Advertisement

Current Rheumatology Reports

, 20:54 | Cite as

Current Concepts and Future Directions of Minimally Invasive Treatment for Knee Pain

  • Daryl T. Goldman
  • Rachel Piechowiak
  • Daniel Nissman
  • Sandeep Bagla
  • Ari Isaacson
Imaging (D Mintz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Imaging

Abstract

Purpose of Review

The purpose of this paper is to review the percutaneous interventions available for the treatment of osteoarthrosis of the knee that address pain and prolong the time to arthroplasty.

Recent Findings

Corticosteroid injection and viscosupplementation have been the most studied, but there is still no consensus about their value. Thermal nerve ablation, including both radiofrequency ablation and cryoneurolysis, is a promising new modality of therapy that may increase in clinical use given current data showing favorable outcomes. Of the future therapies that are currently under investigation, synovial embolization via the geniculate arteries represents an exciting new approach that may soon be available clinically.

Summary

There are various percutaneous interventions available for the treatment of osteoarthrosis of the knee that address pain and prolong the time to arthroplasty.

Keywords

Osteoarthritis Knee pain Geniculate artery embolization Radiofrequency nerve ablation Thermal ablation Cryotherapy Injectables Corticosteroids Viscosupplementation Platelet-rich plasma PRP Injection Injectable therapies 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Isaacson reports personal fees from Cook Medical, Terumo, and Embolx; grants and personal fees from BTG; and grants from Medtronic and Boston Scientific, outside the submitted work. Dr. Bagla reports grants, personal fees, consulting, and research from Boston Scientific and Medtronic, and personal fees and consulting from Terumo, outside the submitted work. Dr. Piechowiak reports grants from Boston Scientific during the conduct of the study. Drs. Goldman and Nissman Parry declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bhatia A, Peng P, Cohen SP. Radiofrequency procedures to relieve chronic knee pain: an evidence-based narrative review. Reg Anesth Pain Med. 2016;41(4):501–10.PubMedCrossRefGoogle Scholar
  2. 2.
    Lluch Girbes E, Nijs J, Torres-Cueco R, Lopez CC. Pain treatment for patients with osteoarthritis and central sensitization. Phys Ther. 2013;93(6):842–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Akeson WH, Garfin S, Amiel D, Woo SL. Para-articular connective tissue in osteoarthritis. Semin Arthritis Rheum. 1989;18(4 Suppl 2):41–50.PubMedCrossRefGoogle Scholar
  4. 4.
    Gronblad M, Liesi P, Korkala O, Karaharju E, Polak J. Innervation of human bone periosteum by peptidergic nerves. Anat Rec. 1984;209(3):297–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Smith MD, Triantafillou S, Parker A, Youssef PP, Coleman M. Synovial membrane inflammation and cytokine production in patients with early osteoarthritis. J Rheumatol. 1997;24(2):365–71.PubMedGoogle Scholar
  6. 6.
    Schianchi PM, Sluijter ME, Balogh SE. The treatment of joint pain with intra-articular pulsed radiofrequency. Anesth Pain Med. 2013;3(2):250–5.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33–42.PubMedCrossRefGoogle Scholar
  8. 8.
    Delbarre A, Amor B, Bardoulat I, Tetafort A, Pelletier-Fleury N. Do intra-articular hyaluronic acid injections delay total knee replacement in patients with osteoarthritis - a Cox model analysis. PLoS One. 2017;12(11):e0187227.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Turajane T, Chaveewanakorn U, Fongsarun W, Aojanepong J, Papadopoulos KI. Avoidance of total knee arthroplasty in early osteoarthritis of the knee with intra-articular implantation of autologous activated peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial with differential effects of growth factor addition. Stem Cells Int. 2017;2017:8925132.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wang SX, Abramson SB, Attur M, Karsdal MA, Preston RA, Lozada CJ, et al. Safety, tolerability, and pharmacodynamics of an anti-interleukin-1α/β dual variable domain immunoglobulin in patients with osteoarthritis of the knee: a randomized phase 1 study. Osteoarthr Cartil. 2017;25(12):1952–61.PubMedCrossRefGoogle Scholar
