Advertisement

The Gut Microbiome and Men’s Sexual Health

  • Mohamad M. Osman
  • Farouk M. El-Khatib
  • Natalie H. Roberts
  • Linda M. Huynh
  • Faysal A. YafiEmail author
Female Sexual Dysfunction and Disorders (A Pastuszak and N Thirumavalavan, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Female Sexual Dysfunction and Disorders

Abstract

Purpose of Review

Currently, there is no literature assessing for a potential relationship between the gut microbiome and men’s sexual health. The purpose of this paper is to review the literature on the gut microbiome and its effect on human health, in healthy and diseased states. We also aim to review the literature on men’s sexual health and then extrapolate a potential relationship between the gut microbiome and sexual health diseases.

Recent Findings

Many studies have suggested a correlation between the gut microbiome and components of the metabolic syndrome, cardiovascular disease, and inflammation. Men’s sexual health diseases, such as erectile dysfunction and hypogonadism, have also been associated with components of the metabolic syndrome and cardiovascular disease.

Summary

Due to the bidirectional relationships seen between the gut microbiome and men’s sexual health, with the metabolic syndrome, cardiovascular disease, and inflammation, it is highly likely that an association between men’s sexual health and the gut microbiome exists also. Future studies should begin looking at this potential relationship with the aim of developing gut microbiome targeted diagnostic and therapeutic tools for the treatment of men’s sexual health diseases.

Keywords

Gut microbiome Men’s sexual health Hypogonadism Erectile dysfunction Metabolic syndrome Cardiovascular disease 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Yafi reports associations with Endo Pharmaceuticals as consultant and speaker; Antares Pharma as consultant and speaker; Coloplast as speaker and advisory board; and Viome: Clinical as trial primary investigator. All other authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human or animal subjects performed by the author.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36.  https://doi.org/10.1042/BCJ20160510.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Barko PC, McMichael MA, Swanson KS, Williams DA. The gastrointestinal microbiome: a review. J Vet Intern Med. 2018;32:9–25.  https://doi.org/10.1111/jvim.14875.CrossRefPubMedGoogle Scholar
  3. 3.
    Sidhu M, Van der Poorten D. The gut microbiome. Aust Fam Physician. 2017;46:206–11.PubMedGoogle Scholar
  4. 4.
    • Arnold JW, Roach J, Azcarate-Peril MA. Emerging technologies for gut microbiome research. Trends Microbiol. 2016;24:887–901.  https://doi.org/10.1016/j.tim.2016.06.008 This paper highlights the recent advancements in quality and ease of gut microbiome analysis. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ahmadmehrabi S, Tang WHW. Gut microbiome and its role in cardiovascular diseases. Curr Opin Cardiol. 2017;32:761.  https://doi.org/10.1097/HCO.0000000000000445.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67:1716–25.  https://doi.org/10.1136/gutjnl-2018-316723.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.  https://doi.org/10.1152/physrev.00045.2009.CrossRefPubMedGoogle Scholar
  8. 8.
    Shabsigh R. Hypogonadism and erectile dysfunction: the role for testosterone therapy. Int J Impot Res. 2003;15:9–13.  https://doi.org/10.1038/sj.ijir.3901030.CrossRefGoogle Scholar
  9. 9.
    Buvat J, Bou JG. Significance of hypogonadism in erectile dysfunction. World J Urol. 2006;24:657–67.  https://doi.org/10.1007/s00345-006-.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferrini MG, Gonzalez-Cadavid NF, Rajfer J. Aging related erectile dysfunction—potential mechanism to halt or delay its onset. Transl Androl Urol. 2017;6:20–7.  https://doi.org/10.21037/tau.2016.11.18.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Althof SE. Quality of life and erectile dysfunction. Urology. 2002;59:803–10.  https://doi.org/10.1016/S0090-4295(02)01606-0.CrossRefPubMedGoogle Scholar
  12. 12.
    Cunningham GR. Testosterone and metabolic syndrome. Asian J Androl. 2015;17:192–6.  https://doi.org/10.4103/1008-682X.148068.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Traish AM, Haider A, Doros G, Saad F. Long-term testosterone therapy in hypogonadal men ameliorates elements of the metabolic syndrome: an observational, long-term registry study. Int J Clin Pract. 2014;68:314–29.  https://doi.org/10.1111/ijcp.12319.CrossRefPubMedGoogle Scholar
  14. 14.
    • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14.  https://doi.org/10.1371/journal.pbio.1002533 The importance of this paper is that it provides an updated estimate of the number of microbes found in the gut. The sheer number alone is preliminary evidence that these microbes have an effect on multiple systems and functions of their host organism. CrossRefGoogle Scholar
  15. 15.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;13:220–30.  https://doi.org/10.1038/nature11550.CrossRefGoogle Scholar
  16. 16.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;10:1635–8.  https://doi.org/10.1126/science.1110591.CrossRefGoogle Scholar
  17. 17.
    Bull MJ, Plummer NT. Part 1: The Human human Gut gut Microbiome microbiome in Health health and Diseasedisease. Integr Med (Encinitas). 2014;13:17–22.Google Scholar
  18. 18.
    Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol. 2001;108:516–20.  https://doi.org/10.1067/mai.2001.118130.CrossRefPubMedGoogle Scholar
  19. 19.
    LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160–8.  https://doi.org/10.1016/j.copbio.2012.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: an uptodate. World J Gastroenterol. 2016;28:7186–202.  https://doi.org/10.3748/wjg.v22.i32.7186.CrossRefGoogle Scholar
  21. 21.
    Scheperjans F. Gut microbiota, 1013 new pieces in the Parkinson's Parkinson’s disease puzzle. Curr Opin Neurol. 2016;29:773–80.  https://doi.org/10.1097/WCO.0000000000000389.CrossRefPubMedGoogle Scholar
  22. 22.
    Hoeppli RE, Wu D, Cook L, Levings MK. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol. 2015;6:61.  https://doi.org/10.3389/fimmu.2015.00061.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Umu ÖCO, Rudi K, Diep DB. Modulation of the gut microbiota by prebiotic fibres and bacteriocins. Microb Ecol Health Dis. 2017;28.  https://doi.org/10.1080/16512235.2017.1348886.CrossRefGoogle Scholar
  24. 24.
    Smith M. PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.  https://doi.org/10.1126/science.1241165.CrossRefPubMedGoogle Scholar
  25. 25.
    Dodd D, Spitzer MH, Van Treuren W, Merrill BD, Hryckowian AJ, Higginbottom SK, et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature. 2017;551:648–52.  https://doi.org/10.1038/nature24661.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bollrath J, Powrie F. Immunology. Feed your Tregs more fiber. Science. 2013;2:463–4.  https://doi.org/10.1126/science.1242674.CrossRefGoogle Scholar
  27. 27.
    Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26:14–9.  https://doi.org/10.1016/j.cub.2015.11.017.CrossRefGoogle Scholar
  28. 28.
    Shamloul R, Ghanem H. Erectile dysfunction. Lancet. 2013;12:153–65.  https://doi.org/10.1016/S0140-6736(12)60520-0.CrossRefGoogle Scholar
  29. 29.
    • Mulhall JP, Trost LW, Brannigan RE, Kurtz EG, Redmon JB, Chiles KA, et al. Evaluation and management of testosterone deficiency: AUA guideline. J Urol. 2018;200:423–32.  https://doi.org/10.1016/j.juro.2018.03.115 Low testosterone is a highly likely to be associated with gut microbiome dysbiosis. These updates guidelines are important in defining low testosterone. CrossRefPubMedGoogle Scholar
  30. 30.
    El-Sakka AI. Prevalence of Peyronie’'s disease among patients with erectile dysfunction. Eur Urol. 2006;49:564–9.  https://doi.org/10.1016/j.eururo.2005.10.026.CrossRefPubMedGoogle Scholar
  31. 31.
    Dibenedetti DB, Nguyen D, Zografos L, Ziemiecki R, Zhou X. A population-based study of Peyronie’'s disease: prevalence and treatment patterns in the United States. Adv Urol. 2011;2011.  https://doi.org/10.1155/2011/282503.CrossRefGoogle Scholar
  32. 32.
    Humphries KH, Izadnegahdar M, Sedlak T, Saw J, Johnston N, Schenck-Gustafsson K, et al. Sex differences in cardiovascular disease - impact on care and outcomes. Front Neuroendocrinol. 2017;46:46–70.  https://doi.org/10.1016/j.yfrne.2017.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Thompson IM, Tangen CM, Goodman PJ, Probstfield JL, Moinpour CM, Coltman CA. Erectile dysfunction and subsequent cardiovascular disease. JAMA. 2005;294:2996–3002.  https://doi.org/10.1001/jama.294.23.2996.CrossRefPubMedGoogle Scholar
  34. 34.
