Advertisement

Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift

  • Leon Lenchik
  • Ashley A. Weaver
  • Robert J. Ward
  • John M. Boone
  • Robert D. Boutin
Imaging (D Mintz, Section Editor)
  • 123 Downloads
Part of the following topical collections:
  1. Topical Collection on Imaging

Abstract

Purpose of Review

Osteoporosis is disproportionately common in rheumatology patients. For the past three decades, the diagnosis of osteoporosis has benefited from well-established practice guidelines that emphasized the use of dual x-ray absorptiometry (DXA). Despite these guidelines and the wide availability of DXA, approximately two thirds of eligible patients do not undergo testing. One strategy to improve osteoporosis testing is to employ computed tomography (CT) examinations obtained as part of routine patient care to “opportunistically” screen for osteoporosis, without additional cost or radiation exposure to patients. This review examines the role of opportunistic CT in the evaluation of osteoporosis.

Recent Findings

Recent evidence suggests that opportunistic measurement of bone attenuation (radiodensity) using CT has sensitivity comparable to DXA. More importantly, such an approach has been shown to predict osteoporotic fractures.

Summary

The paradigm shift of using CTs obtained for other reasons to opportunistically screen for osteoporosis promises to substantially improve patient care.

Keywords

Computed tomography Fracture Opportunistic screening Osteoporosis 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Curtis EM, Moon RJ, Harvey NC, Cooper C. The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone. 2017;104:29–38.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Lenchik L, Register TC, Hsu FC, Xu J, Smith SC, Carr JJ, et al. Bone mineral density of the radius predicts all-cause mortality in patients with type 2 diabetes: diabetes heart study. J Clin Densitom. 2018;21(3):347–54.PubMedGoogle Scholar
  3. 3.
    Lenchik L, Register TC, Russell GB, Xu J, Smith SC, Bowden DW, et al. Volumetric bone mineral density of the spine predicts mortality in African-American men with type 2 diabetes. Osteoporos Int. 2018;29(9):2049–57.PubMedGoogle Scholar
  4. 4.
    Buckens CF, van der Graaf Y, Verkooijen HM, Mali WP, Isgum I, Mol CP, et al. Osteoporosis markers on low-dose lung cancer screening chest computed tomography scans predict all-cause mortality. Eur Radiol. 2015 Jan;25(1):132–9.PubMedGoogle Scholar
  5. 5.
    Jin S, Hsieh E, Peng L, Yu C, Wang Y, Wu C, et al. Incidence of fractures among patients with rheumatoid arthritis: a systematic review and meta-analysis. Osteoporos Int. 2018 Jun;29(6):1263–75.PubMedGoogle Scholar
  6. 6.
    Balasubramanian A, Wade SW, Adler RA, Saag K, Pannacciulli N, Curtis JR. Glucocorticoid exposure and fracture risk in a cohort of US patients with selected conditions. J Bone Miner Res. 2018.  https://doi.org/10.1002/jbmr.3523.
  7. 7.
    Lenchik L, Rochmis P, Sartoris DJ. Optimized interpretation and reporting of dual x-ray absorptiometry (DXA) scans. AJR Am J Roentgenol. 1998;171(6):1509–19.PubMedGoogle Scholar
  8. 8.
    Wright NC, Saag KG, Dawson-Hughes B, Khosla S, Siris ES. The impact of the new National Bone Health Alliance (NBHA) diagnostic criteria on the prevalence of osteoporosis in the United States: supplementary presentation. Osteoporos Int. 2017;28(11):3283–4.PubMedGoogle Scholar
  9. 9.
    Buckley L, Guyatt G, Fink HA, Cannon M, Grossman J, Hansen KE, et al. 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Rheum. 2017;69(8):1521–37.Google Scholar
  10. 10.