  11. 11.
    Dai WL, Zhou AG, Zhang H, Zhang J. Efficacy of platelet-rich plasma in the treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. Arthroscopy. 2017;33(3):659–670.e651.PubMedCrossRefGoogle Scholar
  12. 12.
    Richards MM, Maxwell JS, Weng L, Angelos MG, Golzarian J. Intra-articular treatment of knee osteoarthritis: from anti-inflammatories to products of regenerative medicine. Phys Sportsmed. 2016;44(2):101–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Meheux CJ, McCulloch PC, Lintner DM, Varner KE, Harris JD. Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review. Arthroscopy. 2016;32(3):495–505.PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell KA, Erickson BJ, Saltzman BM, et al. Is local viscosupplementation injection clinically superior to other therapies in the treatment of osteoarthritis of the knee: a systematic review of overlapping meta-analyses. Arthroscopy. 2015;31(10):2036–2045.e2014.PubMedCrossRefGoogle Scholar
  15. 15.
    Lai LP, Stitik TP, Foye PM, Georgy JS, Patibanda V, Chen B. Use of platelet-rich plasma in intra-articular knee injections for osteoarthritis: a systematic review. PM R. 2015;7(6):637–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Khoshbin A, Leroux T, Wasserstein D, Marks P, Theodoropoulos J, Ogilvie-Harris D, et al. The efficacy of platelet-rich plasma in the treatment of symptomatic knee osteoarthritis: a systematic review with quantitative synthesis. Arthroscopy. 2013;29(12):2037–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Adriani E, Moio M, Di Paola B, et al. Percutaneous fat transfer to treat knee osteoarthritis symptoms: preliminary results. Joints. 2017;5(2):89–92.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Rahimzadeh P, Imani F, Faiz SH, Alebouyeh MR, Azad-Ehyaei D, Bahari L, et al. Adding intra-articular growth hormone to platelet rich plasma under ultrasound guidance in knee osteoarthritis: a comparative double-blind clinical trial. Anesth Pain Med. 2016;6(6):e41719.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    MILLER JH, WHITE J, NORTON TH. The value of intra-articular injections in osteoarthritis of the knee. J Bone Joint Surg Br. 1958;40-B(4):636–43.PubMedCrossRefGoogle Scholar
  20. 20.
    Hepper CT, Halvorson JJ, Duncan ST, Gregory AJ, Dunn WR, Spindler KP. The efficacy and duration of intra-articular corticosteroid injection for knee osteoarthritis: a systematic review of level I studies. J Am Acad Orthop Surg. 2009;17(10):638–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Gaffney K, Ledingham J, Perry JD. Intra-articular triamcinolone hexacetonide in knee osteoarthritis: factors influencing the clinical response. Ann Rheum Dis. 1995;54(5):379–81.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Dieppe PA, Sathapatayavongs B, Jones HE, Bacon PA, Ring EF. Intra-articular steroids in osteoarthritis. Rheumatol Rehabil. 1980;19(4):212–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Friedman DM, Moore ME. The efficacy of intraarticular steroids in osteoarthritis: a double-blind study. J Rheumatol. 1980;7(6):850–6.PubMedGoogle Scholar
  24. 24.
    Jones A, Doherty M. Intra-articular corticosteroids are effective in osteoarthritis but there are no clinical predictors of response. Ann Rheum Dis. 1996;55(11):829–32.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ravaud P, Moulinier L, Giraudeau B, Ayral X, Guerin C, Noel E, et al. Effects of joint lavage and steroid injection in patients with osteoarthritis of the knee: results of a multicenter, randomized, controlled trial. Arthritis Rheum. 1999;42(3):475–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Arroll B, Goodyear-Smith F. Corticosteroid injections for osteoarthritis of the knee: meta-analysis. BMJ. 2004;328(7444):869.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hirsch G, Kitas G, Klocke R. Intra-articular corticosteroid injection in osteoarthritis of the knee and hip: factors predicting pain relief--a systematic review. Semin Arthritis Rheum. 2013;42(5):451–73.PubMedCrossRefGoogle Scholar
