Advertisement

Clinical Applications of Echo Strain Imaging: a Current Appraisal

  • Agostina M. Fava
  • Dane Meredith
  • Milind Y. DesaiEmail author
Imaging (Q Truong, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Imaging

Abstract

Purpose of review

This article reviews recent advances in echocardiographic strain imaging, particularly in its ability to prognosticate in cardiovascular outcomes and impact clinical decision making.

Recent findings

Strain has been proposed as a sensitive tool in detecting early ventricular dysfunction. Left ventricular global longitudinal strain (LV-GLS) detects subtle changes in myocardial function, often not quantifiable by ejection fraction alone. Thus, LV-GLS provides the opportunity for early decision-making, and the implementation of more effective treatments, improving outcomes in a variety of diseases such as valvular heart diseases, cardio-oncology, ischemic heart disease, cardiomyopathies, heart transplantation, and pericardial diseases and cardiomyopathies.

Summary

Strain is a promising tool for the early detection of myocardial dysfunction in patients with preserved left ventricular ejection fraction and can prognosticate long-term outcomes.

Keywords

Strain Speckle-tracking global longitudinal strain Left ventricular deformation Cardiovascular outcomes 

Notes

Acknowledgments

Dr. Desai acknowledges Haslam family endowed chair in cardiovascular medicine.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23(4):351–69.  https://doi.org/10.1016/j.echo.2010.02.015.CrossRefPubMedGoogle Scholar
  2. 2.
    Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185–91.  https://doi.org/10.1016/j.echo.2012.10.008.CrossRefPubMedGoogle Scholar
  3. 3.
    Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342(15):1077–84.  https://doi.org/10.1056/nejm200004133421502.CrossRefPubMedGoogle Scholar
  4. 4.
    Thavendiranathan P, Poulin F, Lim K-D, Plana JC, Woo A, Marwick TH. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol. 2014;63(25, Part A):2751–68.  https://doi.org/10.1016/j.jacc.2014.01.073.CrossRefPubMedGoogle Scholar
  5. 5.
    Kwon DH, Setser RM, Thamilarasan M, Popovic ZV, Smedira NG, Schoenhagen P, et al. Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophic cardiomyopathy. Heart. 2008;94(10):1295–301.CrossRefGoogle Scholar
  6. 6.
    Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8.  https://doi.org/10.1016/j.echo.2013.02.008.CrossRefPubMedGoogle Scholar
  7. 7.
    Mousavi N, Tan TC, Ali M, Halpern EF, Wang L, Scherrer-Crosbie M. Echocardiographic parameters of left ventricular size and function as predictors of symptomatic heart failure in patients with a left ventricular ejection fraction of 50–59% treated with anthracyclines. Eur Heart J Cardiovasc Imaging. 2015;16(9):977–84.  https://doi.org/10.1093/ehjci/jev113.CrossRefPubMedGoogle Scholar
  8. 8.
    •• Ali MT, Yucel E, Bouras S, Wang L, Fei H-W, Halpern EF, et al. Myocardial strain is associated with adverse clinical cardiac events in patients treated with anthracyclines. J Am Soc Echocardiogr. 2016;29(6):522–7.e3.  https://doi.org/10.1016/j.echo.2016.02.018 This study evaluated the usefulness of LV-GLS to stratify patients at high risk of cardiotoxicity after chemotherapy.CrossRefPubMedGoogle Scholar
  9. 9.
    Florescu M, Magda LS, Enescu OA, Jinga D, Vinereanu D. Early detection of epirubicin-induced cardiotoxicity in patients with breast cancer. J Am Soc Echocardiogr. 2014;27(1):83–92.  https://doi.org/10.1016/j.echo.2013.10.008.CrossRefPubMedGoogle Scholar
  10. 10.
    Sawaya H, Sebag Igal A, Plana Juan C, Januzzi James L, Ky B, Tan Timothy C, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603.  https://doi.org/10.1161/circimaging.112.973321.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ho E, Brown A, Barrett P, Morgan RB, King G, Kennedy MJ, et al. Subclinical anthracycline- and trastuzumab-induced cardiotoxicity in the long-term follow-up of asymptomatic breast cancer survivors: a speckle tracking echocardiographic study. Heart. 2010;96(9):701–7.  https://doi.org/10.1136/hrt.2009.173997.CrossRefPubMedGoogle Scholar
  12. 12.
    Rhea IB, Uppuluri S, Sawada S, Schneider BP, Feigenbaum H. Incremental prognostic value of echocardiographic strain and its association with mortality in cancer patients. J Am Soc Echocardiogr. 2015;28(6):667–73.  https://doi.org/10.1016/j.echo.2015.02.006.CrossRefPubMedGoogle Scholar
  13. 13.
    Handa N, McGregor CGA, Danielson GK, Daly RC, Dearani JA, Mullany CJ, et al. Valvular heart operation in patients with previous mediastinal radiation therapy. Ann Thorac Surg. 2001;71(6):1880–4.  https://doi.org/10.1016/S0003-4975(01)02588-7.CrossRefPubMedGoogle Scholar
  14. 14.
    Chirakarnjanakorn S, Popović ZB, Wu W, Masri A, Smedira NG, Lytle BW, et al. Impact of long-axis function on cardiac surgical outcomes in patients with radiation-associated heart disease. J Thorac Cardiovasc Surg. 2015;149(6):1643–51.e2.  https://doi.org/10.1016/j.jtcvs.2015.01.045.CrossRefPubMedGoogle Scholar
  15. 15.
    Sperry BW, Vranian MN, Tower-Rader A, Hachamovitch R, Hanna M, Brunken R, et al. Regional variation in technetium pyrophosphate uptake in transthyretin cardiac amyloidosis and impact on mortality. JACC Cardiovasc Imaging. 2018;11(2, Part 1):234–42.  https://doi.org/10.1016/j.jcmg.2017.06.020.CrossRefPubMedGoogle Scholar
  16. 16.
    Koyama J, Ray-Sequin Patricia A, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation. 2003;107(19):2446–52.  https://doi.org/10.1161/01.cir.0000068313.67758.4f.CrossRefPubMedGoogle Scholar
  17. 17.
    •• Phelan D, Collier P, Thavendiranathan P, Popović ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98(19):1442.  https://doi.org/10.1136/heartjnl-2012-302353 This study described regional patterns in longitudinal strain cardiac amyloidosis and differentiate it from other causes of increased left ventricular wall thickness.CrossRefPubMedGoogle Scholar
  18. 18.
    Dungu JN, Anderson LJ, Whelan CJ, Hawkins PN. Cardiac transthyretin amyloidosis. Heart. 2012;98(21):1546–54.  https://doi.org/10.1136/heartjnl-2012-301924.CrossRefPubMedGoogle Scholar
  19. 19.
    Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–16.  https://doi.org/10.1056/NEJMoa1805689.CrossRefPubMedGoogle Scholar
  20. 20.
    Senapati A, Sperry BW, Grodin JL, Kusunose K, Thavendiranathan P, Jaber W, et al. Prognostic implication of relative regional strain ratio in cardiac amyloidosis. Heart. 2016;102(10):748–54.  https://doi.org/10.1136/heartjnl-2015-308657.CrossRefPubMedGoogle Scholar
  21. 21.
    Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. J Am Coll Cardiol. 2012;60(12):1067–76.  https://doi.org/10.1016/j.jacc.2012.04.043.CrossRefPubMedGoogle Scholar
  22. 22.
    • Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY. Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: a systematic review of existing literature. JACC Cardiovasc Imaging. 2018.  https://doi.org/10.1016/j.jcmg.2018.07.016 This is a systematic review with the most complete analysis on the value prognosis of LV-GLS in patients with HCM in recent years.PubMedGoogle Scholar
  23. 23.
    Almaas VM, Haugaa KH, Strøm EH, Scott H, Smith H-J, Dahl CP, et al. Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart. 2014;100(8):631–8.  https://doi.org/10.1136/heartjnl-2013-304923.CrossRefPubMedGoogle Scholar
  24. 24.
    Tower-Rader A, Betancor J, Popovic ZB, Sato K, Thamilarasan M, Smedira NG, et al. Incremental prognostic utility of left ventricular global longitudinal strain in hypertrophic obstructive cardiomyopathy patients and preserved left ventricular ejection fraction. J Am Heart Assoc. 2017;6(10):e006514.  https://doi.org/10.1161/jaha.117.006514.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2017;70(2):252–89.  https://doi.org/10.1016/j.jacc.2017.03.011.CrossRefPubMedGoogle Scholar
  26. 26.
