Skip to main content

Advertisement

Log in

Current Knowledge on Procaspase-1 Variants with Reduced or Abrogated Enzymatic Activity in Autoinflammatory Disease

  • Pediatric Rheumatology (S Ozen, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Caspase-1 is a proinflammatory enzyme that is essential in many inflammatory conditions including infectious, autoimmune, and autoinflammatory disorders. The inflammation is mainly mediated by the generation of inflammasomes that activate caspase-1 and subsequently interleukin (IL)-1β and IL-18. In addition, homotypic CARD/CARD interaction of procaspase-1 with RIP2 and thereby activation of the NF-κB pathways may play some role in the inflammation. However, normally, this pathway seems to become downregulated rapidly by the cleavage and excretion of RIP2 by active (pro-)caspase-1. In patients with unexplained recurrent systemic inflammation, CASP1 variants were detected, which often destabilized the caspase-1 dimer interface. Obviously, the resulting decreased or abrogated enzymatic activity and IL-1β production did not prevent the febrile episodes. As an unexpected finding, the inactive procaspase-1 variants significantly enhanced proinflammatory signaling by increasing RIP2 mediated NF-κB activation in an in vitro cell transfection model. A likely reason is the failure of inactive procaspase-1 to cleave bound RIP2 and also to mediate its excretion out of the intracelluar space thereby keeping the RIP2-NF-κB pathway upregulated. Hence, proinflammatory effects of enzymatically inactive procaspase-1 variants may partially explain the inflammatory episodes of the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Masters SL, Lobito AA, Chae J, Kastner DL. Recent advances in the molecular pathogenesis of hereditary recurrent fevers. Curr Opin Allergy Clin Immunol. 2006;6:428–33.

    Article  CAS  PubMed  Google Scholar 

  2. Chitkara P, Stojanov S, Kastner DL. The hereditary autoinflammatory syndromes. Pediatr Infect Dis J. 2007;26:353–4.

    Article  PubMed  Google Scholar 

  3. Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol. 2009;27:621–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stojanov S, Kastner DL. Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol. 2005;17:586–99.

    Article  CAS  PubMed  Google Scholar 

  5. Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424. Excellent review on inflammasomes and their role in autoinflammation.

    Article  CAS  PubMed  Google Scholar 

  6. Touitou I, Sarkisian T, Medlej-Hashim M, Tunca M, Livneh A, Cattan D, et al. International study group for phenotype-genotype correlation in familial Mediterranean fever. Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum. 2000;56:1706–12.

    Article  Google Scholar 

  7. Kallinich T, Haffner D, Rudolph B, Schindler R, Canaan-Kühl S, Keitzer R, et al. “Periodic fever” without fever: two cases of non-febrile TRAPS with mutations in the TNFRSF1A gene presenting with episodes of inflammation or monosymptomatic amyloidosis. Ann Rheum Dis. 2006;65:958–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Federici S, Sormani MP, Ozen S, Lachmann HJ, Amaryan G, Woo P, et al. Evidence-based provisional clinical classification criteria for autoinflammatory periodic fevers. Ann Rheum Dis. 2015. doi:10.1136/annrheumdis-2014-206580.

    PubMed  Google Scholar 

  9. McDermott MF. A common pathway in periodic fever syndromes. Trends Immunol. 2004;25:457–60.

    Article  CAS  PubMed  Google Scholar 

  10. Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117:561–74. Breakthrough in understanding of the role of caspase-1 in autoinflammation.

    Article  CAS  PubMed  Google Scholar 

  11. Savic S, Dickie LJ, Battellino M, McDermott MF. Familial Mediterranean fever and related periodic fever syndromes/autoinflammatory diseases. Curr Opin Rheumatol. 2012;24:103–12.

    Article  CAS  PubMed  Google Scholar 

  12. Franchi L, Kanneganti TD, Dubyak GR, Núñez G. Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem. 2007;282:18810–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14:1583–9.

    Article  PubMed  Google Scholar 

  14. Kanneganti TD, Ozören N, Body-Malapel M, Amer A, Park JH, Franchi L, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440:233–6.

    Article  CAS  PubMed  Google Scholar 

  15. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.

    Article  CAS  PubMed  Google Scholar 

  16. Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP, et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity. 2006;24:317–27.

    Article  CAS  PubMed  Google Scholar 

  17. Lu A, Wu H. Structural mechanisms of inflammasome assembly. FEBS J. 2015;282(3):435–44.

    Article  CAS  PubMed  Google Scholar 

  18. Vanaja SK, Rathinam VA, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015. doi:10.1016/j.tcb.2014.12.009.

    PubMed  Google Scholar 

  19. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–22. Excellent review on canonical and noncanonocal inflammasome activation.

    Article  CAS  PubMed  Google Scholar 

  20. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26. Introduction of the inflammasomes as plattforms for caspase-1 activation and proIL-1 beta cleavage.

    Article  CAS  PubMed  Google Scholar 

  21. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem. 2006;281:36560–8.

    Article  CAS  PubMed  Google Scholar 

  22. Fantuzzi G, Dinarello CA. Interleukin-18 and interleukin-1 beta: two cytokine substrates for ICE (caspase-1). J Clin Immunol. 1999;19:1–11.

    Article  CAS  PubMed  Google Scholar 

  23. Dinarello CA. Interleukin-1beta. Crit Care Med. 2005;33(12 Suppl):S460–2.

    Article  PubMed  Google Scholar 

  24. Piccioli P, Rubartelli A. The secretion of IL-1β and options for release. Semin Immunol. 2013;25:425–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hawkins PN, Lachmann HJ, McDermott MF. Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med. 2003;348:2583–4.

    Article  PubMed  Google Scholar 

  26. Simon A, Bodar EJ, van der Hilst JC, van der Meer JW, Fiselier TJ, Cuppen MP, et al. Beneficial response to interleukin 1 receptor antagonist in traps. Am J Med. 2004;117:208–10.

    Article  CAS  PubMed  Google Scholar 

  27. Ter Haar NM, Frenkel J. Treatment of hereditary autoinflammatory diseases. Curr Opin Rheumatol. 2014;26(3):252–8.

    Article  PubMed  Google Scholar 

  28. Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44. Excellent overview on the current knowledge.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–25. First description of pyroptosis as a caspase-1 dependent cell death.

    Article  CAS  PubMed  Google Scholar 

  30. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2014. doi:10.1038/cdd.2014.216.

    PubMed  Google Scholar 

  32. Walker NP, Talanian RV, Brady KD, Dang LC, Bump NJ, Ferenz CR, et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell. 1994;78:343–52.

    Article  CAS  PubMed  Google Scholar 

  33. Wilson KP, Black JA, Thomson JA, Kim EE, Griffith JP, Navia MA, et al. Structure and mechanism of interleukin-1 beta converting enzyme. Nature. 1994;370:270–5.

    Article  CAS  PubMed  Google Scholar 

  34. Romanowski MJ, Scheer JM, O’Brien T, McDowell RS. Crystal structures of a ligand-free and malonate-bound human caspase-1: implications for the mechanism of substrate binding. Structure. 2004;12:1361–71.

    Article  CAS  PubMed  Google Scholar 

  35. Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P. Caspase-1 activates nuclear factor of the kappa-enhancer in B cells independently of its enzymatic activity. J Biol Chem. 2004;279:24785–93.

    Article  CAS  PubMed  Google Scholar 

  36. Sarkar A, Duncan M, Hart J, Hertlein E, Guttridge DC, Wewers MD. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. Immunology. 2006;176:4979–86.

    Article  CAS  Google Scholar 

  37. Thome M, Hofmann K, Burns K, Martinon F, Bodmer JL, Mattmann C, et al. Identification of CARDIAK, a RIP-like kinase that associates with caspase-1. Curr Biol. 1998;8:885–8.

    Article  CAS  PubMed  Google Scholar 

  38. Luksch H, Romanowski MJ, Chara O, Tüngler V, Caffarena ER, Heymann MC, et al. Naturally occurring genetic variants of human caspase-1 differ considerably in structure and the ability to activate interleukin-1β. Hum Mutat. 2013;34:122–31.

    Article  CAS  PubMed  Google Scholar 

  39. Heymann MC, Winkler S, Luksch H, Flecks S, Franke M, Ruß S, et al. Human procaspase-1 variants with decreased enzymatic activity are associated with febrile episodes and may contribute to inflammation via RIP2 and NF-κB signaling. J Immunol. 2014;192:4379–85.

    Article  CAS  PubMed  Google Scholar 

  40. Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20:1410–6.

    Article  CAS  PubMed  Google Scholar 

  41. Rieux-Laucat F, Casanova JL. Autoimmunity by haploinsufficiency. Science. 2014;345:1560–1.

    Article  CAS  PubMed  Google Scholar 

  42. Datta D, Scheer JM, Romanowski MJ, Wells JA. An allosteric circuit in caspase-1. J Mol Biol. 2008;381:1157–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Amor B, Yaliraki SN, Woscholski R, Barahona M. Uncovering allosteric pathways in caspase-1 using Markov transient analysis and multiscale community detection. Mol Biosyst. 2014;10:2247–58.

    Article  CAS  PubMed  Google Scholar 

  44. Ramage P, Cheneval D, Chvei M, Graff P, Hemmig R, Heng R, et al. Expression, refolding, and autocatalytic proteolytic processing of the interleukin-1 beta-converting enzyme precursor. J Biol Chem. 1995;270:9378–83.

    Article  CAS  PubMed  Google Scholar 

  45. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002;277:21119–22.

    Article  CAS  PubMed  Google Scholar 

  46. Guey B, Bodnar M, Manié SN, Tardivel A, Petrilli V. Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci U S A. 2014;111:17254–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun. 2014;5:3209.

    PubMed Central  PubMed  Google Scholar 

  48. Mao PL, Jiang Y, Wee BY, Porter AG. Activation of caspase-1 in the nucleus requires nuclear translocation of pro-caspase-1 mediated by its prodomain. J Biol Chem. 1998;273:23621–4.

    Article  CAS  PubMed  Google Scholar 

  49. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508(7497):469–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

S.W., J.R., S.H., and A.RW. were supported by the Deutsche Forschungsgemeinschaft (WI 4269/1-2, HO 4510/1-1 and 2, RO 847/11-1 and 2) and by the Federal Ministry of Education and Research (BMBF) in PID-NET TPA4 (01GM1111C).

The p.A68P/WT variant was detected by Raphaela Goldbach-Mansky (NIH) and left to the authors for functional analyses.

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Rösen-Wolff.

Additional information

This article is part of the Topical Collection on Pediatric Rheumatology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luksch, H., Winkler, S., Heymann, M.C. et al. Current Knowledge on Procaspase-1 Variants with Reduced or Abrogated Enzymatic Activity in Autoinflammatory Disease. Curr Rheumatol Rep 17, 45 (2015). https://doi.org/10.1007/s11926-015-0520-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-015-0520-5

Keywords

Navigation