Advertisement

Platelets in Systemic Sclerosis: the Missing Link Connecting Vasculopathy, Autoimmunity, and Fibrosis?

  • Konstantinos Ntelis
  • Dimitrios Bogdanos
  • Theodoros Dimitroulas
  • Lazaros Sakkas
  • Dimitrios DaoussisEmail author
Scleroderma (J Varga, Section Editor)
  • 155 Downloads
Part of the following topical collections:
  1. Topical Collection on Scleroderma

Abstract

Purpose of Review

Platelets are no longer recognized solely as cell fragments regulating hemostasis. They have pleiotropic functions and they are linked directly or indirectly with the three cornerstones of systemic sclerosis (SSc): vasculopathy, autoimmunity, and fibrosis. In this review, we summarize the current knowledge on the potential role of platelets in the pathogenesis of SSc.

Recent Findings

Experimental evidence suggests that vasculopathy, a universal and early finding in SSc, may activate platelets which subsequently release several profibrotic mediators such as serotonin and transforming growth factor β (TGFβ). Platelets may also cross-react with the endothelium leading to the release of molecules, such as thymic stromal lymphopoietin (TSLP), that may trigger fibrosis or sustain vascular damage. Finally, activated platelets express CD40L and provide costimulatory help to B cells, something that may facilitate the breach in immune tolerance.

Summary

Preclinical studies point to the direction that platelets are actively involved in SSc pathogenesis. Targeting platelets may be an attractive therapeutic approach in SSc.