  28. 28.
    Felson DT. Intra-articular corticosteroids and knee osteoarthritis: interpreting different meta-analyses. JAMA. 2016;316(24):2607–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Raynauld JP, Buckland-Wright C, Ward R, Choquette D, Haraoui B, Martel-Pelletier J, et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2003;48(2):370–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar A, Dhir V, Sharma S, Sharma A, Singh S. Efficacy of methylprednisolone acetate versus triamcinolone acetonide intra-articular knee injection in patients with chronic inflammatory arthritis: a 24-week randomized controlled trial. Clin Ther. 2017;39(1):150–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Jüni P, Hari R, Rutjes AW, et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. 2015;10:CD005328.Google Scholar
  32. 32.
    Nguyen C, Rannou F. The safety of intra-articular injections for the treatment of knee osteoarthritis: a critical narrative review. Expert Opin Drug Saf. 2017;16(8):897–902.PubMedCrossRefGoogle Scholar
  33. 33.
    Balazs EA. Viscosupplementation for treatment of osteoarthritis: from initial discovery to current status and results. Surg Technol Int. 2004;12:278–89.PubMedGoogle Scholar
  34. 34.
    Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Ther. 2003;5(2):54–67.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bali JP, Cousse H, Neuzil E. Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin Arthritis Rheum. 2001;31(1):58–68.PubMedCrossRefGoogle Scholar
  36. 36.
    Evaniew N, Simunovic N, Karlsson J. Cochrane in CORR®: viscosupplementation for the treatment of osteoarthritis of the knee. Clin Orthop Relat Res. 2014;472(7):2028–34.PubMedCrossRefGoogle Scholar
  37. 37.
    Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;2:CD005321.Google Scholar
  38. 38.
    Altman RD, Bedi A, Karlsson J, Sancheti P, Schemitsch E. Product differences in intra-articular hyaluronic acids for osteoarthritis of the knee. Am J Sports Med. 2016;44(8):2158–65.PubMedCrossRefGoogle Scholar
  39. 39.
    Cheng OT, Souzdalnitski D, Vrooman B, Cheng J. Evidence-based knee injections for the management of arthritis. Pain Med. 2012;13(6):740–53.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Trojian TH, Concoff AL, Joy SM, Hatzenbuehler JR, Saulsberry WJ, Coleman CI. AMSSM scientific statement concerning viscosupplementation injections for knee osteoarthritis: importance for individual patient outcomes. Clin J Sport Med. 2016;26(1):1–11.PubMedCrossRefGoogle Scholar
  41. 41.
    Poddar SK, Widstrom L. Nonoperative options for management of articular cartilage disease. Clin Sports Med. 2017;36(3):447–56.PubMedCrossRefGoogle Scholar
  42. 42.
    Henrotin Y, Raman R, Richette P, Bard H, Jerosch J, Conrozier T, et al. Consensus statement on viscosupplementation with hyaluronic acid for the management of osteoarthritis. Semin Arthritis Rheum. 2015;45(2):140–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Rutjes AW, Jüni P, da Costa BR, Trelle S, Nüesch E, Reichenbach S. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann Intern Med. 2012;157(3):180–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Miller LE, Block JE. US-approved intra-articular hyaluronic acid injections are safe and effective in patients with knee osteoarthritis: systematic review and meta-analysis of randomized, saline-controlled trials. Clin Med Insights Arthritis Musculoskelet Disord. 2013;6:57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jevsevar DS. Treatment of osteoarthritis of the knee: evidence-based guideline, 2nd edition. J Am Acad Orthop Surg. 2013;21(9):571–6.PubMedGoogle Scholar
  46. 46.
    Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken). 2012;64(4):465–74.CrossRefGoogle Scholar
