The Effect of TNF Inhibition on Bone Density and Fracture Risk and of IL17 Inhibition on Radiographic Progression and Bone Density in Patients with Axial Spondyloarthritis: a Systematic Literature Review

  • Dalit AshanyEmail author
  • Emily M. Stein
  • Rie Goto
  • Susan M. Goodman
Spondyloarthritis (M Khan, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Spondyloarthritis


Purpose of Review

Osteoporosis in axial spondyloarthritis may be modified by therapy. The purpose of this systematic review is to describe (i) the effect of TNFi on BMD, (ii) the effect of secukinumab on BMD, and (iii) the effect of secukinumab on radiographic disease progression in axSpA.

Recent Findings

We searched PubMed, Embase, and Cochrane using the following retrieval languages: spondyloarthritis, ankylosing spondylitis, TNF, IL-17, x-rays, and osteoporosis. Twenty-nine studies were included; 27 re: TNFi and BMD, and 2 re: IL-17 blockers and x-ray progression. TNFi over 2–4 years increased BMD of the lumbar spine (3.2–14.9%) and hip (2.26–4.7%) without reducing vertebral fractures. Secukinumab reduced radiographic progression; none (73%) and minimal (79%) at 4 years. No data on IL-17 blockade and bone were found.


TNFi therapy improves bone density but not vertebral fracture rates. Secukinumab improves symptoms and may slow radiographic progression. Data is lacking regarding the effects of secukinumab on BMD and fractures. These are important questions which may impact the choice of therapy.


Axial spondyloarthritis Ankylosing spondylitis Osteoporosis Bone density TNF inhibitors IL-17 Secukinumab Radiographic progress Vertebral fracture 



Axial spondyloarthritis


Ankylosing spondylitis


Tumor necrosis factor (TNF) inhibitor


Randomized control trial


Preferred reporting items for systematic review and meta-analysis


Modified Stoke Ankylosing Spondylitis Spinal Score


American College of Rheumatology


Lumbar spine


Total hip


Femoral neck


Vertebral fractures


Occiput to wall


Bath Ankylosing Spondylitis Functional Index


Vertebral edges



The authors thank Haley Tornberg—research assistant.

Authors’ Contributions

DA, EMS, and SMG contributed to the conception and design of the review and assessed all papers, data extraction, and quality assessment. DA, EMG, RG, and SMG performed the literature search. DA drafted the paper; EMS and SMG revised the article for important intellectual content. All authors gave final approval of the version to be published.

Compliance with Ethical Standards

Conflict of Interest

Dr. Goodman reports grants from Novartis, personal fees from Novartis, personal fees from Pfizer, personal fees from UCB, grants from Horizon, outside the submitted work.

Dr. Ashany reports grants from Novartis, outside the submitted work.