Keywords

Systemic sclerosis Scleroderma Platelets Serotonin TGFβ PDGF VEGF Microparticles 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Reems J-A, Pineault N, Sun S. In vitro megakaryocyte production and platelet biogenesis: state of the art. Transfus Med Rev. 2010;24:33–43.CrossRefGoogle Scholar
  2. 2.
    Łukasik ZM, Makowski M, Makowska JS. From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int. 2018;38:959–74.CrossRefGoogle Scholar
  3. 3.
    Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359:938–49.CrossRefGoogle Scholar
  4. 4.
    Gasparyan A, Ayvazyan L, Pretorius E, Kitas G. Platelets in rheumatic diseases: friend or foe? Curr Pharm Des. 2014;20:552–66.CrossRefGoogle Scholar
  5. 5.
    Boilard E, Nigrovic PA (2017) Platelets. In: Kelley Firestein’s Textb. Rheumatol. Elsevier, p 264–273.e3.Google Scholar
  6. 6.
    Dees C, Akhmetshina A, Zerr P, Reich N, Palumbo K, Horn A, et al. Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med. 2011;208(5):961–72.Google Scholar
  7. 7.
    Ntelis K, Solomou EE, Sakkas L, Liossis SN, Daoussis D. The role of platelets in autoimmunity, vasculopathy, and fibrosis: implications for systemic sclerosis. Semin Arthritis Rheum. 2017;47:409–17.CrossRefGoogle Scholar
  8. 8.
    Klavdianou K, Liossis S-N, Papachristou DJ, Theocharis G, Sirinian C, Kottorou A, et al. Decreased serotonin levels and serotonin-mediated osteoblastic inhibitory signaling in patients with ankylosing spondylitis. J Bone Miner Res. 2016;31:630–9.CrossRefGoogle Scholar
  9. 9.
    Rumbaut RE, Thiagarajan P. Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. San Rafael (CA): Morgan & Claypool Life Sciences; 2010. Chapter 2, General Characteristics of Platelets.Google Scholar
  10. 10.
    Morrell CN, Aggrey AA, Chapman LM, Modjeski KL. Emerging roles for platelets as immune and inflammatory cells. Blood. 2014;123:2759–67.CrossRefGoogle Scholar
  11. 11.
    Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl):S13–33.PubMedGoogle Scholar
  12. 12.
    Scherlinger M, Guillotin V, Truchetet ME, Contin-Bordes C, Sisirak V, Duffau P, et al. Systemic lupus erythematosus and systemic sclerosis: all roads lead to platelets. Autoimmun Rev. 2018;17:625–35.CrossRefGoogle Scholar
  13. 13.
    Khanna D, Jahreis A, Furst DE. Tocilizumab treatment of patients with systemic sclerosis: clinical data. J Scleroderma Relat Disord. 2017;2:S29–35.CrossRefGoogle Scholar
  14. 14.
    Sullivan KM, Goldmuntz EA, Keyes-Elstein L, McSweeney PA, Pinckney A, Welch B, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med. 2018;378:35–47.CrossRefGoogle Scholar
  15. 15.
    Daoussis D, Liossis S-NC, Tsamandas AC, Kalogeropoulou C, Paliogianni F, Sirinian C, et al. Effect of long-term treatment with rituximab on pulmonary function and skin fibrosis in patients with diffuse systemic sclerosis. Clin Exp Rheumatol. 2012;30:S17–22.PubMedGoogle Scholar
  16. 16.
    Daoussis D, Liossis S-NC, Tsamandas AC, Kalogeropoulou C, Kazantzi A, Sirinian C, et al. Experience with rituximab in scleroderma: results from a 1-year, proof-of-principle study. Rheumatology (Oxford). 2010;49:271–80.CrossRefGoogle Scholar
  17. 17.
    Daoussis D, Melissaropoulos K, Sakellaropoulos G, Antonopoulos I, Markatseli TE, Simopoulou T, et al. A multicenter, open-label, comparative study of B-cell depletion therapy with rituximab for systemic sclerosis-associated interstitial lung disease. Semin Arthritis Rheum. 2017;46:625–31.CrossRefGoogle Scholar
  18. 18.
    Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD. Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int. 2011;31:1409–17.CrossRefGoogle Scholar
  19. 19.
    Rouzaud-Laborde C, Delmas C, Pizzinat N, Tortosa F, Garcia C, Mialet-Perez J, et al. Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis. Am J Hematol. 2015;90:15–9.CrossRefGoogle Scholar
  20. 20.
    Zhang J, Cui R, Feng Y, Gao W, Bi J, Li Z, et al. Serotonin exhibits accelerated bleomycin-induced pulmonary fibrosis through TPH1 knockout mouse experiments. Mediat Inflamm. 2018;2018:7967868.Google Scholar