    Expert Panel on Musculoskeletal Imaging, Ward RJ, Roberts CC, Bencardino JT, Arnold E, Baccei SJ, et al. ACR Appropriateness Criteria® osteoporosis and bone mineral density. J Am Coll Radiol. 2017;14(5S):S189–202.Google Scholar
  11. 11.
    Lenchik L, Leib ES, Hamdy RC, Binkley NC, Miller PD, Watts NB, et al. Executive summary International Society for Clinical Densitometry position development conference Denver, Colorado July 20-22, 2001. J Clin Densitom. 2002;5:S1–3.PubMedGoogle Scholar
  12. 12.
    Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry position development conference on bone densitometry. J Clin Densitom. 2013;16(4):455–66.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kanis JA, Harvey NC, Cooper C, Johansson H, Odén A, Mc Closkey EV, et al. Arch Osteoporos. 2016;11(1):25.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis - 2016. Endocr Pract. 2016;22(Suppl 4):1–42.PubMedGoogle Scholar
  15. 15.
    Compston J, Cooper A, Cooper C, Gittoes N, Gregson C, Harvey N, et al. National Osteoporosis Guideline Group (NOGG). UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos. 2017;12(1):43.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Messina C, Bignotti B, Bazzocchi A, Phan CM, Tagliafico A, Guglielmi G, et al. A critical appraisal of the quality of adult dual-energy X-ray absorptiometry guidelines in osteoporosis using the AGREE II tool: an EuroAIM initiative. Insights Imaging. 2017;8(3):311–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Hayes BL, Curtis JR, Laster A, Saag K, Tanner SB, Liu C, et al. Osteoporosis care in the United States after declines in reimbursements for DXA. J Clin Densitom. 2010;13:352–60.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kim SC, Kim DH, Mogun H, Eddings W, Polinski JM, Franklin JM, et al. Impact of the U.S. Food and Drug Administration’s safety-related announcements on the use of bisphosphonates after hip fracture. J Bone Miner Res. 2016;31(8):1536–40.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Albaum JM, Youn S, Levesque LE, Gershon AS, Cadarette SM. Osteoporosis management among chronic glucocorticoid users: a systematic review. J Popul Ther Clin Pharmacol. 2014;21(3):e486–504.PubMedGoogle Scholar
  20. 20.
    Seaman AT, Steffen M, Doo T, Healy HS, Solimeo SL. Metasynthesis of patient attitudes toward bone densitometry. J Gen Intern Med. 2018;27:1–9.Google Scholar
  21. 21.
    Ozen G, Kamen DL, Mikuls TR, England BR, Wolfe F, Michaud K. Trends and determinants of osteoporosis treatment and screening in patients with rheumatoid arthritis compared to osteoarthritis. Arthritis Care Res. 2018;70(5):713–23.Google Scholar
  22. 22.
    Dawson A, Dennison E. Measuring the musculoskeletal aging phenotype. Maturitas. 2016;93:13–7.PubMedPubMedCentralGoogle Scholar
  23. 23.
    IMV Medical Information Division. 2017 CT market outlook report. IMV website https://imvinfocom/product/2017-ct-market-outlook-report Published November 2017. [Accessed August 24, 2018].
  24. 24.
    Genant HK, Ettinger B, Cann CE, Reiser U, Gordan GS, Kolb FO. Osteoporosis: assessment by quantitative computed tomography. Orthop Clin North Am. 1985;16(3):557–68.PubMedGoogle Scholar
  25. 25.
    Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densitom. 2014;17(4):438–48.PubMedGoogle Scholar
  26. 26.
    Lang T, Keyak J, Heitz M, Augat P, Lu Y, Mathur A, et al. Volumetric quantitative computed tomography of the proximal femur: precision and relation to bone strength. Bone. 1997;21(1):101–8.PubMedGoogle Scholar
  27. 27.
    Lenchik L, Shi R, Register TC, Beck SR, Langefeld CD, Carr JJ. Measurement of trabecular bone mineral density in the thoracic spine using cardiac gated quantitative computed tomography. J Comput Assist Tomogr. 2004;28(1):134–9.PubMedGoogle Scholar
  28. 28.
