 2005;65(4):461–71.  https://doi.org/10.2165/00003495-200,565,040-00003.CrossRefPubMedGoogle Scholar
  66. 66.
    Littmann L, Anderson JD, Monroe MH. Adenosine and Aggrenox: a hazardous combination. Ann Intern Med. 2002;137(1):W1.  https://doi.org/10.7326/0003-4819-137-1-200,207,020-w1.CrossRefPubMedGoogle Scholar
  67. 67.
    Shulga O, Bornstein N. Antiplatelets in secondary stroke prevention. Front Neurol. 2011;2:36.  https://doi.org/10.3389/fneur.2011.00036.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    European Stroke Prevention Study 2: A study of low-dose acetylsalicylic acid and of high dose dipyridamole in secondary prevention of cerebro-vascular accidents. Eur J Neurol 1995;2(5):416–24. doi: https://doi.org/10.1111/j.1468-1331.1995.tb00150.x.
  69. 69.
    Shah H, Gondek K. Aspirin plus extended-release dipyridamole or clopidogrel compared with aspirin monotherapy for the prevention of recurrent ischemic stroke: a cost-effectiveness analysis. Clin Ther. 2000;22(3):362–70; discussion 0–1.  https://doi.org/10.1016/S0149-2918(00)80041-7.CrossRefPubMedGoogle Scholar
  70. 70.
    Homma S, Thompson JL, Pullicino PM, Levin B, Freudenberger RS, Teerlink JR, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012;366(20):1859–69.  https://doi.org/10.1056/NEJMoa1202299.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Pengo V, Banzato A, Bison E, Zoppellaro G, Padayattil Jose S, Denas G. Efficacy and safety of rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome: rationale and design of the Trial on Rivaroxaban in AntiPhospholipid Syndrome (TRAPS) trial. Lupus. 2016;25(3):301–6.  https://doi.org/10.1177/0961203315611495.CrossRefPubMedGoogle Scholar
  72. 72.
    Kaithoju S. Ischemic Stroke: Risk stratification, warfarin teatment and outcome measure. J Atr Fibrillation. 2015;8(4):1144.  https://doi.org/10.4022/jafib.1144.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kumar M, Abrina VM, Chittimireddy S. Coumadin-induced skin necrosis in a 64 year-old female despite LMWH bridging therapy. Am J Case Rep. 2012;13:157–9.  https://doi.org/10.12659/AJCR.883247.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Man-Son-Hing M, Nichol G, Lau A, Laupacis A. Choosing antithrombotic therapy for elderly patients with atrial fibrillation who are at risk for falls. Arch Intern Med. 1999;159(7):677–85.CrossRefGoogle Scholar
  75. 75.
    Jowett S, Bryan S, Mant J, Fletcher K, Roalfe A, Fitzmaurice D, et al. Cost effectiveness of warfarin versus aspirin in patients older than 75 years with atrial fibrillation. Stroke. 2011;42(6):1717–21.  https://doi.org/10.1161/STROKEAHA.110.600767.CrossRefPubMedGoogle Scholar
  76. 76.
    Lafata JE, Martin SA, Kaatz S, Ward RE. The cost-effectiveness of different management strategies for patients on chronic warfarin therapy. J Gen Intern Med. 2000;15(1):31–7.  https://doi.org/10.1046/j.1525-1497.2000.01239.x.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Harrington AR, Armstrong EP, Nolan PE Jr, Malone DC. Cost-effectiveness of apixaban, dabigatran, rivaroxaban, and warfarin for stroke prevention in atrial fibrillation. Stroke. 2013;44(6):1676–81.  https://doi.org/10.1161/STROKEAHA.111.000402.CrossRefPubMedGoogle Scholar
  78. 78.
    Spence JD. Diet for stroke prevention. Stroke Vasc Neurol. 2018;3(2):44–50.  https://doi.org/10.1136/svn-2017-000130.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Larsson SC, Wallin A, Wolk A. Dietary approaches to stop hypertension diet and incidence of stroke: results from 2 prospective cohorts. Stroke. 2016;47(4):986–90.  https://doi.org/10.1161/STROKEAHA.116.012675.CrossRefPubMedGoogle Scholar
  80. 80.
    Marcason W. What Are the Components to the MIND Diet? J Acad Nutr Diet. 2015;115(10):1744.  https://doi.org/10.1016/j.jand.2015.08.002.CrossRefPubMedGoogle Scholar
  81. 81.
    Cherian L, Wang Y, Fakuda, K Leurgans, S Aggarwal, N Morris M. Mediterranean-dash intervention for neurodegenerative delay (MIND) diet slows cognitive decline after stroke. J Prev Alzheimers Dis. 2019;6(3). doi:  https://doi.org/10.14283/jpad.2019.28
  82. 82.
    Homma S, Di Tullio MR. Patent foramen ovale and stroke. J Cardiol. 2010;56(2):134–41.  https://doi.org/10.1016/j.jjcc.2010.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Cheng YJ, Liu ZH, Yao FJ, Zeng WT, Zheng DD, Dong YG, et al. Current and former smoking and risk for venous thromboembolism: a systematic review and meta-analysis. PLoS Med. 2013;10(9):e1001515.  https://doi.org/10.1371/journal.pmed.1001515.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Gallanagh S, Quinn TJ, Alexander J, Walters MR. Physical activity in the prevention and treatment of stroke. ISRN Neurol. 2011;2011:953818.  https://doi.org/10.5402/2011/953818.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Prior PL, Suskin N. Exercise for stroke prevention. Stroke Vasc Neurol. 2018;3(2):59–68.  https://doi.org/10.1136/svn-2018-000155.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hakman EN, Cowling KM. Paradoxical embolism. StatPearls. Treasure Island (FL)2019Google Scholar
  87. 87.
    Heber S, Assinger A, Pokan R, Volf I. Correlation between cardiorespiratory fitness and platelet function in healthy women. Med Sci Sports Exerc. 2016;48(6):1101–10.  https://doi.org/10.1249/MSS.0000000000000882.CrossRefPubMedGoogle Scholar
  88. 88.
    McDonnell MN, Hillier SL, Hooker SP, Le A, Judd SE, Howard VJ. Physical activity frequency and risk of incident stroke in a national US study of blacks and whites. Stroke. 2013;44(9):2519–24.  https://doi.org/10.1161/STROKEAHA.113.001538.CrossRefPubMedGoogle Scholar
  89. 89.
    Hart RG, Catanese L, Perera KS, Ntaios G, Connolly SJ. Embolic stroke of undetermined source: a systematic review and clinical update. Stroke. 2017;48(4):867–72.  https://doi.org/10.1161/STROKEAHA.116.016414.CrossRefPubMedGoogle Scholar
  90. 90.
    Hart RG, Sharma M, Mundl H, Kasner SE, Bangdiwala SI, Berkowitz SD, et al. Rivaroxaban for stroke prevention after embolic stroke of undetermined source. N Engl J Med. 2018;378(23):2191–201.  https://doi.org/10.1056/NEJMoa1802686.CrossRefPubMedGoogle Scholar
  91. 91.
    Diener HC, Sacco RL, Easton JD, Granger CB, Bernstein RA, Uchiyama S, et al. Dabigatran for prevention of stroke after embolic stroke of undetermined source. N Engl J Med. 2019;380(20):1906–17.  https://doi.org/10.1056/NEJMoa1813959.CrossRefPubMedGoogle Scholar
  92. 92.
    Kasner SE, Swaminathan B, Lavados P, Sharma M, Muir K, Veltkamp R, et al. Rivaroxaban or aspirin for patent foramen ovale and embolic stroke of undetermined source: a prespecified subgroup analysis from the NAVIGATE ESUS trial. Lancet Neurol. 2018;17(12):1053–60.  https://doi.org/10.1016/S1474-4422(18)30319-3.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kamel H, Longstreth WT Jr, Tirschwell DL, Kronmal RA, Broderick JP, Palesch YY, et al. The AtRial cardiopathy and antithrombotic drugs in prevention after cryptogenic stroke randomized trial: rationale and methods. Int J Stroke. 2019;14(2):207–14.  https://doi.org/10.1177/1747493018799981.CrossRefPubMedGoogle Scholar
  94. 94.
    Khan R, Chan AK, Mondal TK, Paes BA. Thrombosis, Hemostasis in Newborns G. Patent foramen ovale and stroke in childhood: a systematic review of the literature. Eur J Paediatr Neurol. 2016;20(4):500–11.  https://doi.org/10.1016/j.ejpn.2016.04.012.CrossRefPubMedGoogle Scholar
  95. 95.
    Wawrzynczyk M, Galeczka M, Karwot B, Knop M, Bialkowski J. Efficiency of transcatheter patent foramen ovale closure in children after paradoxical embolism events. Kardiol Pol. 2016;74(4):385–9.  https://doi.org/10.5603/KP.a2015.0194.CrossRefPubMedGoogle Scholar
  96. 96.
    Gertsvolf N, Andersen E, Othman T, Xu P, Phuong N, Butera B, et al. Patent foramen ovale and neurologic events in patients undergoing liver transplantation. Cardiovasc Revasc Med. 2018;19(6S:53–5.  https://doi.org/10.1016/j.carrev.2018.06.020.CrossRefPubMedGoogle Scholar
  97. 97.
    Kuwata S, Vierecke J, Gloekler S, Maisano F, Meier B, Nietlispach F. Left atrial appendage closure for “primary primary” prevention during percutaneous closure of septal defects in patients with large atria but no atrial fibrillation. Cardiol J. 2018;25(2):179–87.  https://doi.org/10.5603/CJ.a2017.0097.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nicholas D. Osteraas
    • 1
    Email author
  • Alejandro Vargas
    • 1
  • Laurel Cherian
    • 1
  • Sarah Song
    • 1
  1. 1.Rush University Medical CenterChicagoUSA

Personalised recommendations