  47. 47.
    Peterson C, Hodler J. Adverse events from diagnostic and therapeutic joint injections: a literature review. Skelet Radiol. 2011;40(1):5–12.CrossRefGoogle Scholar
  48. 48.
    Hunter DJ. Viscosupplementation for osteoarthritis of the knee. N Engl J Med. 2015;372(11):1040–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Hammesfahr JF, Knopf AB, Stitik T. Safety of intra-articular hyaluronates for pain associated with osteoarthritis of the knee. Am J Orthop (Belle Mead NJ). 2003;32(6):277–83.Google Scholar
  50. 50.
    Kroesen S, Schmid W, Theiler R. Induction of an acute attack of calcium pyrophosphate dihydrate arthritis by intra-articular injection of hylan G-F 20 (Synvisc). Clin Rheumatol. 2000;19(2):147–9.PubMedCrossRefGoogle Scholar
  51. 51.
    • Shewale AR, Barnes CL, Fischbach LA, Ounpraseuth ST, Painter JT, Martin BC. Comparative effectiveness of intra-articular hyaluronic acid and corticosteroid injections on the time to surgical knee procedures. J Arthroplast. 2017;32(12):3591–3597.e3524. This study provides a thorough comparison of the effectiveness of intra-articular hyaluronic acid and corticosteroid injections on the treatment of pain secondary to OA and the time to surgery.CrossRefGoogle Scholar
  52. 52.
    Kabiri A, Esfandiari E, Esmaeili A, Hashemibeni B, Pourazar A, Mardani M. Platelet-rich plasma application in chondrogenesis. Adv Biomed Res. 2014;3:138.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kabiri A, Esfandiari E, Esmaeili A, Hashemibeni B, Pourazar A, Mardani M. Platelet-rich plasma application in chondrogenesis. Adv Biomed Res. 2014;3:138.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sundman EA, Cole BJ, Karas V, et al. The anti-inflammatory and matrix restorative mechanisms of platelet-rich plasma in osteoarthritis. Am J Sports Med. 2014;42(1):35–41.PubMedCrossRefGoogle Scholar
  55. 55.
    van Buul GM, Koevoet WL, Kops N, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. Am J Sports Med. 2011;39(11):2362–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Smith PA. Intra-articular autologous conditioned plasma injections provide safe and efficacious treatment for knee osteoarthritis: an FDA-sanctioned, randomized, double-blind, placebo-controlled clinical trial. Am J Sports Med. 2016;44(4):884–91.PubMedCrossRefGoogle Scholar
  57. 57.
    Huang PH, Wang CJ, Chou WY, Wang JW, Ko JY. Short-term clinical results of intra-articular PRP injections for early osteoarthritis of the knee. Int J Surg. 2017;42:117–22.PubMedCrossRefGoogle Scholar
  58. 58.
    • Joshi Jubert N, Rodríguez L, Reverté-Vinaixa MM, Navarro A. Platelet-rich plasma injections for advanced knee osteoarthritis: a prospective, randomized, double-blinded clinical trial. Orthop J Sports Med. 2017;5(2):2325967116689386. This prospective, randomized, double-blinded clinical trial provides a thorough comparrison of the efficacy of PRP, corticosteroid, and HA injections.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee--stem cells. J Indian Med Assoc. 2010;108(9):583–5.PubMedGoogle Scholar
  61. 61.
    Rodriguez-Merchan EC. Intra-articular injections of mesenchymal stem cells for knee osteoarthritis. Am J Orthopedics (Belle Mead, NJ). 2014;43(12):E282–91.Google Scholar
  62. 62.
    Pas HI, Winters M, Haisma HJ, Koenis MJ, Tol JL, Moen MH. Stem cell injections in knee osteoarthritis: a systematic review of the literature. Br J Sports Med. 2017;51(15):1125–33.PubMedCrossRefGoogle Scholar
  63. 63.
    Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29(4):748–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19(6):902–7.PubMedCrossRefGoogle Scholar
  65. 65.
    Koh YG, Kwon OR, Kim YS, Choi YJ. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy. 2014;30(11):1453–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Saw KY, Anz A, Siew-Yoke Jee C, et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.PubMedCrossRefGoogle Scholar
  67. 67.
    Vega A, Martin-Ferrero MA, Del Canto F, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99(8):1681–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Wei CC, Lin AB, Hung SC. Mesenchymal stem cells in regenerative medicine for musculoskeletal diseases: bench, bedside, and industry. Cell Transplant. 2014;23(4–5):505–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Khenioui H, Houvenagel E, Catanzariti JF, Guyot MA, Agnani O, Donze C. Usefulness of intra-articular botulinum toxin injections. A systematic review. Joint Bone Spine. 2016;83(2):149–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Boon AJ, Smith J, Dahm DL, et al. Efficacy of intra-articular botulinum toxin type A in painful knee osteoarthritis: a pilot study. PM R 2010;2(4):268–276.Google Scholar
  72. 72.
    Singh JA, Mahowald ML, Noorbaloochi S. Intraarticular botulinum toxin A for refractory painful total knee arthroplasty: a randomized controlled trial. J Rheumatol. 2010;37(11):2377–86.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fernandes JC, Martel-Pelletier J, Pelletier JP. The role of cytokines in osteoarthritis pathophysiology. Biorheology. 2002;39(1–2):237–46.PubMedGoogle Scholar
  74. 74.
    Wang J. Efficacy and safety of adalimumab by intra-articular injection for moderate to severe knee osteoarthritis: an open-label randomized controlled trial. J Int Med Res 2017:300060517723182.Google Scholar
  75. 75.
    Zarringam D, Bekkers JEJ, Saris DBF. Long-term effect of injection treatment for osteoarthritis in the knee by orthokin autologous conditioned serum. Cartilage 2017:1947603517743001.Google Scholar
  76. 76.
    Auw Yang KG, Raijmakers NJ, van Arkel ER, et al. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. Osteoarthr Cartil 2008;16(4):498–505.Google Scholar
  77. 77.
    Baltzer AW, Moser C, Jansen SA, Krauspe R. Autologous conditioned serum (orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr Cartil. 2009;17(2):152–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Chevalier X, Goupille P, Beaulieu AD, et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2009;61(3):344–52.PubMedCrossRefGoogle Scholar
  79. 79.
    Lopes de Jesus CC, Dos Santos FC, de Jesus LMOB, Monteiro I, Sant'Ana MSSC, Trevisani VFM. Comparison between intra-articular ozone and placebo in the treatment of knee osteoarthritis: a randomized, double-blinded, placebo-controlled study. PLoS One. 2017;12(7):e0179185.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Duymus TM, Mutlu S, Dernek B, Komur B, Aydogmus S, Kesiktas FN. Choice of intra-articular injection in treatment of knee osteoarthritis: platelet-rich plasma, hyaluronic acid or ozone options. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):485–92.PubMedCrossRefGoogle Scholar
  81. 81.
    Iannaccone F, Dixon S, Kaufman AA. Review of long-term pain relief after genicular nerve radiofrequency ablation in chronic knee osteoarthritis. Pain physician. 2017;20(3):E437–e444.PubMedGoogle Scholar
  82. 82.
    Hirasawa Y, Okajima S, Ohta M, Tokioka T. Nerve distribution to the human knee joint: anatomical and immunohistochemical study. Int Orthop. 2000;24(1):1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kim SY, Le PU, Kosharskyy B, Kaye AD, Shaparin N, Downie SA. Is Genicular nerve radiofrequency ablation safe? A literature review and anatomical study. Pain Physician. 2016;19(5):E697–705.PubMedGoogle Scholar
  84. 84.
    Orduña Valls JM, Vallejo R, López Pais P, et al. Anatomic and ultrasonographic evaluation of the knee sensory innervation: a cadaveric study to determine anatomic targets in the treatment of chronic knee pain. Reg Anesth Pain Med. 2017;42(1):90–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Franco CD, Buvanendran A, Petersohn JD, Menzies RD, Menzies LP. Innervation of the anterior capsule of the human knee: implications for radiofrequency ablation. Reg Anesth Pain Med. 2015;40(4):363–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Choi WJ, Hwang SJ, Song JG, et al. Radiofrequency treatment relieves chronic knee osteoarthritis pain: a double-blind randomized controlled trial. Pain. 2011;152(3):481–7.PubMedCrossRefGoogle Scholar