    Lenchik L, Register TC, Hsu F-C, Nicklas BJ, Freedman BI, Langefeld CD, et al. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone. 2003;33(4):646–51.Google Scholar
  29. 29.
    Lenchik L, Hsu FC, Register TC, Lohman KK, Freedman BI, Langefeld CD, et al. Heritability of spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Calcif Tissue Int. 2004;75(4):305–12.PubMedGoogle Scholar
  30. 30.
    Freedman BI, Bowden DW, Ziegler JT, Langefeld CD, Lehtinen AB, Rudock ME, et al. Bone morphogenetic protein 7 (BMP7) gene polymorphisms are associated with inverse relationships between vascular calcification and BMD: the Diabetes Heart Study. J Bone Miner Res. 2009;24(10):1719–27.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Wagenknecht LE, Divers J, Register TC, Russell GB, Bowden DW, Xu J, et al. Bone mineral density and progression of subclinical atherosclerosis in African Americans with type 2 diabetes. J Clin Endocrinol Metab. 2016;101(11):4135–41.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Chan GC, Divers J, Russell GB, Langefeld CD, Wagenknecht LE, Xu J, et al. Adipose tissue depot volume relationships with spinal trabecular bone mineral density in African Americans with diabetes. PLoS One. 2018;13(1):e0191674.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Beavers KM, Walkup MP, Weaver AA, Lenchik L, Kritchevsky SB, Nicklas BJ, et al. Effect of exercise modality during weight loss on bone health in older adults with obesity and cardiovascular disease or metabolic syndrome: a randomized controlled trial. J Bone Miner Res. 2018.  https://doi.org/10.1002/jbmr.3555.
  34. 34.
    Lenchik L, Sartoris DJ. Current concepts in osteoporosis. AJR Am J Roentgenol. 1997;168(4):905–11.PubMedGoogle Scholar
  35. 35.
    Jackson RD, Mysiw WJ. Insights into the epidemiology of postmenopausal osteoporosis: the Women’s Health Initiative. Semin Reprod Med. 2014;32(6):454–62.PubMedGoogle Scholar
  36. 36.
    Crandall CJ, Newberry SJ, Diamant A, Lim YW, Gellad WF, Booth MJ, et al. Comparative effectiveness of pharmacologic treatments to prevent fractures: an updated systematic review. Ann Intern Med. 2014;161(10):711–23.PubMedGoogle Scholar
  37. 37.
    Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86.PubMedGoogle Scholar
  38. 38.
    Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, et al. Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions-part I. J Clin Densitom. 2015;18(3):338–58.PubMedGoogle Scholar
  39. 39.
    • Johannesdottir F, Allaire B, Bouxsein ML. Fracture prediction by computed tomography and finite element analysis: current and future perspectives. Curr Osteoporos Rep. 2018;16(4):411–22 Comprehensive review of using CT-based methods to predict hip and spine fractures. PubMedGoogle Scholar
  40. 40.
    Weaver AA, Beavers KM, Hightower RC, Lynch SK, Miller AN, Stitzel JD. Lumbar bone mineral density phantomless computed tomography measurements and correlation with age and fracture incidence. Traffic Inj Prev. 2015;16(Suppl 2 sup2):S153–60.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Saffarzadeh M, Hightower RC, Talton JW, Miller AN, Stitzel JD, Weaver AA. Multicenter analysis of CIREN occupant lumbar bone mineral density and correlation with age and fracture incidence. Traffic Inj Prev. 2016;17(Suppl 1):34–41.PubMedGoogle Scholar
  42. 42.