    Lane-Cordova AD, Kershaw K, Liu K, Herrington D, Lloyd-Jones DM. Association between cardiovascular health and endothelial function with future erectile dysfunction: the multi-ethnic study of atherosclerosis. Am J Hypertens. 2017;30:815–21.  https://doi.org/10.1093/ajh/hpx060.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Banks E, Joshy G, Abhayaratna WP, Kritharides L, Macdonald PS, Korda RJ, et al. Erectile dysfunction severity as a risk marker for cardiovascular disease hospitalisation and all-cause mortality: a prospective cohort study. PLoS Med. 2013;10.  https://doi.org/10.1371/journal.pmed.1001372.CrossRefGoogle Scholar
  36. 36.
    Ponholzer A, Gutjahr G, Temml C, Madersbacher S. Is erectile dysfunction a predictor of cardiovascular events or stroke? A prospective study using a validated questionnaire. Int J Impot Res. 2010;22:25–9.  https://doi.org/10.1038/ijir.2009.40.CrossRefPubMedGoogle Scholar
  37. 37.
    Hotaling JM, Walsh TJ, Macleod LC, Heckbert S, Pocobelli G, Wessells H, et al. Erectile dysfunction is not independently associated with cardiovascular death: data from the vitamins and lifestyle (VITAL) study. J Sex Med. 2012;9:2104–10.  https://doi.org/10.1111/j.1743-6109.2012.02826.CrossRefPubMedGoogle Scholar
  38. 38.
    Mäkinen JI, Perheentupa A, Irjala K, Pöllänen P, Mäkinen J, Huhtaniemi I, et al. Endogenous testosterone and brachial artery endothelial function in middle-aged men with symptoms of late-onset hypogonadism. Aging Male. 2011;14:237–42.  https://doi.org/10.3109/13685538.2011.593655.CrossRefPubMedGoogle Scholar
  39. 39.
    Empen K, Lorbeer R, Dörr M, Haring R, Nauck M, Gläser S, et al. Association of testosterone levels with endothelial function in men: results from a population-based study. Arterioscler Thromb Vasc Biol. 2012;32:481–6.  https://doi.org/10.1161/ATVBAHA.111.232876.CrossRefPubMedGoogle Scholar
  40. 40.
    Akishita M, Hashimoto M, Ohike Y, Ogawa S, Iijima K, Eto M, et al. Low testosterone level is an independent determinant of endothelial dysfunction in men. Hypertens Res. 2007;30:1029–34.  https://doi.org/10.1291/hypres.30.1029.CrossRefPubMedGoogle Scholar
  41. 41.
    Corrigan FE, Al Mheid I, Eapen DJ, Hayek SS, Sher S, Martin GS, et al. Low testosterone in men predicts impaired arterial elasticity and microvascular function. Int J Cardiol. 2015;194:94–9.  https://doi.org/10.1016/j.ijcard.2015.05.065.CrossRefPubMedGoogle Scholar
  42. 42.
    Khazai B, Golden SH, Colangelo LA, Swerdloff R, Wang C, Honoris L, et al. Association of endogenous testosterone with subclinical atherosclerosis in men: the multi-ethnic study of atherosclerosis. Clin Endocrinol (Oxf). 2016;84:700–7.  https://doi.org/10.1111/cen.12997.CrossRefGoogle Scholar
  43. 43.
    Lai J, Ge Y, Shao Y, Xuan T, Xia S, Li M. Low serum testosterone level was associated with extensive coronary artery calcification in elderly male patients with stable coronary artery disease. Coron Artery Dis. 2015;26:437–41.  https://doi.org/10.1097/MCA.0000000000000260.CrossRefPubMedGoogle Scholar
  44. 44.