Emily M. Stein and Rie Goto declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Calin A. Osteoporosis and ankylosing spondylitis. Br J Rheumatol. 1991;30(4):318–9.PubMedGoogle Scholar
  2. 2.
    Reid DM, Nicoll JJ, Kennedy NS, Smith MA, Tothill P, Nuki G. Bone mass in ankylosing spondylitis. J Rheumatol. 1986;13(5 SRC - BaiduScholar):932–5.PubMedGoogle Scholar
  3. 3.
    Will R, Palmer R, Bhalla AK, Ring F, Calin A. Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet (London, England). 1989;2:1483–5 SRC - BaiduScholar:8678–8679.CrossRefGoogle Scholar
  4. 4.
    El Maghraoui A, Borderie D, Cherruau B, Edouard R, Dougados M, Roux C. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J Rheumatol. 1999;26(10):2205–9.PubMedGoogle Scholar
  5. 5.
    Arends S, Spoorenberg A, Houtman PM, Leijsma MK, Bos R, Kallenberg CG, et al. The effect of three years of TNFalpha blocking therapy on markers of bone turnover and their predictive value for treatment discontinuation in patients with ankylosing spondylitis: a prospective longitudinal observational cohort study. Arthritis Res Ther. 2012;14(2):R98.Google Scholar
  6. 6.
    Briot K, Gossec L, Kolta S, Dougados M, Roux C. Prospective assessment of body weight, body composition, and bone density changes in patients with spondyloarthropathy receiving anti-tumor necrosis factor-alpha treatment. J Rheumatol. 2008;35(5):855–61.PubMedGoogle Scholar
  7. 7.
    Durnez A, Paternotte S, Fechtenbaum J, Landewe RB, Dougados M, Roux C, et al. Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy: 6-year followup study. J Rheumatol. 2013;40(10):1712–8.Google Scholar
  8. 8.
    Haroon N, Inman RD, Learch TJ, Weisman MH, Lee M, Rahbar MH, et al. The impact of tumor necrosis factor alpha inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 2013;65(10):2645–54.Google Scholar
  9. 9.
    Maas F, Arends S, Brouwer E, Essers I, van der Veer E, Efde M, et al. Reduction in spinal radiographic progression in ankylosing spondylitis patients receiving prolonged treatment with tumor necrosis factor inhibitors. Arthritis Care Res. 2017;69(7):1011–9.Google Scholar
  10. 10.
    Molnar C, Scherer A, Baraliakos X, de Hooge M, Micheroli R, Exer P, et al. TNF blockers inhibit spinal radiographic progression in ankylosing spondylitis by reducing disease activity: results from the Swiss clinical quality management cohort. Ann Rheum Dis. 2018;77(1):63–9.Google Scholar
  11. 11.
    Paine A, Ritchlin CT. Targeting the interleukin-23/17 axis in axial spondyloarthritis. Curr Opin Rheumatol. 2016;28(4):359–67.CrossRefGoogle Scholar
  12. 12.
    Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43(6):1040–51.CrossRefGoogle Scholar
  13. 13.
    Wellcome Trust Case Control C, Australo-Anglo-American spondylitis C, Burton PR, Clayton DG, Cardon LR, Craddock N, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39(11):1329–37.Google Scholar
  14. 14.
    Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18(7):1069–76.Google Scholar
  15. 15.
    Tseng HW, Pitt ME, Glant TT, McRae AF, Kenna TJ, Brown MA, Pettit AR, Thomas GP: Inflammation-driven bone formation in a mouse model of ankylosing spondylitis: sequential not parallel processes. Arthritis Res Ther 2016, 18:0.Google Scholar
  16. 16.
    • Mansoori MN, Shukla P, Singh D. Combination of PTH (1–34) with anti-IL17 prevents bone loss by Inhibiting IL-17/ N-cadherin mediated disruption of PTHR1/LRP-6 interaction. Bone. 2017;105:226–36 This study investigates the mechanism of action by which IL-17 promotes bone loss and provides data demonstrating that the bone loss occurs through up-regulation of N-cadherin and inhibition of wnt signaling. This provides a rationale for the hypothesis that blockade of IL-17 may be beneficial in preventing osteoporosis. CrossRefGoogle Scholar
  17. 17.
    Tyagi AM, Mansoori MN, Srivastava K, Khan MP, Kureel J, Dixit M, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-alpha antibodies. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(9):1981–92.Google Scholar
  18. 18.
    Molnar I, Bohaty I, Somogyine-Vari E. IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis. Osteoporosis Int. 2014;25(2 SRC - BaiduScholar):783–6.CrossRefGoogle Scholar
  19. 19.
    Azizieh F, Raghupathy R, Shehab D, Al-Jarallah K, Gupta R: Cytokine profiles in osteoporosis suggest a proresorptive bias. Menopause (New York, NY) 2017, 24(9):1057–1064.Google Scholar
  20. 20.
    •• Braun J, Baraliakos X, Deodhar A, Baeten D, Sieper J, Emery P, et al. Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomized phase III MEASURE 1 study. Ann Rheum Dis. 2017;76(6):1070–7 This study describes the results of the Phase 3 secukinumab study in AS demonstrating both improvement in AS signs and symptoms through 2 years of therapy as well as low mean progression of spinal radiographic progression. Google Scholar
  21. 21.
    Braun J, Baraliakos X, Deodhar AA, Poddubnyy D, Emery P, Delicha EM, Talloczy Z, Porter B: Secukinumab demonstrates low radiographic progression and sustained efficacy through 4 years in patients with active ankylosing spondylitis. Arhtritis Rheumatol 2017, 69(suppl 10).Google Scholar
  22. 22.
    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9 w264.CrossRefGoogle Scholar
  23. 23.
    van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 1984;27(4):361–8.CrossRefGoogle Scholar
  24. 24.
    Rudwaleit M, van der Heijde D, Landewe R, Akkoc N, Brandt J, Chou CT, et al. The assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann Rheum Dis. 2011;70(1):25–31.Google Scholar
  25. 25.
    Haroon NN, Sriganthan J, Al Ghanim N, Inman RD, Cheung AM. Effect of TNF-alpha inhibitor treatment on bone mineral density in patients with ankylosing spondylitis: a systematic review and meta-analysis. Semin Arthritis Rheum. 2014;44(2):155–61.CrossRefGoogle Scholar
  26. 26.
    Li H, Li Q, Chen X, Ji C, Gu J. Anti-tumor necrosis factor therapy increased spine and femoral neck bone mineral density of patients with active ankylosing spondylitis with low bone mineral density. J Rheumatol. 2015;42(8):1413–7.CrossRefGoogle Scholar
  27. 27.
    Venceviciene L, Butrimiene I, Vencevicius R, Sadauskiene E, Kasiulevicius V, Sapoka V. Factors associated with bone mineral density loss in patients with spondyloarthropathies: a 4-year follow-up study. Medicina (Kaunas, Lithuania). 2015;51(5):272–9.CrossRefGoogle Scholar
  28. 28.
    Briot K, Etcheto A, Miceli-Richard C, Dougados M, Roux C. Bone loss in patients with early inflammatory back pain suggestive of spondyloarthritis: results from the prospective DESIR cohort. Rheumatology (Oxford, England). 2016;55(2):335–42.CrossRefGoogle Scholar
  29. 29.
    • van der Weijden MA, van Denderen JC, Lems WF, Nurmohamed MT, Dijkmans BA, van der Horst-Bruinsma IE. Etanercept increases bone mineral density in ankylosing spondylitis, but does not prevent vertebral fractures: results of a prospective observational cohort study. J Rheumatol. 2016;43(4):758–64 This study highlights the dichotomy of increased bone density at the hip and spine with the anti-TNF agent Etanercept in AS patients but also reports increased incidence of vertebral fracture in this group of patients. CrossRefGoogle Scholar
  30. 30.
    Maas F, Spoorenberg A, Brouwer E, Schilder AM, Chaudhry RN, Wink F, et al. Radiographic vertebral fractures develop in patients with ankylosing spondylitis during 4 years of TNF-alpha blocking therapy. Clin Exp Rheumatol. 2016;34(2):191–9.Google Scholar
  31. 31.
    Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64(4):401–6.Google Scholar
  32. 32.
    Dischereit G, Tarner IH, Muller-Ladner U, Lange U. Infliximab improves bone metabolism and bone mineral density in rheumatoid arthritis and ankylosing spondylitis: a prospective 2-year study. Clin Rheumatol. 2013;32(3):377–81.CrossRefGoogle Scholar
  33. 33.
    Beek K, van der Weijden M, Lems W, van Denderen W, Nurmohamed M, Van der Horst-Buinsma I. Long-term effects of TNF-alpha inhibitors on bone mineral density and the incidence of vertebral fractures in patients with ankylosing spondylitis. Arthritis Rheum. 2017;69(suppl 10).Google Scholar
  34. 34.
    Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, van der Heijde D, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2013;382(9906):1705–13.Google Scholar
  35. 35.
    Baraliakos X, Borah B, Braun J, Baeten D, Laurent D, Sieper J, et al. Long-term effects of secukinumab on MRI findings in relation to clinical efficacy in subjects with active ankylosing spondylitis: an observational study. Ann Rheum Dis. 2016;75(2):408–12.Google Scholar
  36. 36.
    Braun J, Buehring, B., Baraliakos, X., Gensler, LS., Porter, B., Shete, A., Quebe-Fehling, E., Haemmerle S.: Bone mineral density and serum biomarkers of bone turnover in ankylosing spondylitis patients treated with Secukinumab: 2-year data from the pivotal phase 3 study. Arthritis Rheum 2018, 70(S10).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dalit Ashany
    • 1
    Email author
  • Emily M. Stein
    • 1
  • Rie Goto
    • 1
  • Susan M. Goodman
    • 1
  1. 1.Department of Rheumatology, Hospital for Special Surgery Hospital for Special SurgeryWeill- Cornell Medical SchoolNew YorkUSA

Personalised recommendations