    Lee DC, Hoffmann PF, Kopperdahl DL, Keaveny TM. Phantomless calibration of CT scans for measurement of BMD and bone strength-inter-operator reanalysis precision. Bone. 2017;103:325–33.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Schwaiger BJ, Kopperdahl DL, Nardo L, Facchetti L, Gersing AS, Neumann J, et al. Vertebral and femoral bone mineral density and bone strength in prostate cancer patients assessed in phantomless PET/CT examinations. Bone. 2017;101:62–9.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Opportunistic quantitative CT bone mineral density measurement at the proximal femur using routine contrast-enhanced scans: direct comparison with DXA in 355 adults. J Bone Miner Res. 2016;31(10):1835–40.PubMedGoogle Scholar
  45. 45.
    Ziemlewicz TJ, Maciejewski A, Binkley N, Brett AD, Brown JK, Pickhardt PJ. Direct comparison of unenhanced and contrast-enhanced CT for opportunistic proximal femur bone mineral density measurement: implications for osteoporosis screening. AJR Am J Roentgenol. 2016;206(4):694–8.PubMedGoogle Scholar
  46. 46.
    Brett AD, Brown JK. Quantitative computed tomography and opportunistic bone density screening by dual use of computed tomography scans. J Orthop Translat. 2015;3(4):178–84.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Habashy AH, Yan X, Brown JK, Xiong X, Kaste SC. Estimation of bone mineral density in children from diagnostic CT images: a comparison of methods with and without an internal calibration standard. Bone. 2011;48(5):1087–94.PubMedGoogle Scholar
  48. 48.
    Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N. Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med. 2013;158(8):588–95.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Emohare O, Cagan A, Morgan R, Davis R, Asis M, Switzer J, et al. The use of computed tomography attenuation to evaluate osteoporosis following acute fractures of the thoracic and lumbar vertebra. Geriatr Orthop Surg Rehabil. 2014;5(2):50–5.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ziemlewicz TJ, Binkley N, Pickhardt PJ. Opportunistic osteoporosis screening: addition of quantitative CT bone mineral density evaluation to CT colonography. J Am Coll Radiol. 2015;12(10):1036–41.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Buckens CF, Dijkhuis G, de Keizer B, Verhaar HJ, de Jong PA. Opportunistic screening for osteoporosis on routine computed tomography? An external validation study. Eur Radiol. 2015;25(7):2074–9.PubMedGoogle Scholar
  52. 52.
    Gerety EL, Hopper MA, Bearcroft PW. The reliability of measuring the density of the L1 vertebral body on CT imaging as a predictor of bone mineral density. Clin Radiol. 2017;72(2):177.e9–177.e15.Google Scholar
  53. 53.
    Alacreu E, Moratal D, Arana E. Opportunistic screening for osteoporosis by routine CT in southern Europe. Osteoporos Int. 2017;28(3):983–90.PubMedGoogle Scholar
  54. 54.
    Graffy PM, Lee SJ, Ziemlewicz TJ, Pickhardt PJ. Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening. AJR Am J Roentgenol. 2017;22:1–6.Google Scholar
  55. 55.
    Dillon C, Breeden W, Clements J, et al. ACR computed tomography quality control manual. American College of Radiology. 2017.Google Scholar
  56. 56.
    Therkildsen J, Thygesen J, Winther S, et al. Vertebral bone mineral density measured by quantitative computed tomography with and without a calibration phantom: a comparison between 2 different software solutions. J Clin Densitom. 2018;21:367–74.PubMedGoogle Scholar
  57. 57.
    Troy KL, Edwards WB. Practical considerations for obtaining high quality quantitative computed tomography data of the skeletal system. Bone. 2018;110:58–65.PubMedGoogle Scholar
  58. 58.
    Engelke K. Quantitative computed tomography-current status and new developments. J Clin Densitom. 2017;20(3):309–21.PubMedGoogle Scholar
  59. 59.
    Carballido-Gamio J, Harnish R, Saeed I, Streeper T, Sigurdsson S, Amin S, et al. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J Bone Miner Res. 2013;28(3):537–46.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Chalhoub D, Orwoll ES, Cawthon PM, Ensrud KE, Boudreau R, Greenspan S, et al. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone. 2016;92:100–6.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Mueller DK, Kutscherenko A, Bartel H, Vlassenbroek A, Ourednicek P, Erckenbrecht J. Phantom-less QCT BMD system as screening tool for osteoporosis without additional radiation. Eur J Radiol. 2011;79(3):375–81.PubMedGoogle Scholar
  62. 62.
    Donohue D, Decker S, Ford J, Foley R, Dunbar K, Kumm T, et al. Opportunistic CT screening for osteoporosis in patients with pelvic and acetabular trauma: technique and potential clinical impact. J Orthop Trauma. 2018;32(8):408–13.PubMedGoogle Scholar
  63. 63.
    Kim YW, Kim JH, Yoon SH, Lee JH, Lee CH, Shin CS, et al. Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment. Osteoporos Int. 2017;28(1):329–38.PubMedGoogle Scholar
  64. 64.
    Burke CJ, Didolkar MM, Barnhart HX, Vinson EN. The use of routine non density calibrated clinical computed tomography data as a potentially useful screening tool for identifying patients with osteoporosis. Clin Cases Miner Bone Metab. 2016;13(2):135–40.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Marinova M, Edon B, Wolter K, Katsimbari B, Schild HH, Strunk HM. Use of routine thoracic and abdominal computed tomography scans for assessing bone mineral density and detecting osteoporosis. Curr Med Res Opin. 2015;31(10):1871–81.PubMedGoogle Scholar
  66. 66.
    Pickhardt PJ, Bodeen G, Brett A, Brown JK, Binkley N. Comparison of femoral neck BMD evaluation obtained using lunar DXA and QCT with asynchronous calibration from CT colonography. J Clin Densitom. 2015;18(1):5–12.PubMedGoogle Scholar
  67. 67.
    Emohare O, Wiggin M, Hemmati P, Switzer J. Assessing bone mineral density following acute hip fractures: the role of computed tomography attenuation. Geriatr Orthop Surg Rehabil. 2015;6(1):16–21.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Pickhardt PJ, Lee LJ, del Rio AM, Lauder T, Bruce RJ, Summers RM, et al. Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res. 2011;26(9):2194–203.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Graffy PM, Lee SJ, Ziemlewicz TJ, Pickhardt PJ. Prevalence of vertebral compression fractures on routine CT scans according to L1 trabecular attenuation: determining relevant thresholds for opportunistic osteoporosis screening. AJR Am J Roentgenol. 2017;209(3):491–6.PubMedGoogle Scholar
  70. 70.
    Emohare O, Dittmer A, Morgan RA, Switzer JA, Polly DW Jr. Osteoporosis in acute fractures of the cervical spine: the role of opportunistic CT screening. J Neurosurg Spine. 2015;23(1):1–7.PubMedGoogle Scholar
  71. 71.
    de Jong WU, de Jong PA, Vliegenthart R, Isgum I, Lammers JW, Oudkerk M, et al. Association of chronic obstructive pulmonary disease and smoking status with bone density and vertebral fractures in male lung cancer screening participants. J Bone Miner Res. 2014;29(10):2224–9.PubMedGoogle Scholar
  72. 72.
    Fang J, Franconeri A, Boos J, Nimhuircheartaigh J, Zhang Z, Brook A, Brook OR. Opportunistic bone density measurement on abdomen and pelvis computed tomography to predict fracture risk in women aged 50 to 64 years without osteoporosis risk factors. J Comput Assist Tomogr. 2018;42(5):798–806.  https://doi.org/10.1097/RCT.0000000000000744.
  73. 73.
    Lee SJ, Anderson PA, Pickhardt PJ. Predicting future hip fractures on routine abdominal CT using opportunistic osteoporosis screening measures: a matched case-control study. AJR Am J Roentgenol. 2017;1:1–8.Google Scholar
  74. 74.
    Lee SJ, Graffy PM, Zea RD, Ziemlewicz TJ, Pickhardt PJ. Future osteoporotic fracture risk related to lumbar vertebral trabecular attenuation measured at routine body CT. J Bone Miner Res. 2018;33(5):860–7.PubMedGoogle Scholar
  75. 75.
    • Lee SJ, Pickhardt PJ. Opportunistic screening for osteoporosis using body CT scans obtained for other indications: the UW experience. Clinical Reviews in Bone and Mineral Metabolism. 2017;15(3):128–37 Provides practical approach for implementing opportunistic CT screening. Google Scholar
  76. 76.
    Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic use of CT imaging for osteoporosis screening and bone density assessment: a qualitative systematic review. J Bone Joint Surg Am. 2017;99(18):1580–90.PubMedGoogle Scholar
  77. 77.
    Budoff MJ, Malpeso JM, Zeb I, Gao YL, Li D, Choi TY, et al. Measurement of phantomless thoracic bone mineral density on coronary artery calcium CT scans acquired with various CT scanner models. Radiology. 2013;267(3):830–6.PubMedGoogle Scholar
  78. 78.
    • Adams AL, Fischer H, Kopperdahl DL, Lee DC, Black DM, Bouxsein ML, et al. Osteoporosis and hip fracture risk from routine computed tomography scans: the fracture, osteoporosis, and CT utilization study (FOCUS). J Bone Miner Res. 2018;33(7):1291–301 Largest study comparing clinical CT to DXA for identifying patients at risk for hip fracture. PubMedGoogle Scholar
  79. 79.
    Hoel RJ, Ledonio CG, Takahashi T, Polly DW Jr. Sacral bone mineral density (BMD) assessment using opportunistic CT scans. J Orthop Res. 2017 Jan;35(1):160–6.PubMedGoogle Scholar
  80. 80.
    Schreiber JJ, Gausden EB, Anderson PA, Carlson MG, Weiland AJ. Opportunistic osteoporosis screening - gleaning additional information from diagnostic wrist CT scans. J Bone Joint Surg Am. 2015;97(13):1095–100.PubMedGoogle Scholar
  81. 81.
    Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L. Influence of IV contrast administration on CT measures of muscle and bone attenuation: implications for sarcopenia and osteoporosis evaluation. AJR Am J Roentgenol. 2016;207(5):1046–54.PubMedGoogle Scholar
  82. 82.
    Garner HW, Paturzo MM, Gaudier G, Pickhardt PJ, Wessell DE. Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT. AJR Am J Roentgenol. 2017;208(1):165–70.PubMedGoogle Scholar
  83. 83.
    Nguyen ND, Eisman JA, Center JR, Nguyen TV. Risk factors for fracture in nonosteoporotic men and women. J Clin Endocrinol Metab. 2007;92(3):955–62.PubMedGoogle Scholar
  84. 84.
    Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM, et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29(3):542–50.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Hales CM, Fryar CD, Carroll MD, Freedman DS, Ogden CL. Trends in obesity and severe obesity prevalence in US youth and adults by sex and age, 2007-2008 to 2015-2016. JAMA. 2018;319(16):1723–5.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015–2016. US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics; 2017.Google Scholar
  87. 87.
    Kaplan SJ, Pham TN, Arbabi S, Gross JA, Damodarasamy M, Bentov I, et al. Association of radiologic indicators of frailty with 1-year mortality in older trauma patients: opportunistic screening for sarcopenia and osteopenia. JAMA Surg. 2017;152(2):e164604.PubMedGoogle Scholar
  88. 88.
    Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current concepts and imaging implications. AJR Am J Roentgenol. 2015;205(3):W255–66.PubMedGoogle Scholar
  89. 89.
    Boutin RD, Bamrungchart S, Bateni CP, Beavers DP, Beavers KM, Meehan JP, et al. CT of patients with hip fracture: muscle size and attenuation help predict mortality. AJR Am J Roentgenol. 2017;208(6):W208–15.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Murea M, Lenchik L, Register TC, Russell GB, Xu J, Smith SC, et al. Psoas and paraspinous muscle index as a predictor of mortality in African American men with type 2 diabetes mellitus. J Diabetes Complicat. 2018;32(6):558–64.PubMedGoogle Scholar
  91. 91.