  21. 21.
    Chaturvedi S, Misra DP, Prasad N, Rastogi K, Singh H, Rai MK, Agarwal V (2018) 5-HT 2 and 5-HT 2B antagonists attenuate pro-fibrotic phenotype in human adult dermal fibroblasts by blocking TGF-β1 induced non-canonical signaling pathways including STAT3. Int J Rheum Dis 21:2128–2138.Google Scholar
  22. 22.
    Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.PubMedGoogle Scholar
  23. 23.
    Varga J, Pasche B. Transforming growth factor β as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5:200–6.CrossRefGoogle Scholar
  24. 24.
    Lafyatis R. Transforming growth factor β—at the centre of systemic sclerosis. Nat Rev Rheumatol. 2014;10:706–19.CrossRefGoogle Scholar
  25. 25.
    Blakytny R, Ludlow A, Martin GEM, Ireland G, Lund LR, Ferguson MWJ, et al. Latent TGF-beta1 activation by platelets. J Cell Physiol. 2004;199:67–76.CrossRefGoogle Scholar
  26. 26.
    Hoying JB, Yin M, Diebold R, Ormsby I, Becker A, Doetschman T. Transforming growth factor beta1 enhances platelet aggregation through a non-transcriptional effect on the fibrinogen receptor. J Biol Chem. 1999;274:31008–13.CrossRefGoogle Scholar
  27. 27.
    Atamas SP, White B. Cytokine regulation of pulmonary fibrosis in scleroderma. Cytokine Growth Factor Rev. 2003;14:537–50.CrossRefGoogle Scholar
  28. 28.
    Iwayama T, Olson LE. Involvement of PDGF in fibrosis and scleroderma: recent insights from animal models and potential therapeutic opportunities. Curr Rheumatol Rep. 2013;15:304.CrossRefGoogle Scholar
  29. 29.
    Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology (Oxford). 2008;47(Suppl 5):v2–4.CrossRefGoogle Scholar
  30. 30.
    Ito T, Wang Y-H, Duramad O, Hori T, Delespesse GJ, Watanabe N, et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med. 2005;202:1213–23.CrossRefGoogle Scholar
  31. 31.
    Datta A, Alexander R, Sulikowski MG, Nicholson AG, Maher TM, Scotton CJ, et al. Evidence for a functional thymic stromal lymphopoietin signaling axis in fibrotic lung disease. J Immunol. 2013;191:4867–79.CrossRefGoogle Scholar
  32. 32.
    •• Truchetet M-E, Demoures B, Eduardo Guimaraes J, et al. Platelets induce thymic stromal lymphopoietin production by endothelial cells: contribution to fibrosis in human systemic sclerosis. Arthritis Rheumatol. 2016;68:2784–94 This article supports the hypothesis that thymic stromal lymphopoietin produced by endothelial cells under the influence of activated platelets promotes fibrosis. CrossRefGoogle Scholar
  33. 33.
    Yoshizaki A, Komura K, Iwata Y, Ogawa F, Hara T, Muroi E, et al. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J Clin Immunol. 2009;29:180–9.CrossRefGoogle Scholar
  34. 34.
    Maugeri N, Rovere-Querini P, Baldini M, Baldissera E, Sabbadini MG, Bianchi ME, et al. Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: a candidate for microvessel injury in systemic sclerosis. Antioxid Redox Signal. 2014;20:1060–74.CrossRefGoogle Scholar
  35. 35.
    •• Maugeri N, Capobianco A, Rovere-Querini P, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018.  https://doi.org/10.1126/scitranslmed.aao3089 This study provides evidence that platelet derived microparticles promote neutrophils autofagy and NETs formation, which possibly contribute to tissue damage in SSc.
  36. 36.
    Hirigoyen D, Burgos PI, Mezzano V, Duran J, Barrientos M, Saez CG, et al. Inhibition of angiogenesis by platelets in systemic sclerosis patients. Arthritis Res Ther. 2015;17:332.CrossRefGoogle Scholar
  37. 37.
    Taguchi H, Kataoka M, Yanagisawa R, Kawakami T, Tamura Y, Fukuda K, et al. Platelet level as a new prognostic factor for idiopathic pulmonary arterial hypertension in the era of combination therapy. Circ J. 2012;76:1494–500.CrossRefGoogle Scholar
  38. 38.
    Zheng Y-G, Yang T, Xiong C-M, He J-G, Liu Z-H, Gu Q, et al. Platelet distribution width and mean platelet volume in idiopathic pulmonary arterial hypertension. Hear Lung Circ. 2015;24:566–72.CrossRefGoogle Scholar
  39. 39.
    • Kazimierczyk R, Kamiński K. The role of platelets in the development and progression of pulmonary arterial hypertension. Adv Med Sci. 2018;63:312–6 A comprehensive review about the role of platelets in the pathogenesis of PAH. CrossRefGoogle Scholar
  40. 40.
    Kazimierczyk R, Błaszczak P, Kowal K, Jasiewicz M, Knapp M, Szpakowicz A, et al. The significance of diminished sTWEAK and P-selectin content in platelets of patients with pulmonary arterial hypertension. Cytokine. 2018;107:52–8.CrossRefGoogle Scholar
  41. 41.
    Winkles JA. The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov. 2008;7:411–25.CrossRefGoogle Scholar
  42. 42.
    McCarthy EM, Moreno-Martinez D, Wilkinson FL, McHugh NJ, Bruce IN, Pauling JD, et al. Microparticle subpopulations are potential markers of disease progression and vascular dysfunction across a spectrum of connective tissue disease. BBA Clin. 2017;7:16–22.CrossRefGoogle Scholar
  43. 43.
    • MacLean M, Mandy R. The serotonin hypothesis in pulmonary hypertension revisited: targets for novel therapies (2017 Grover Conference Series). Pulm Circ. 2018;8:204589401875912 A comprehensive review about the role of serotonin in the development of PAH. CrossRefGoogle Scholar
  44. 44.
    Vrigkou E, Tsangaris I, Bonovas S, et al. Platelet and coagulation disorders in newly diagnosed patients with pulmonary arterial hypertension. Platelets. 2018;00:1–6.CrossRefGoogle Scholar
  45. 45.
    Shemirani AH, Nagy B, Takáts AT, Zsóri KS, András C, Kappelmayer J, et al. Increased mean platelet volume in primary Raynaud’s phenomenon. Platelets. 2012;23:312–6.CrossRefGoogle Scholar
  46. 46.
    Bauer EM, Chanthaphavong RS, Sodhi CP, Hackam DJ, Billiar TR, Bauer PM. Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension. Circ Res. 2014;114:1596–600.CrossRefGoogle Scholar
  47. 47.
    Vajen T, Benedikter BJ, Heinzmann ACA, Vasina EM, Henskens Y, Parsons M, et al. Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype. J Extracell Vesicles. 2017.  https://doi.org/10.1080/20013078.2017.1322454.
  48. 48.
    Shah SJ, Gomberg-Maitland M, Thenappan T, Rich S. Selective serotonin reuptake inhibitors and the incidence and outcome of pulmonary hypertension. Chest. 2009;136:694–700.CrossRefGoogle Scholar
  49. 49.
    Kowal-Bielecka O, Fransen J, Avouac J, Becker M, Kulak A, Allanore Y, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis. 2017;76:1327–39.CrossRefGoogle Scholar
  50. 50.
    Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122:337–51.CrossRefGoogle Scholar
  51. 51.
    Kim SJ, Davis RP, Jenne CN. Platelets as modulators of inflammation. Semin Thromb Hemost. 2018;44:91–101.CrossRefGoogle Scholar
  52. 52.
    • Bergmann CB, Hefele F, Unger M, Huber-Wagner S, Biberthaler P, van Griensven M, et al. Platelets modulate the immune response following trauma by interaction with CD4+ T regulatory cells in a mouse model. Immunol Res. 2016;64:508–17 This study provides evidence about the crosstalk of platelets with Tregs following trauma, supporting the potential immunomodulatory role of platelets under conditions of tissue damage. CrossRefGoogle Scholar
  53. 53.
    Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix ICA, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood. 2010;116:4317–27.CrossRefGoogle Scholar
  54. 54.
    • Dinkla S, van Cranenbroek B, van der Heijden WA, He X, Wallbrecher R, Dumitriu IE, et al. Platelet microparticles inhibit IL-17 production by regulatory T cells through P-selectin. Blood. 2016;127:1976–86 Another report about the crosstalk of platelets with Tregs, supporting the immunomudalotory properties of platelets. CrossRefGoogle Scholar
  55. 55.
    Prescott RJ, Freemont AJ, Jones CJP, Hoyland J, Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992;166:255–63.CrossRefGoogle Scholar
  56. 56.
    Kalogerou A, Gelou E, Mountantonakis S, Settas L, Zafiriou E, Sakkas L. Early T cell activation in the skin from patients with systemic sclerosis. Ann Rheum Dis. 2005;64:1233–5.CrossRefGoogle Scholar
  57. 57.