    Michos ED, Vaidya D, Gapstur SM, Schreiner PJ, Golden SH, Wong ND, et al. Sex hormones, sex hormone binding globulin, and abdominal aortic calcification in women and men in the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2008;200:432–8.  https://doi.org/10.1016/j.atherosclerosis.2007.12.032.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Yaron M, Greenman Y, Rosenfeld JB, Izkhakov E, Limor R, Osher E, et al. Effect of testosterone replacement therapy on arterial stiffness in older hypogonadal men. Eur J Endocrinol. 2009;160:839–46.  https://doi.org/10.1530/EJE-09-0052.CrossRefPubMedGoogle Scholar
  46. 46.
    Vlachopoulos C, Ioakeimidis N, Miner M, Aggelis A, Pietri P, Terentes-Printzios D, et al. Testosterone deficiency: a determinant of aortic stiffness in men. Atherosclerosis. 2014;233:278–83.  https://doi.org/10.1016/j.atherosclerosis.2013.12.010.CrossRefPubMedGoogle Scholar
  47. 47.
    Dockery F, Bulpitt CJ, Agarwal S, Donaldson M, Rajkumar C. Testosterone suppression in men with prostate cancer leads to an increase in arterial stiffness and hyperinsulinaemia. Clin Sci (Lond). 2003;104:195–201.  https://doi.org/10.1042/CS20020209.CrossRefGoogle Scholar
  48. 48.
    Brand JS, den Ouden ME, Schuurmans MJ, Bots ML, van der Schouw YT. Endogenous sex hormones and subclinical atherosclerosis in middle-aged and older men. Int J Cardiol. 2013;168:574–6.  https://doi.org/10.1016/j.ijcard.2013.01.242.CrossRefPubMedGoogle Scholar
  49. 49.
    Vaidya D, Golden SH, Haq N, Heckbert SR, Liu K, Ouyang P. Association of sex hormones with carotid artery distensibility in men and postmenopausal women: multi-ethnic study of atherosclerosis. Hypertension. 2015;65:1020–5.  https://doi.org/10.1161/HYPERTENSIONAHA.114.04826.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dockery F, Bulpitt CJ, Donaldson M, Fernandez S, Rajkumar C. The relationship between androgens and arterial stiffness in older men. J Am Geriatr Soc. 2003;51:1627–32.  https://doi.org/10.1046/j.1532-5415.2003.51515.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5.  https://doi.org/10.1161/CIRCULATIONAHA.109.192644.CrossRefPubMedGoogle Scholar
  52. 52.
    Bjekic MD, Vlajinac HD, Sipetic SB, Marinkovic JM. Risk factors for Peyronie's Peyronie’s disease: a case-control study. BJU Int. 2006;97:570–4.  https://doi.org/10.1111/j.1464-410X.2006.05969.x.CrossRefPubMedGoogle Scholar
  53. 53.
    Kadioglu A, Tefekli A, Erol B, Oktar T, Tunc M, Tellaloglu S. A retrospective review of 307 men with Peyronie's Peyronie’s disease. J Urol. 2002;168:1075–9.  https://doi.org/10.1097/01.ju.0000024040.55662.36.CrossRefPubMedGoogle Scholar
  54. 54.
    La Pera G, Pescatori ES, Calabrese M, Boffini A, Colombo F, Andriani E, et al. Peyronie's Peyronie’s disease: prevalence and association with cigarette smoking. A multicenter population-based study in men aged 50-69 years. Eur Urol. 2001;40:525–30.CrossRefGoogle Scholar
  55. 55.
    Carrieri MP, Serraino D, Palmiotto F, Nucci G, Sasso F. A case-control study on risk factors for Peyronie's Peyronie’s disease. J Clin Epidemiol. 1998;51:511–5.  https://doi.org/10.1016/S0895-4356(98)00015-8.CrossRefPubMedGoogle Scholar
  56. 56.
    Beltrán-Sánchez H, Harhay MO, Harhay MM, McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. J Am Coll Cardiol. 2013;62:697–703.  https://doi.org/10.1016/j.jacc.2013.05.064.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Antonio L, Wu FC, O’'Neill TW, Pye SR, Carter EL, Finn JD, et al. Associations between sex steroids and the development of metabolic syndrome: a longitudinal study in European men. J Clin Endocrinol Metab. 2015;100:1396–404.  https://doi.org/10.1210/jc.2014-4184.CrossRefPubMedGoogle Scholar
  58. 58.
    Laaksonen DE, Niskanen L, Punnonen K, Nyyssönen K, Tuomainen TP, Valkonen VP, et al. Testosterone and sex hormone-binding globulin predict the metabolic syndrome and diabetes in middle-aged men. Diabetes Care. 2004;27:1036–41.  https://doi.org/10.2337/diacare.27.5.1036.CrossRefPubMedGoogle Scholar
  59. 59.
    Laaksonen DE, Niskanen L, Punnonen K, Nyyssönen K, Tuomainen TP, Valkonen VP, et al. The metabolic syndrome and smoking in relation to hypogonadism in middle-aged men: a prospective cohort study. J Clin Endocrinol Metab. 2005;90:712–9.  https://doi.org/10.1210/jc.2004-0970.CrossRefPubMedGoogle Scholar
  60. 60.
    Chaudhary RK, Shamsi BH, Tan T, Chen HM, Xing JP. Study of the relationship between male erectile dysfunction and type 2 diabetes mellitus/metabolic syndrome and its components. J Int Med Res. 2016;44:735–41.  https://doi.org/10.1177/0300060515623122.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Weinberg AE, Eisenberg M, Patel CJ, Chertow GM, Leppert JT. Diabetes severity, metabolic syndrome, and the risk of erectile dysfunction. J Sex Med. 2013;10:3102–9.  https://doi.org/10.1111/jsm.12318.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Park JH, Cho IC, Kim YS, Kim SK, Min SK, Kye SS. Body mass index, waist-to-hip ratio, and metabolic syndrome as predictors of middle-aged men's men’s health. Korean J Urol. 2015;56:386–92.  https://doi.org/10.4111/kju.2015.56.5.386.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Arrabal-Polo MÁ, Arias-Santiago S, López-Carmona Pintado F, Merino-Salas S, Lahoz-García C, Zuluaga-Gómez A, et al. Metabolic syndrome, hormone levels, and inflammation in patients with erectile dysfunction. ScientificWorldJournal. 2012.  https://doi.org/10.1100/2012/272769.CrossRefGoogle Scholar
  64. 64.
    El-Sakka AI, Tayeb KA. Peyronie's Peyronie’s disease in diabetic patients being screened for erectile dysfunction. J Urol. 2005;17:1026–30.  https://doi.org/10.1097/01.ju.0000170231.51306.32.CrossRefGoogle Scholar
  65. 65.
    Arafa M, Eid H, El-Badry A, Ezz-Eldine K, Shamloul R. The prevalence of Peyronie's Peyronie’s disease in diabetic patients with erectile dysfunction. Int J Impot Res. 2007;19:213–7.  https://doi.org/10.1038/sj.ijir.3901518.CrossRefPubMedGoogle Scholar
  66. 66.
    Kendirci M, Trost L, Sikka SC, Hellstrom WJ. Diabetes mellitus is associated with severe Peyronie's Peyronie’s disease. BJU Int. 2007;99:383–6.  https://doi.org/10.1111/j.1464-410X.2007.06611.x.CrossRefPubMedGoogle Scholar
  67. 67.
    Tefekli A, Kandirali E, Erol B, Tunc M, Kadioglu A. Peyronie's Peyronie’s disease: a silent consequence of diabetes mellitus. Asian J Androl. 2006;8:75–9.  https://doi.org/10.1111/j.1745-7262.2006.00099.x.CrossRefPubMedGoogle Scholar
  68. 68.
    McKelvey KJ, Ariyakumar G, McCracken SA. Inflammatory and immune system markers. Methods Mol Biol. 1710;2018:85–101.  https://doi.org/10.1007/978-1-4939-7498-6_7.CrossRefGoogle Scholar
  69. 69.
    Bocchio M, Desideri G, Scarpelli P, Necozione S, Properzi G, Spartera C, et al. Endothelial cell activation in men with erectile dysfunction without cardiovascular risk factors and overt vascular damage. J Urol. 2004;171:1601–4.  https://doi.org/10.1097/01.ju.0000116325.06572.85.CrossRefPubMedGoogle Scholar
  70. 70.
    Sullivan ME, Miller MA, Bell CR, Jagroop IA, Thompson CS, Khan MA, et al. Fibrinogen, lipoprotein (a) and lipids in patients with erectile dysfunction. A preliminary study. Int Angiol. 2001;20:195–9.PubMedGoogle Scholar
  71. 71.
    Billups KL, Kaiser DR, Kelly AS, Wetterling RA, Tsai MY, Hanson N, et al. Relation of C-reactive protein and other cardiovascular risk factors to penile vascular disease in men with erectile dysfunction. Int J Impot Res. 2003;15:231–6.  https://doi.org/10.1038/sj.ijir.3901012.CrossRefPubMedGoogle Scholar
  72. 72.
    Chiurlia E, D'Amico D’Amico R, Ratti C, Granata AR, Romagnoli R, Modena MG. Subclinical coronary artery atherosclerosis in patients with erectile dysfunction. J Am Coll Cardiol. 2005;46(8):1503–6.  https://doi.org/10.1016/j.jacc.2005.06.068.CrossRefPubMedGoogle Scholar
  73. 73.
    Long T, Liu G, Wang Y, Chen Y, Zhang Y, Qin D. TNF-α, erectile dysfunction, and NADPH oxidase-mediated ROS generation in corpus cavernosum in high-fat diet/streptozotocin-induced diabetic rats. J Sex Med. 2012;9:1801–14.  https://doi.org/10.1111/j.1743-6109.2012.02739.x.CrossRefPubMedGoogle Scholar
  74. 74.
    Matos G, Hirotsu C, Alvarenga TA, Cintra F, Bittencourt L, Tufik S, et al. The association between TNF-α and erectile dysfunction complaints. Andrology. 2013;1:872–8.  https://doi.org/10.1111/j.2047-2927.2013.00136.x.CrossRefPubMedGoogle Scholar
  75. 75.
    Tremellen K, McPhee N, Pearce K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin Androl. 2017;27:5.  https://doi.org/10.1186/s12610-017-0049-8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Wickramatilake CM, Mohideen MR, Withanawasam BP, Pathirana C. Testosterone and high-sensitive C-reactive protein in coronary artery disease patients awaiting coronary artery bypass graft. Andrologia. 2015;47:493–8.  https://doi.org/10.1111/and.12290.CrossRefPubMedGoogle Scholar
  77. 77.
    Tsilidis KK, Rohrmann S, McGlynn KA, Nyante SJ, Lopez DS, Bradwin G, et al. Association between endogenous sex steroid hormones and inflammatory biomarkers in US men. Andrology. 2013;1:919–28.  https://doi.org/10.1111/j.2047-2927.2013.00129.x.CrossRefPubMedGoogle Scholar
  78. 78.
    Bobjer J, Katrinaki M, Tsatsanis C, Lundberg Giwercman Y, Giwercman A. Negative association between testosterone concentration and inflammatory markers in young men: a nested cross-sectional study. PLoS One. 2013;8.  https://doi.org/10.1371/journal.pone.0061466.CrossRefGoogle Scholar
  79. 79.
    Kalinchenko SY, Tishova YA, Mskhalaya GJ, Gooren LJ, Giltay EJ, Saad F. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: the double-blinded placebo-controlled Moscow study. Clin Endocrinol (Oxf). 2010;73:602–12.  https://doi.org/10.1111/j.1365-2265.2010.03845.x.CrossRefGoogle Scholar
  80. 80.
    Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH. The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab. 2004;89:3313–8.  https://doi.org/10.1210/jc.2003-031069.CrossRefPubMedGoogle Scholar
  81. 81.
    Somers KD, Dawson DM. Fibrin deposition in Peyronie's Peyronie’s disease plaque. J Urol. 1997;157:311–5.CrossRefGoogle Scholar
  82. 82.
    El-Sakka AI, Hassan MU, Nunes L, Bhatnagar RS, Yen TS, Lue TF. Histological and ultrastructural alterations in an animal model of Peyronie's Peyronie’s disease. Br J Urol 1998:Mar81:445-52.Google Scholar
  83. 83.
    Davis CJ Jr. The microscopic pathology of Peyronie's Peyronie’s disease. J Urol. 1997;157:282–4.CrossRefGoogle Scholar
  84. 84.
    Vernet D, Nolazco G, Cantini L, Magee TR, Qian A, Rajfer J, et al. Evidence that osteogenic progenitor cells in the human tunica albuginea may originate from stem cells: implications for peyronie disease. Biol Reprod. 2005;73:1199–210.  https://doi.org/10.1095/biolreprod.105.041038.CrossRefPubMedGoogle Scholar
  85. 85.
    Halfvarson J, Brislawn CJ, Lamendella R, Vázquez-Baeza Y, Walters WA, Bramer LM, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2:17004.  https://doi.org/10.1038/nmicrobiol.2017.4.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381.  https://doi.org/10.3389/fcimb.2017.00381.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Richards EM, Pepine CJ, Raizada MK, Kim S. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19:36.  https://doi.org/10.1007/s11906-017-0734-1.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8:845.  https://doi.org/10.1038/s41467-017-00900-1.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.  https://doi.org/10.1038/nature09922.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L, et al. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814–24.  https://doi.org/10.1093/eurheartj/ehw582.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of trimethylamine N-Oxide oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10:1398.  https://doi.org/10.3390/nu10101398.CrossRefPubMedCentralGoogle Scholar
  92. 92.
    Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, et al. Trimethylamine N-Oxide oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5.  https://doi.org/10.1161/JAHA.115.002767.
  93. 93.
    Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.  https://doi.org/10.1056/NEJMoa1109400.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585–95.  https://doi.org/10.1016/j.cell.2015.11.055.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Gregory JC, Buffa JA, Org E, Wang Z, Levison BS, Zhu W, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647–60.  https://doi.org/10.1074/jbc.M114.618249.CrossRefPubMedGoogle Scholar
  96. 96.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013;341.  https://doi.org/10.1126/science.1241214.CrossRefGoogle Scholar
  97. 97.
    Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178.  https://doi.org/10.1126/scitranslmed.3005687.CrossRefGoogle Scholar
  98. 98.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.  https://doi.org/10.1038/4441022a.CrossRefPubMedGoogle Scholar
  99. 99.
    Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40.  https://doi.org/10.1161/HYPERTENSIONAHA.115.05315.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Nagpal R, Newman TM, Wang S, Jain S, Lovato JF, Yadav H. Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. J Diabetes Res. 2018;2018.  https://doi.org/10.1155/2018/3462092.CrossRefGoogle Scholar
  101. 101.
    Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6.  https://doi.org/10.1053/j.gastro.2012.06.031.CrossRefPubMedGoogle Scholar
  102. 102.
    Laakso M, Kuusisto J, Stančáková A, Kuulasmaa T, Pajukanta P, Lusis AJ, et al. The metabolic syndrome in men study: a resource for studies of metabolic and cardiovascular diseases. J Lipid Res. 2017;58:481–93.  https://doi.org/10.1194/jlr.O072629.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Warshakoon HJ, Burns MR, David SA. Structure-activity relationships of antimicrobial and lipoteichoic acid-sequestering properties in polyamine sulfonamides. Antimicrob Agents Chemother. 2009;53:57–62.  https://doi.org/10.1128/AAC.00812-08.CrossRefPubMedGoogle Scholar
  104. 104.
    Huang ZY, Stabler T, Pei FX, Kraus VB. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthritis Cartilage. 2016;24:1769–75.  https://doi.org/10.1016/j.joca.2016.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology. 2017;153:711–22.  https://doi.org/10.1053/j.gastro.2017.05.055.CrossRefPubMedGoogle Scholar
  106. 106.
    Morales P, Fujio S, Navarrete P, Ugalde JA, Magne F, Carrasco-Pozo C, et al. Impact of dietary lipids on colonic function and microbiota: an experimental approach involving orlistat-induced fat malabsorption in human volunteers. Clin Transl Gastroenterol. 2016;7.  https://doi.org/10.1038/ctg.2016.20.CrossRefGoogle Scholar
  107. 107.
    Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's Crohn’s disease. Gut. 2011;60:923–9.  https://doi.org/10.1136/gut.2010.232025.CrossRefPubMedGoogle Scholar
  108. 108.
    Lovat LB. Age related changes in gut physiology and nutritional status. Gut. 1996;38:306–9.  https://doi.org/10.1136/gut.38.3.306.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71:6438–42.  https://doi.org/10.1128/AEM.71.10.6438-6442.2005.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohamad M. Osman
    • 1
  • Farouk M. El-Khatib
    • 1
  • Natalie H. Roberts
    • 2
  • Linda M. Huynh
    • 1
  • Faysal A. Yafi
    • 1
    Email author
  1. 1.Department of UrologyUniversity of California, Irvine Medical CenterOrangeUSA
  2. 2.Independent Registered DietitianIrvineUSA

Personalised recommendations