    Foster B, Boutin RD, Lenchik L, Gedeon D, Liu Y, Nittur V, Badawi RD, Li CS, Canter RJ, Chaudhari AJ. Skeletal muscle metrics on clinical (18)F-FDG PET/CT predict health outcomes in patients with sarcoma. J Nat Sci. 2018;4(5).Google Scholar
  92. 92.
    Lenchik L, Lenoir KM, Tan J, Boutin RD, Callahan KE, Kritchevsky SB, Wells BJ. Opportunistic measurement of skeletal muscle size and muscle attenuation on computed tomography predicts one-year mortality in medicare patients. J Gerontol A Biol Sci Med Sci. 2018.  https://doi.org/10.1093/gerona/gly183.
  93. 93.
    Paintin J, Cooper C, Dennison E. Osteosarcopenia. Br J Hosp Med (Lond). 2018;79(5):253–8.Google Scholar
  94. 94.
    • Lenchik L, Boutin RD. Sarcopenia: beyond muscle atrophy and into the new frontiers of opportunistic imaging, precision medicine, and machine learning. Semin Musculoskelet Radiol. 2018;22(3):307–22 Provides a perspective on combining opportunistic screening for osteoporosis with screening for sarcopenia. PubMedGoogle Scholar
  95. 95.
    Schoell SL, Weaver AA, Beavers DP, Lenchik L, Marsh AP, Rejeski WJ, Stitzel JD, Beavers KM. Development of subject-specific proximal femur finite element models of older adults with obesity to evaluate the effects of weight loss on bone strength. J Osteoporos Phys Act. 2018;6(1).  https://doi.org/10.4172/2329-9509.1000213.
  96. 96.
    Schoell SL, Beavers KM, Beavers DP, Lenchik L, Rejeski WJ, Stitzel JD, Weaver AA. Prediction of lumbar vertebral body compressive strength of older obese adults using morphed subject-specific finite element models to evaluate the effects of weight loss. Aging Clin Exp Res. 2018.  https://doi.org/10.1007/s40520-018-1010-1.
  97. 97.
    Knowles NK, Reeves JM, Ferreira LM. Quantitative computed tomography (QCT) derived bone mineral density (BMD) in finite element studies: a review of the literature. J Exp Orthop. 2016;3(1):36.PubMedPubMedCentralGoogle Scholar
  98. 98.
    • Fidler JL, Murthy NS, Khosla S, Clarke BL, Bruining DH, Kopperdahl DL, et al. Comprehensive assessment of osteoporosis and bone fragility with CT Colonography. Radiology. 2016;278(1):172–80 Great example of finite element modeling based on clinically acquired CT scans. PubMedGoogle Scholar
  99. 99.
    Keyak J, Sigurdsson S, Karlsdottir GS, Oskarsdottir D, Sigmarsdottir A, et al. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone. 2013;57:18–29.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M. Subject-specific finite element models can accurately predict strain levels in long bones. J Biomech. 2007;40:2982–9.PubMedGoogle Scholar
  101. 101.
    Schileo E, Taddei F, Cristofolini L, Viceconti M. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J Biomech. 2008;41:356–67.PubMedGoogle Scholar
  102. 102.
    Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98(6):2294–300.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leon Lenchik
    • 1
  • Ashley A. Weaver
    • 1
  • Robert J. Ward
    • 2
  • John M. Boone
    • 3
  • Robert D. Boutin
    • 4
  1. 1.Wake Forest School of MedicineMedical Center BoulevardWinston-SalemUSA
  2. 2.Tufts University School of MedicineBostonUSA
  3. 3.University of California Davis Medical CenterSacramentoUSA
  4. 4.University of California Davis School of MedicineSacramentoUSA

Personalised recommendations