    Gudbrandsdottir S, Hasselbalch HC, Nielsen CH. Activated platelets enhance IL-10 secretion and reduce TNF-a secretion by monocytes. J Immunol. 2013;191:4059–67.CrossRefGoogle Scholar
  58. 58.
    Cognasse F, Hamzeh-Cognasse H, Lafarge S, Chavarin P, Cogné M, Richard Y, et al. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol. 2007;35:1376–87.CrossRefGoogle Scholar
  59. 59.
    Elzey BD, Tian J, Jensen RJ, Swanson AK, Lees JR, Lentz SR, et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity. 2003;19:9–19.CrossRefGoogle Scholar
  60. 60.
    Sprague DL, Elzey BD, Crist SA, Waldschmidt TJ, Jensen RJ, Ratliff TL. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008;111:5028–36.CrossRefGoogle Scholar
  61. 61.
    Solanilla A, Pasquet J-M, Viallard J-F, et al. Platelet-associated CD154 in immune thrombocytopenic purpura. Blood. 2005;105:215–8.CrossRefGoogle Scholar
  62. 62.
    Beckett VL, Conn DL, Fuster V, Osmundson PJ, Strong CG, Chao EY, et al. Trial of platelet-inhibiting drug in scleroderma. Double-blind study with dipyridamole and aspirin. Arthritis Rheum. 1984;27:1137–43.CrossRefGoogle Scholar
  63. 63.
    Pauling JD, Shipley JA, Hart D, Milne GL, McHugh NJ (2013) Evaluating the effects of combination aspirin and dipyridamole (asasantin retard) on platelet function, oxidative stress and peripheral vascular function in primary Raynaud’s phenomenon and systemic sclerosis In: Proceedings from 2013 ACR/ARHP Annual Meeting; October 25-30, 2013; San Diego, CA. Abstract 704.Google Scholar
  64. 64.
    Bruni C, Praino E, Guiducci S, Bellando-Randone S, Furst DE, Matucci-Cerinic M. Hydroxychloroquine and joint involvement in systemic sclerosis: preliminary beneficial results from a retrospective case-control series of an EUSTAR center. Jt Bone Spine. 2017;84:747–8.CrossRefGoogle Scholar
  65. 65.
    Prowse C, Pepper D, Dawes J. Prevention of the platelet alpha-granule release reaction by membrane-active drugs. Thromb Res. 1982;25:219–27.CrossRefGoogle Scholar
  66. 66.
    Belizna C. Hydroxychloroquine as an anti-thrombotic in antiphospholipid syndrome. Autoimmun Rev. 2015;14:358–62.CrossRefGoogle Scholar
  67. 67.
    Reiss C, Mindukshev I, Bischoff V, Subramanian H, Kehrer L, Friebe A, et al. The sGC stimulator riociguat inhibits platelet function in washed platelets but not in whole blood. Br J Pharmacol. 2015;172:5199–210.CrossRefGoogle Scholar
  68. 68.
    Makhoul S, Walter E, Pagel O, Walter U, Sickmann A, Gambaryan S, et al. Effects of the NO/soluble guanylate cyclase/cGMP system on the functions of human platelets. Nitric Oxide Biol Chem. 2018;76:71–80.CrossRefGoogle Scholar
  69. 69.
    •• Distler O, Maurer B, Vettori S, Blumhardt S, Frey D, Distler A, et al. OP0034 the serotonin receptor 2 inhibitor terguride has beneficial effects on skin fibrosis: results from a phase 2 proof of concept study. Ann Rheum Dis. 2016;75:66.1–66 This abstract describes the positive results of a preliminary trial of terguride as a therapeutic aproach in patients with SSc. CrossRefGoogle Scholar
  70. 70.
    Ntelis K, Gkizas V, Filippopoulou A, Davlouros P, Alexopoulos D, Andonopoulos AP, et al. Clopidogrel treatment may associate with worsening of endothelial function and development of new digital ulcers in patients with systemic sclerosis: results from an open label, proof of concept study. BMC Musculoskelet Disord. 2016;17:213.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Konstantinos Ntelis
    • 1
  • Dimitrios Bogdanos
    • 2
  • Theodoros Dimitroulas
    • 3
  • Lazaros Sakkas
    • 2
  • Dimitrios Daoussis
    • 4
    Email author
  1. 1.Department of RheumatologyAgios Andreas HospitalPatrasGreece
  2. 2.Department of Rheumatology, Faculty of Medicine, School of Health SciencesUniversity of ThessalyLarissaGreece
  3. 3.4th Department of Internal Medicine Hippokration Hospital, Medical SchoolAristotle University of ThessalonikiThessalonikiGreece
  4. 4.Department of Internal Medicine, Division of RheumatologyPatras University HospitalPatrasGreece

Personalised recommendations