    Delgado V, Tops LF, van Bommel RJ, van der Kley F, Marsan NA, Klautz RJ, et al. Strain analysis in patients with severe aortic stenosis and preserved left ventricular ejection fraction undergoing surgical valve replacement. Eur Heart J. 2009;30(24):3037–47.  https://doi.org/10.1093/eurheartj/ehp351.CrossRefPubMedGoogle Scholar
  27. 27.
    Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Aronson D, et al. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol. 2011;107(7):1052–7.  https://doi.org/10.1016/j.amjcard.2010.11.032.CrossRefPubMedGoogle Scholar
  28. 28.
    Kusunose K, Goodman A, Parikh R, Barr T, Agarwal S, Popovic Zoran B, et al. Incremental prognostic value of left ventricular global longitudinal strain in patients with aortic stenosis and preserved ejection fraction. Circul Cardiovasc Imaging. 2014;7(6):938–45.  https://doi.org/10.1161/circimaging.114.002041.CrossRefGoogle Scholar
  29. 29.
    Huded CP, Masri A, Kusunose K, Goodman AL, Grimm RA, Gillinov AM, et al. Outcomes in asymptomatic severe aortic stenosis with preserved ejection fraction undergoing rest and treadmill stress echocardiography. J Am Heart Assoc. 2018;7(8):e007880.  https://doi.org/10.1161/jaha.117.007880.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Magne J, Cosyns B, Popescu BA, Carstensen HG, Dahl J, Desai MY, et al. Distribution and prognostic significance of left ventricular global longitudinal strain in asymptomatic significant aortic stenosis: an individual participant data meta-analysis. JACC Cardiovasc Imaging. 2019;12(1):84–92.  https://doi.org/10.1016/j.jcmg.2018.11.005.CrossRefPubMedGoogle Scholar
  31. 31.
    Huded CP, Kusunose K, Shahid F, Goodman AL, Alashi A, Grimm RA, et al. Novel echocardiographic parameters in patients with aortic stenosis and preserved left ventricular systolic function undergoing surgical aortic valve replacement. Am J Cardiol. 2018;122(2):284–93.  https://doi.org/10.1016/j.amjcard.2018.03.359.CrossRefPubMedGoogle Scholar
  32. 32.
    Kafa R, Kusunose K, Goodman AL, Svensson LG, Sabik JF, Griffin BP, et al. Association of abnormal postoperative left ventricular global longitudinal strain with outcomes in severe aortic stenosis following aortic valve replacement LV global longitudinal strain values after aortic value replacement letters. JAMA Cardiol. 2016;1(4):494–6.  https://doi.org/10.1001/jamacardio.2016.1132.CrossRefPubMedGoogle Scholar
  33. 33.
    Dujardin Karl S, Enriquez-Sarano M, Schaff Hartzell V, Bailey Kent R, Seward James B, Tajik AJ. Mortality and morbidity of aortic regurgitation in clinical practice. Circulation. 1999;99(14):1851–7.  https://doi.org/10.1161/01.cir.99.14.1851.CrossRefGoogle Scholar
  34. 34.
    Alashi A, Mentias A, Abdallah A, Feng K, Gillinov AM, Rodriguez LL, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction. JACC Cardiovasc Imaging. 2018;11(5):673–82.  https://doi.org/10.1016/j.jcmg.2017.02.016.CrossRefPubMedGoogle Scholar
  35. 35.
    Alashi A, Khullar T, Mentias A, Gillinov AM, Roselli EE, Svensson LG, et al. Long-term outcomes after aortic valve surgery in patients with asymptomatic chronic aortic regurgitation and preserved LVEF: impact of baseline and follow-up global longitudinal strain. JACC Cardiovasc Imaging. 2019.  https://doi.org/10.1016/j.jcmg.2018.12.021.
  36. 36.
    Mentias A, Naji P, Gillinov AM, Rodriguez LL, Reed G, Mihaljevic T, et al. Strain echocardiography and functional capacity in asymptomatic primary mitral regurgitation with preserved ejection fraction. J Am Coll Cardiol. 2016;68(18):1974–86.  https://doi.org/10.1016/j.jacc.2016.08.030.CrossRefPubMedGoogle Scholar
  37. 37.
    Mentias A, Alashi A, Naji P, Gillinov AM, Rodriguez LL, Mihaljevic T, et al. Exercise capacity in asymptomatic patients with significant primary mitral regurgitation: independent effect of global longitudinal left ventricular strain. Cardiovasc Diagn Ther. 2018;8(4):460–8.CrossRefGoogle Scholar
  38. 38.
    Alashi A, Mentias A, Patel K, Gillinov AM, Sabik Joseph F, Popović Zoran B, et al. Synergistic utility of brain natriuretic peptide and left ventricular global longitudinal strain in asymptomatic patients with significant primary mitral regurgitation and preserved systolic function undergoing mitral valve surgery. Circ Cardiovasc Imaging. 2016;9(7):e004451.  https://doi.org/10.1161/circimaging.115.004451.CrossRefPubMedGoogle Scholar
  39. 39.
    Ersbøll M, Valeur N, Mogensen UM, Andersen MJ, Møller JE, Velazquez EJ, et al. Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol. 2013;61(23):2365–73.  https://doi.org/10.1016/j.jacc.2013.02.061.CrossRefPubMedGoogle Scholar
  40. 40.
    Antończyk K, Niklewski T, Antończyk R, Zakliczyński M, Zembala M, Kukulski T. Evaluation of the graft mechanical function using speckle-tracking echocardiography during the first year after orthotropic heart transplantation. Ann Transplant. 2018;23:554–60.  https://doi.org/10.12659/aot.909359.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Eleid MF, Caracciolo G, Cho EJ, Scott RL, Steidley DE, Wilansky S, et al. Natural history of left ventricular mechanics in transplanted hearts: relationships with clinical variables and genetic expression profiles of allograft rejection. JACC Cardiovasc Imaging. 2010;3(10):989–1000.  https://doi.org/10.1016/j.jcmg.2010.07.009.CrossRefPubMedGoogle Scholar
  42. 42.
    Sade LE, Hazirolan T, Kozan H, Ozdemir H, Hayran M, Eroglu S, et al. T1 mapping by cardiac magnetic resonance and multidimensional speckle-tracking strain by echocardiography for the detection of acute cellular rejection in cardiac allograft recipients. JACC Cardiovasc Imaging. 2018;12:1601–14.  https://doi.org/10.1016/j.jcmg.2018.02.022.CrossRefPubMedGoogle Scholar
  43. 43.
    Barakat AF, Sperry BW, Starling RC, Mentias A, Popovic ZB, Griffin BP, et al. Prognostic utility of right ventricular free wall strain in low risk patients after orthotopic heart transplantation. Am J Cardiol. 2017;119(11):1890–6.  https://doi.org/10.1016/j.amjcard.2017.03.003.CrossRefPubMedGoogle Scholar
  44. 44.
    Mahmoud A, Bansal M, Sengupta PP. New cardiac imaging algorithms to diagnose constrictive pericarditis versus restrictive cardiomyopathy. Curr Cardiol Rep. 2017;19(5):43.  https://doi.org/10.1007/s11886-017-0851-0.CrossRefPubMedGoogle Scholar
  45. 45.
    Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt J-U. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. J Am Soc Echocardiogr. 2015;28(10):1171–81.e2.  https://doi.org/10.1016/j.echo.2015.06.011.CrossRefPubMedGoogle Scholar
  46. 46.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14.  https://doi.org/10.1016/j.echo.2014.10.003.CrossRefPubMedGoogle Scholar
  47. 47.
    Voigt J-U, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. J Am Soc Echocardiogr. 2015;28(2):183–93.  https://doi.org/10.1016/j.echo.2014.11.003.CrossRefPubMedGoogle Scholar
  48. 48.
    Zghal F, Bougteb H, Réant P, Lafitte S, Roudaut R. Assessing global and regional left ventricular myocardial function in elderly patients using the bidimensional strain method. Echocardiography. 2011;28(9):978–82.  https://doi.org/10.1111/j.1540-8175.2011.01476.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, et al. Normal range of left ventricular 2-dimensional strain: Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circ J. 2012;76(11):2623–32.  https://doi.org/10.1253/circj.CJ-12-0264.CrossRefPubMedGoogle Scholar
  50. 50.
    Cifra B, Mertens L, Mirkhani M, Slorach C, Hui W, Manlhiot C, et al. Systolic and diastolic myocardial response to exercise in a healthy pediatric cohort. J Am Soc Echocardiogr. 2016;29(7):648–54.  https://doi.org/10.1016/j.echo.2016.02.015.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Agostina M. Fava
    • 1
  • Dane Meredith
    • 1
  • Milind Y. Desai
    • 1
    Email author
  1. 1.Heart and Vascular InstituteCleveland ClinicClevelandUSA

Personalised recommendations