  87. 87.
    McCormick ZL, Korn M, Reddy R, et al. Cooled radiofrequency ablation of the genicular nerves for chronic pain due to knee osteoarthritis: six-month outcomes. Pain Med. 2017;18(9):1631–41.PubMedCrossRefGoogle Scholar
  88. 88.
    Gupta A, Huettner DP, Dukewich M. Comparative effectiveness review of cooled versus pulsed radiofrequency ablation for the treatment of knee osteoarthritis: a systematic review. Pain Physician. 2017;20(3):155–71.PubMedGoogle Scholar
  89. 89.
    Cahana A, Van Zundert J, Macrea L, van Kleef M, Sluijter M. Pulsed radiofrequency: current clinical and biological literature available. Pain Med. 2006;7(5):411–23.PubMedCrossRefGoogle Scholar
  90. 90.
    Cosman ER, Dolensky JR, Hoffman RA. Factors that affect radiofrequency heat lesion size. Pain Med. 2014;15(12):2020–36.PubMedCrossRefGoogle Scholar
  91. 91.
    Rojhani S, Qureshi Z, Chhatre A. Water-cooled radiofrequency provides pain relief, decreases disability, and improves quality of life in chronic knee osteoarthritis. Am J Phys Med Rehabil. 2017;96(1):e5–8.PubMedCrossRefGoogle Scholar
  92. 92.
    Davis T, Loudermilk E, DePalma M, et al. Prospective, multicenter, randomized, crossover clinical trial comparing the safety and effectiveness of cooled radiofrequency ablation with corticosteroid injection in the management of knee pain from osteoarthritis. Reg Anesth Pain Med. 2018;43(1):84–91.PubMedCrossRefGoogle Scholar
  93. 93.
    Lazaro LE, Cross MB, Lorich DG. Vascular anatomy of the patella: implications for total knee arthroplasty surgical approaches. Knee. 2014;21(3):655–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Bittman RW, Peters GL, Newsome JM, et al. Percutaneous image-guided cryoneurolysis. AJR Am J Roentgenol. 2018;210(2):454–65.PubMedCrossRefGoogle Scholar
  95. 95.
    Radnovich R, Scott D, Patel AT, et al. Cryoneurolysis to treat the pain and symptoms of knee osteoarthritis: a multicenter, randomized, double-blind, sham-controlled trial. Osteoarthr Cartil. 2017;25(8):1247–56.PubMedCrossRefGoogle Scholar
  96. 96.
    Hsu M, Stevenson FF. Wallerian degeneration and recovery of motor nerves after multiple focused cold therapies. Muscle Nerve. 2015;51(2):268–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Guillot X, Tordi N, Prati C, Verhoeven F, Pazart L, Wendling D. Cryotherapy decreases synovial Doppler activity and pain in knee arthritis: a randomized-controlled trial. Joint Bone Spine. 2017;84(4):477–83.PubMedCrossRefGoogle Scholar
  98. 98.
    Guillot X, Martin H, Seguin-Py S, et al. Local cryotherapy improves adjuvant-induced arthritis through down-regulation of IL-6/IL-17 pathway but independently of TNFα. PLoS One. 2017;12(7):e0178668.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    •• Okuno Y, Korchi AM, Shinjo T, Kato S, Kaneko T. Midterm clinical outcomes and MR imaging changes after transcatheter arterial embolization as a treatment for mild to moderate radiographic knee osteoarthritis resistant to conservative treatment. J Vasc Interv Radiol : JVIR. 2017;28(7):995–1002. This study serves as a thorough description of GAE and provides mid-term experience (up to 4 years) with GAE in patients with moderate to severe pain related to OA.PubMedCrossRefGoogle Scholar
  100. 100.
    Weidner ZD, Hamilton WG, Smirniotopoulos J, Bagla S. Recurrent hemarthrosis following knee arthroplasty treated with arterial embolization. J Arthroplast. 2015;30(11):2004–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Daryl T. Goldman
    • 1
  • Rachel Piechowiak
    • 2
  • Daniel Nissman
    • 3
  • Sandeep Bagla
    • 2
  • Ari Isaacson
    • 4
  1. 1.Icahn School of Medicine at Mount SinaiNew YorkUSA
  2. 2.Vascular & Interventional RadiologyVascular Institute of VirginiaPrince William CountyUSA
  3. 3.Department of RadiologyUniversity of North Carolina School of MedicineChapel HillUSA
  4. 4.Vascular and Interventional RadiologyUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations