Macrophages, Wound Healing, and Fibrosis: Recent Insights

Scleroderma (J Varga, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Scleroderma

Abstract

Purpose of Review

Macrophages are central players in the immune response following tissue injury. These cells perform many functions, and the changing tissue microenvironment during injury shapes macrophage phenotype down a variety of polarized pathways. This review summarizes the current knowledge on the roles of macrophages during different stages of tissue injury, repair, and—if repair is not achieved—fibrosis.

Recent Findings

Macrophages present early in inflammation are functionally distinct from those at later stages. The predominant macrophage phenotype must transition from pro-inflammatory to pro-reparative to facilitate wound healing and scar resolution. If macrophages fail to acquire a tissue-healing phenotype, dysregulated signals can be drivers of disease processes, such as sustained, exuberant inflammation—as occurs in arthropathies—and fibrosis.

Summary

Comprehensive understanding of the roles of specific macrophage populations at different stages of the repair process will support the development of immune-targeted therapies for diseases such as fibrosis.

Keywords

Macrophage Leukocyte Fibrosis Scarring Immunosuppression Wound repair 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014;41(5):694–707.CrossRefPubMedGoogle Scholar
  2. 2.
    Atala A, Irvine DJ, Moses M, Shaunak S. Wound healing versus regeneration: role of the tissue environment in regenerative medicine. MRS Bull. 2010;35(8):597–606.CrossRefGoogle Scholar
  3. 3.
    Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Haldar M, Murphy KM. Origin, development, and homeostasis of tissue-resident macrophages. Immunol Rev. 2014;262(1):25–35.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hesketh M, Sahin KB, West ZE, Murray RZ. Macrophage phenotypes regulate scar formation and chronic wound healing. Int J Mol Sci. 2017;18(7):E1545.Google Scholar
  6. 6.
    Lichtnekert J, Kawakami T, Parks WC, Duffield JS. Changes in macrophage phenotype as the immune response evolves. Curr Opin Pharmacol. 2013;13(4):555–64.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13(8):753–60.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37(6):1050–60.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity. 2013;39(3):599–610.CrossRefPubMedGoogle Scholar
  11. 11.
    Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013;39(5):925–38.CrossRefPubMedGoogle Scholar
  12. 12.
    Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B, et al. The proinflammatory CD14+CD16+DR++ monocytes are a major source of TNF. J Immunol. 2002;168(7):3536–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Lech M, Anders HJ. Macrophages and fibrosis: how resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 2013;1832(7):989–97.CrossRefPubMedGoogle Scholar
  14. 14.
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.CrossRefPubMedGoogle Scholar
  15. 15.
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gibbings SL, Goyal R, Desch AN, Leach SM, Prabagar M, Atif SM, et al. Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood. 2015;126(11):1357–66.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cai Y, Sugimoto C, Arainga M, Alvarez X, Didier ES, Kuroda MJ. In vivo characterization of alveolar and interstitial lung macrophages in rhesus macaques: implications for understanding lung disease in humans. J Immunol. 2014;192(6):2821–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Moore BB, Paine R 3rd, Christensen PJ, Moore TA, Sitterding S, Ngan R, et al. Protection from pulmonary fibrosis in the absence of CCR2 signaling. J Immunol. 2001;167(8):4368–77.CrossRefPubMedGoogle Scholar
  19. 19.
    •• Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017;214(8):2387–404. These studies suggested that whereas infiltating macrophages contribute to disease (fibrosis) progression, resident macrophages may be protective. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shen JZ, Morgan J, Tesch GH, Fuller PJ, Young MJ. CCL2-dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated cardiac fibrosis, inflammation, and blood pressure responses in male mice. Endocrinology. 2014;155(3):1057–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol. 2005;5(12):953–64.CrossRefPubMedGoogle Scholar
  22. 22.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Laskin DL, Weinberger B, Laskin JD. Functional heterogeneity in liver and lung macrophages. J Leukoc Biol. 2001;70(2):163–70.PubMedGoogle Scholar
  24. 24.
    Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23(4):344–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3(1):23–35.CrossRefPubMedGoogle Scholar
  26. 26.
    Benoit M, Desnues B, Mege JL. Macrophage polarization in bacterial infections. J Immunol. 2008;181(6):3733–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol. 2005;142(3):481–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol. 2005;175(1):342–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 2014;306(8):L709–25.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115(1):56–65.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    • Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118(4):653–67. A thorough, recent review on macrophage subtypes and roles in vascular disease. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair. J Clin Invest. 2008;118(11):3522–30.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010;184(7):3964–77.CrossRefPubMedGoogle Scholar
  36. 36.
    Goren I, Allmann N, Yogev N, Schurmann C, Linke A, Holdener M, et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol. 2009;175(1):132–47.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(46):E3186–95.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 2000;204(1):19–28.CrossRefPubMedGoogle Scholar
  39. 39.
    Duffield JS. The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond). 2003;104(1):27–38.CrossRefGoogle Scholar
  40. 40.
    Wynn TA, Barron L. Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis. 2010;30(3):245–57.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RH. Macrophages in skin injury and repair. Immunobiology. 2011;216(7):753–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol. 2014;14(3):181–94.CrossRefPubMedGoogle Scholar
  43. 43.
    Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Das A, Sinha M, Datta S, Abas M, Chaffee S, Sen CK, et al. Monocyte and macrophage plasticity in tissue repair and regeneration. Am J Pathol. 2015;185(10):2596–606.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Crane MJ, Daley JM, van Houtte O, Brancato SK, Henry WL Jr, Albina JE. The monocyte to macrophage transition in the murine sterile wound. PLoS One. 2014;9(1):e86660.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Atabai K, Jame S, Azhar N, Kuo A, Lam M, McKleroy W, et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest. 2009;119(12):3713–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Madsen DH, Leonard D, Masedunskas A, Moyer A, Jurgensen HJ, Peters DE, et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol. 2013;202(6):951–66.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Iredale JP, Bataller R. Identifying molecular factors that contribute to resolution of liver fibrosis. Gastroenterology. 2014;146(5):1160–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Vannella KM, Barron L, Borthwick LA, Kindrachuk KN, Narasimhan PB, Hart KM, et al. Incomplete deletion of IL-4Ralpha by LysM(Cre) reveals distinct subsets of M2 macrophages controlling inflammation and fibrosis in chronic schistosomiasis. PLoS Pathog. 2014;10(9):e1004372.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    • Rohani MG, McMahan RS, Razumova MV, Hertz AL, Cieslewicz M, Pun SH, et al. MMP-10 regulates collagenolytic activity of alternatively activated resident macrophages. J Invest Dermatol. 2015;135(10):2377–84. This paper demonstrated that M2-biased macrophages are responsible for scar resolution during repair of skin wounds. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Annu Rev Pathol. 2013;8:241–76.CrossRefPubMedGoogle Scholar
  52. 52.
    Prasse A, Pechkovsky DV, Toews GB, Jungraithmayr W, Kollert F, Goldmann T, et al. A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. 2006;173(7):781–92.CrossRefPubMedGoogle Scholar
  53. 53.
    Gibbons MA, MacKinnon AC, Ramachandran P, Dhaliwal K, Duffin R, Phythian-Adams AT, et al. Ly6Chi monocytes direct alternatively activated profibrotic macrophage regulation of lung fibrosis. Am J Respir Crit Care Med. 2011;184(5):569–81.CrossRefPubMedGoogle Scholar
  54. 54.
    Madsen DH, Ingvarsen S, Jurgensen HJ, Melander MC, Kjoller L, Moyer A, et al. The non-phagocytic route of collagen uptake: a distinct degradation pathway. J Biol Chem. 2011;286(30):26996–7010.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    • Klinkert K, Whelan D, Clover AJP, Leblond AL, Kumar AHS, Caplice NM. Selective M2 macrophage depletion leads to prolonged inflammation in surgical wounds. Eur Surg Res. 2017;58(3–4):109–20. Along with earlier studies using similar depletion approaches, this study provided additional evidence of the immunosuppressive function of M2-biased macrophages. CrossRefPubMedGoogle Scholar
  56. 56.
    Nair MG, Du Y, Perrigoue JG, Zaph C, Taylor JJ, Goldschmidt M, et al. Alternatively activated macrophage-derived RELM-{alpha} is a negative regulator of type 2 inflammation in the lung. J Exp Med. 2009;206(4):937–52.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 2009;5(4):e1000371.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Barron L, Smith AM, El Kasmi KC, Qualls JE, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in Th2-dominated lung inflammation. PLoS One. 2013;8(4):e61961.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huen SC, Moeckel GW, Cantley LG. Macrophage-specific deletion of transforming growth factor-beta1 does not prevent renal fibrosis after severe ischemia-reperfusion or obstructive injury. Am J Physiol Renal Physiol. 2013;305(4):F477–84.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 2016;273(1):357–70.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Filardy AA, Pires DR, Nunes MP, Takiya CM, Freire-de-Lima CG, Ribeiro-Gomes FL, et al. Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. J Immunol. 2010;185(4):2044–50.CrossRefPubMedGoogle Scholar
  62. 62.
    Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A. 2012;109(46):E3186–95.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dal-Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong CH, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212(4):447–56.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Dalli J, Serhan C. Macrophage proresolving mediators—the when and where. Microbiol Spectr. 2016;4(3).  https://doi.org/10.1128/microbiolspec.MCHD-0001-2014
  65. 65.
    Mitchell S, Thomas G, Harvey K, Cottell D, Reville K, Berlasconi G, et al. Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol. 2002;13(10):2497–507.CrossRefPubMedGoogle Scholar
  66. 66.
    Duffield JS, Hong S, Vaidya VS, Lu Y, Fredman G, Serhan CN, et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J Immunol. 2006;177(9):5902–11.CrossRefPubMedGoogle Scholar
  67. 67.
    De Nardo D, Labzin LI, Kono H, Seki R, Schmidt SV, Beyer M, et al. High-density lipoprotein mediates anti-inflammatory reprogramming of macrophages via the transcriptional regulator ATF3. Nat Immunol. 2014;15(2):152–60.CrossRefPubMedGoogle Scholar
  68. 68.
    Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349(6245):316–20.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Negash AA, Ramos HJ, Crochet N, Lau DT, Doehle B, Papic N, et al. IL-1beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog. 2013;9(4):e1003330.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Goren I, Muller E, Schiefelbein D, Christen U, Pfeilschifter J, Muhl H, et al. Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages. J Invest Dermatol. 2007;127(9):2259–67.CrossRefPubMedGoogle Scholar
  71. 71.
    Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron. 2014;83(5):1098–116.CrossRefPubMedGoogle Scholar
  72. 72.
    Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest. 2011;121(3):985–97.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, et al. Tumor necrosis factor-alpha (TNF-alpha) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen. 2012;20(1):38–49.CrossRefPubMedGoogle Scholar
  74. 74.
    Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol. 2007;82(6):1375–81.CrossRefPubMedGoogle Scholar
  75. 75.
    McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000;289(5482):1202–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, et al. Regulation of intestinal a-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodavsky I. Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1. Proc Natl Acad Sci U S A. 1996;93(14):7069–74.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol. 2003;200(4):448–64.CrossRefPubMedGoogle Scholar
  80. 80.
    Li Q, Park PW, Wilson CL, Parks WC. Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 2002;111(5):635–46.CrossRefPubMedGoogle Scholar
  81. 81.
    McGuire JK, Li Q, Parks WC. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol. 2003;162(6):1831–43.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Smigiel KS, Parks WC. Matrix metalloproteinases and leukocyte activation. Prog Mol Biol Transl Sci. 2017;147:167–95.CrossRefPubMedGoogle Scholar
  83. 83.
    Owen CA, Hu Z, Barrick B, Shapiro SD. Inducible expression of tissue inhibitor of metalloproteinases-resistant matrix metalloproteinase-9 on the cell surface of neutrophils. Am J Respir Cell Mol Biol. 2003;29(3 Pt 1):283–94.CrossRefPubMedGoogle Scholar
  84. 84.
    La Fleur M, Underwood JL, Rappolee DA, Werb Z. Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. J Exp Med. 1996;184(6):2311–26.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Vaisar T, Kassim SY, Gomez IG, Green PS, Hargarten SA, Gough PJ, et al. MMP-9 sheds the beta 2 integrin subunit (CD18) from macrophages. Mol Cell Proteomics. 2009;8:1044–60.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    McMahan RS, Birkland TP, Smigiel KS, Vandivort TC, Rohani MG, Manicone AM, et al. Stromelysin-2 (MMP10) moderates inflammation by controlling macrophage activation. J Immunol. 2016;197:899–909.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Vannella KM, Ramalingam TR, Borthwick LA, Barron L, Hart KM, Thompson RW, et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci Transl Med. 2016;8(337):337ra65.CrossRefPubMedGoogle Scholar
  88. 88.
    Borthwick LA, Barron L, Hart KM, Vannella KM, Thompson RW, Oland S, et al. Macrophages are critical to the maintenance of IL-13-dependent lung inflammation and fibrosis. Mucosal Immunol. 2016;9(1):38–55.CrossRefPubMedGoogle Scholar
  89. 89.
    Hanania NA, Noonan M, Corren J, Korenblat P, Zheng Y, Fischer SK, et al. Lebrikizumab in moderate-to-severe asthma: pooled data from two randomised placebo-controlled studies. Thorax. 2015;70(8):748–56.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Scalori A, Belloni P, Ackrill A, Kapugampola L, Doyle R, Kaminski J. Lebrikizumab idiopathic pulmonary fibrosis trial: a phase II randomized, double-blind, placebo controlled study to assess efficacy and safety (Riff). Respirology. 2014;19:145.CrossRefGoogle Scholar
  91. 91.
    Ramalingam TR, Gieseck RL, Acciani TH, MH K, Cheever AW, Mentink-Kane MM, et al. Enhanced protection from fibrosis and inflammation in the combined absence of IL-13 and IFN-gamma. J Pathol. 2016;239(3):344–54.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Boehler RM, Kuo R, Shin S, Goodman AG, Pilecki MA, Gower RM, et al. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype. Biotechnol Bioeng. 2014;111(6):1210–21.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lee S, Kivimae S, Dolor A, Szoka FC. Macrophage-based cell therapies: the long and winding road. J Control Release. 2016;240:527–40.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Suzuki T, Arumugam P, Sakagami T, Lachmann N, Chalk C, Sallese A, et al. Pulmonary macrophage transplantation therapy. Nature. 2014;514(7523):450–4.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Happle C, Lachmann N, Skuljec J, Wetzke M, Ackermann M, Brennig S, et al. Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Sci Transl Med. 2014;6(250):250ra113.CrossRefPubMedGoogle Scholar
  96. 96.
    SS H. Injection of embryonic stem cell-derived macrophages ameliorates fibrosis in a murine model of liver injury. Regen Med. 2017;2(14)  https://doi.org/10.1038/s41536-017-0017-0.
  97. 97.
    Henry TD, Traverse JH, Hammon BL, East CA, Bruckner B, Remmers AE, et al. Safety and efficacy of ixmyelocel-T: an expanded, autologous multi-cellular therapy, in dilated cardiomyopathy. Circ Res. 2014;115(8):730–7.CrossRefPubMedGoogle Scholar
  98. 98.
    Ledford KJ, Zeigler F, Bartel RL. Ixmyelocel-T, an expanded multicellular therapy, contains a unique population of M2-like macrophages. Stem Cell Res Ther. 2013;4(6):134.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Women’s Guild Lung Institute, Departments of Medicine and Biomedical SciencesCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations