Advertisement

Current Psychiatry Reports

, 21:94 | Cite as

Sex Differences in Neurocognitive Function in Adults with HIV: Patterns, Predictors, and Mechanisms

  • Leah H. RubinEmail author
  • Gretchen N. Neigh
  • Erin E. Sundermann
  • Yanxun Xu
  • Eileen P. Scully
  • Pauline M. Maki
Sex and Gender Issues in Behavioral Health (CN Epperson and L Hantsoo, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Sex and Gender Issues in Behavioral Health

Abstract

Purpose of Review

Sex differences in cognitive function are well documented yet few studies had adequate numbers of women and men living with HIV (WLWH; MLWH) to identify sex differences in neurocognitive impairment (NCI) and the factors contributing to NCI. Here, we review evidence that WLWH may be at greater risk for NCI.

Recent Findings

We conducted a systematic review of recent studies of NCI in WLWH versus MLWH. A power analysis showed that few HIV studies have sufficient power to address male/female differences in NCI but studies with adequate power find evidence of greater NCI in WLWH, particularly in the domains of memory, speed of information processing, and motor function.

Summary

Sex is an important determinant of NCI in HIV, and may relate to male/female differences in cognitive reserve, comorbidities (mental health and substance use disorders), and biological factors (e.g., inflammation, hormonal, genetic).

Keywords

Sex differences Cognition Neurocognition HIV 

Notes

Acknowledgments

Research reported in this publication was supported by the National Institute of Mental Health of the National Institutes of Health under Award Numbers R01MH113512 (Rubin) and P30MH075773 (Haughey, Rubin, Sacktor).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

11920_2019_1089_MOESM1_ESM.docx (13 kb)
ESM 1 (DOCX 13 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies. Nature. 2014;509(7500):282–3.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci. 2006;7(6):477–84.PubMedGoogle Scholar
  3. 3.
    Fox-Tierney RA, Ickovics JR, Cerreta CL, Ethier KA. Potential sex differences remain understudied: a case study of the inclusion of women in HIV/AIDS-related neuropsychological research. Rev Gen Psychol. 1999;3(1):44–54.Google Scholar
  4. 4.
    Durvasula RS, Miller EN, Myers HF, Wyatt GE. Predictors of neuropsychological performance in HIV positive women. J Clin Exp Neuropsychol. 2001;23(2):149–63.PubMedGoogle Scholar
  5. 5.
    Wojna V, Skolasky RL, Hechavarria R, Mayo R, Selnes O, McArthur JC, et al. Prevalence of human immunodeficiency virus-associated cognitive impairment in a group of Hispanic women at risk for neurological impairment. J Neuro-Oncol. 2006;12(5):356–64.Google Scholar
  6. 6.
    Cohen RA, Boland R, Paul R, Tashima KT, Schoenbaum EE, Celentano DD, et al. Neurocognitive performance enhanced by highly active antiretroviral therapy in HIV-infected women. Aids. 2001;15(3):341–5.PubMedGoogle Scholar
  7. 7.
    Mason KI, Campbell A, Hawkins P, Madhere S, Johnson K, Takushi-Chinen R. Neuropsychological functioning in HIV-positive African-American women with a history of drug use. J Natl Med Assoc. 1998;90(11):665–74.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Stern RA, Arruda JE, Somerville JA, Cohen RA, Boland RJ, Stein MD, et al. Neurobehavioral functioning in asymptomatic HIV-1 infected women. J Int Neuropsychol Soc. 1998;4(2):172–8.PubMedGoogle Scholar
  9. 9.
    Richardson JL, Martin EM, Jimenez N, Danley K, Cohen M, Carson VL, et al. Neuropsychological functioning in a cohort of HIV infected women: importance of antiretroviral therapy. J Int Neuropsychol Soc. 2002;8(6):781–93.PubMedGoogle Scholar
  10. 10.
    Richardson JL, Nowicki M, Danley K, Martin EM, Cohen MH, Gonzalez R, et al. Neuropsychological functioning in a cohort of HIV- and hepatitis C virus-infected women. AIDS. 2005;19(15):1659–67.PubMedGoogle Scholar
  11. 11.
    Maki PM, Martin-Thormeyer E. HIV, cognition and women. Neuropsychol Rev. 2009;19(2):204–14.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Rubin LH, Maki PM, Springer G, Benning L, Anastos K, Gustafson D, et al. Cognitive trajectories over 4 years among HIV-infected women with optimal viral suppression. Neurology. 2017;89(15):1594–603.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Maki PM, Rubin LH, Valcour V, Martin E, Crystal H, Young M, et al. Cognitive function in women with HIV: findings from the Women’s Interagency HIV Study. Neurology. 2015;84(3):231–40.PubMedPubMedCentralGoogle Scholar
  14. 14.
    •• Maki PM, Rubin LH, Springer G, Seaberg EC, Sacktor N, Miller EN, et al. Differences in cognitive function between women and men with HIV. J Acquir Immune Defic Syndr. 2018;79(1):101–7. One of two studies conducted to date that were adequately powered to examine sex differences in neurocognitive function in HIV. PubMedGoogle Scholar
  15. 15.
    Rubin LH, Springer G, Martin EM, Seaberg EC, Sacktor NC, Levine A, et al. Elevated depressive symptoms are a stronger predictor of executive dysfunction in HIV-infected women than men. J Acquir Immune Defic Syndr. 2019;81(3):274–83.PubMedGoogle Scholar
  16. 16.
    Do TC, Kerr SJ, Avihingsanon A, Suksawek S, Klungkang S, Channgam T, et al. HIV-associated cognitive performance and psychomotor impairment in a Thai cohort on long-term cART. J Virus Erad. 2018;4(1):41–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gascon MRP, Vidal JE, Mazzaro YM, Smid J, Marcusso RMN, Capitao CG, et al. Neuropsychological assessment of 412 HIV-infected individuals in Sao Paulo, Brazil. AIDS Patient Care STDs. 2018;32(1):1–8.PubMedGoogle Scholar
  18. 18.
    •• Sundermann EE, Heaton RK, Pasipanodya E, Moore RC, Paolillo EW, Rubin LH, et al. Sex differences in HIV-associated cognitive impairment. AIDS. 2018;32(18):2719–26. One of two studies conducted to date that were adequately powered to examine sex differences in neurocognitive function in HIV. PubMedGoogle Scholar
  19. 19.
    Heaton RK, Franklin DR Jr, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clin Infect Dis. 2015;60(3):473–80.PubMedGoogle Scholar
  20. 20.
    Kabuba N, Menon JA, Franklin DR Jr, Heaton RK, Hestad KA. HIV- and AIDS-associated neurocognitive functioning in Zambia—a perspective based on differences between the genders. Neuropsychiatr Dis Treat. 2016;12:2021–8.PubMedGoogle Scholar
  21. 21.
    Burlacu R, Umlauf A, Luca A, Gianella S, Radoi R, Ruta SM, et al. Sex-based differences in neurocognitive functioning in HIV-infected young adults. AIDS. 2018;32(2):217–25.PubMedGoogle Scholar
  22. 22.
    Foca E, Magro P, Motta D, Compostella S, Casari S, Bonito A, et al. Screening for neurocognitive impairment in HIV-infected individuals at first contact after HIV diagnosis: the experience of a large clinical center in Northern Italy. Int J Mol Sci. 2016;17(4):434.PubMedGoogle Scholar
  23. 23.
    Vassallo M, Durant J, Lebrun-Frenay C, Fabre R, Ticchioni M, Andersen S, et al. Virologically suppressed patients with asymptomatic and symptomatic HIV-associated neurocognitive disorders do not display the same pattern of immune activation. HIV Med. 2015;16(7):431–40.PubMedGoogle Scholar
  24. 24.
    Royal W 3rd, Cherner M, Burdo TH, Umlauf A, Letendre SL, Jumare J, et al. Associations between cognition, gender and monocyte activation among HIV infected individuals in Nigeria. PLoS One. 2016;11(2):e0147182.PubMedGoogle Scholar
  25. 25.
    Behrman-Lay AM, Paul RH, Heaps-Woodruff J, Baker LM, Usher C, Ances BM. Human immunodeficiency virus has similar effects on brain volumetrics and cognition in males and females. J Neuro-Oncol. 2016;22(1):93–103.Google Scholar
  26. 26.
    Basso MR, Bornstein RA. Estimated premorbid intelligence mediates neurobehavioral change in individuals infected with HIV across 12 months. J Clin Exp Neuropsychol. 2000;22(2):208–18.PubMedGoogle Scholar
  27. 27.
    Farinpour R, Miller EN, Satz P, Selnes OA, Cohen BA, Becker JT, et al. Psychosocial risk factors of HIV morbidity and mortality: findings from the Multicenter AIDS Cohort Study (MACS). J Clin Exp Neuropsychol. 2003;25(5):654–70.PubMedGoogle Scholar
  28. 28.
    Tsai AC, Burns BF. Syndemics of psychosocial problems and HIV risk: a systematic review of empirical tests of the disease interaction concept. Soc Sci Med. 2015;139:26–35.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Singer M. AIDS and the health crisis of the U.S. urban poor; the perspective of critical medical anthropology. Soc Sci Med. 1994;39(7):931–48.PubMedGoogle Scholar
  30. 30.
    Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–60.PubMedGoogle Scholar
  31. 31.
    Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA. 1994;271(13):1004–10.PubMedGoogle Scholar
  32. 32.
    Manly JJ, Touradji P, Tang MX, Stern Y. Literacy and memory decline among ethnically diverse elders. J Clin Exp Neuropsychol. 2003;25(5):680–90.PubMedGoogle Scholar
  33. 33.
    Baker DW, Parker RM, Williams MV, Clark WS. Health literacy and the risk of hospital admission. J Gen Intern Med. 1998;13(12):791–8.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Rubin LH, Pyra M, Cook JA, Weber KM, Cohen MH, Martin E, et al. Post-traumatic stress is associated with verbal learning, memory, and psychomotor speed in HIV-infected and HIV-uninfected women. J Neuro-Oncol. 2016;22(2):159–69.Google Scholar
  35. 35.
    Rubin LH, Cook JA, Weber KM, Cohen MH, Martin E, Valcour V, et al. The association of perceived stress and verbal memory is greater in HIV-infected versus HIV-uninfected women. J Neuro-Oncol. 2015;21(4):422–32.Google Scholar
  36. 36.
    Rubin LH, Sundermann EE, Cook JA, Martin EM, Golub ET, Weber KM, et al. Investigation of menopausal stage and symptoms on cognition in human immunodeficiency virus-infected women. Menopause. 2014;21(9).PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rubin LH, Cook JA, Springer G, Weber KM, Cohen MH, Martin EM, et al. Perceived and post-traumatic stress are associated with decreased learning, memory, and fluency in HIV-infected women. AIDS. 2017;31(17):2393–1401.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Spies G, Fennema-Notestine C, Cherner M, Seedat S. Changes in cognitive function in women with HIV infection and early life stress. AIDS Care. 2017;29(1):14–23.PubMedGoogle Scholar
  39. 39.
    Sherwin BB. Estrogen and cognitive functioning in women: lessons we have learned. Behav Neurosci. 2012;126(1):123–7.PubMedGoogle Scholar
  40. 40.
    Gandhi M, Bacchetti P, Miotti P, Quinn TC, Veronese F, Greenblatt RM. Does patient sex affect human immunodeficiency virus levels? Clin Infect Dis. 2002;35(3):313–22.PubMedGoogle Scholar
  41. 41.
    Meier A, Chang JJ, Chan ES, Pollard RB, Sidhu HK, Kulkarni S, et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med. 2009;15(8):955–9.PubMedPubMedCentralGoogle Scholar
  42. 42.
    • Scully EP. Sex differences in HIV infection. Curr HIV/AIDS Rep. 2018;15(2):136–46. This review discusses multilevel effects of sex on HIV acquisition, pathogenesis, treatment response, and prospects for cure.PubMedPubMedCentralGoogle Scholar
  43. 43.
    • Scully EP, Gandhi M, Johnston R, Hoh R, Lockhart A, Dobrowolski C, et al. Sex-based differences in human immunodeficiency virus type 1 reservoir activity and residual immune activation. J Infect Dis. 2019;219(7):1084–94. This study illustrates sex-related differences in immune phenotypes and HIV persistence on ART which have significant implications for cure interventions.Google Scholar
  44. 44.
    Das B, Dobrowolski C, Luttge B, Valadkhan S, Chomont N, Johnston R, et al. Estrogen receptor-1 is a key regulator of HIV-1 latency that imparts gender-specific restrictions on the latent reservoir. Proc Natl Acad Sci U S A. 2018;115(33):E7795–E804.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Szotek EL, Narasipura SD, Al-Harthi L. 17beta-Estradiol inhibits HIV-1 by inducing a complex formation between beta-catenin and estrogen receptor alpha on the HIV promoter to suppress HIV transcription. Virology. 2013;443(2):375–83.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Devadas K, Biswas S, Ragupathy V, Lee S, Dayton A, Hewlett I. Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones. PLoS One. 2018;13(1):e0191916.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Laan ETM, Prins JM, van Lunsen RHW, Nieuwkerk PT, Nievaard-Boon MAF. Testosterone insufficiency in human immunodeficiency virus-infected women: a cross-sectional study. Sex Med. 2019;7(1):72–9.PubMedGoogle Scholar
  48. 48.
    Gomes AR, Souteiro P, Silva CG, Sousa-Pinto B, Almeida F, Sarmento A, et al. Prevalence of testosterone deficiency in HIV-infected men under antiretroviral therapy. BMC Infect Dis. 2016;16(1):628.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yoshino Y, Koga I, Misu K, Seo K, Kitazawa T, Ota Y. The prevalence of low serum free testosterone and the short-term effect of anti-retroviral therapy in male Japanese treatment-naive HIV patients. J Infect Chemother. 2019;25(4):318–21.PubMedGoogle Scholar
  50. 50.
    Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–38.PubMedGoogle Scholar
  51. 51.
    Markle JG, Fish EN. SeXX matters in immunity. Trends Immunol. 2014;35(3):97–104.PubMedGoogle Scholar
  52. 52.
    Schmiedel BJ, Singh D, Madrigal A, Valdovino-Gonzalez AG, White BM, Zapardiel-Gonzalo J, et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell. 2018;175(6):1701–15 e16.PubMedGoogle Scholar
  53. 53.
    Farzadegan H, Hoover DR, Astemborski J, Lyles CM, Margolick JB, Markham RB, et al. Sex differences in HIV-1 viral load and progression to AIDS. Lancet. 1998;352(9139):1510–4.PubMedGoogle Scholar
  54. 54.
    Sterling TR, Vlahov D, Astemborski J, Hoover DR, Margolick JB, Quinn TC. Initial plasma HIV-1 RNA levels and progression to AIDS in women and men. N Engl J Med. 2001;344(10):720–5.PubMedGoogle Scholar
  55. 55.
    Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomezsko P, et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. J Immunol. 2015;195(11):5327–36.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Mathad JS, Gupte N, Balagopal A, Asmuth D, Hakim J, Santos B, et al. Sex-related differences in inflammatory and immune activation markers before and after combined antiretroviral therapy initiation. J Acquir Immune Defic Syndr. 2016;73(2):123–9.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis. 1999;179(4):859–70.PubMedGoogle Scholar
  58. 58.
    Meditz AL, Haas MK, Folkvord JM, Melander K, Young R, McCarter M, et al. HLA-DR+ CD38+ CD4+ T lymphocytes have elevated CCR5 expression and produce the majority of R5-tropic HIV-1 RNA in vivo. J Virol. 2011;85(19):10189–200.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ledwaba L, Tavel JA, Khabo P, Maja P, Qin J, Sangweni P, et al. Pre-ART levels of inflammation and coagulation markers are strong predictors of death in a South African cohort with advanced HIV disease. PLoS One. 2012;7(3):e24243.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med. 2008;5(10):e203.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. J Infect Dis. 2011;203(6):780–90.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Raghavan A, Rimmelin DE, Fitch KV, Zanni MV. Sex differences in select non-communicable HIV-associated comorbidities: exploring the role of systemic immune activation/inflammation. Curr HIV/AIDS Rep. 2017;14(6):220–8.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Lipton SA. Requirement for macrophages in neuronal injury induced by HIV envelope protein gp120. Neuroreport. 1992;3(10):913–5.PubMedGoogle Scholar
  64. 64.
    Ticona E, Bull ME, Soria J, Tapia K, Legard J, Styrchak SM, et al. Biomarkers of inflammation in HIV-infected Peruvian men and women before and during suppressive antiretroviral therapy. AIDS. 2015;29(13):1617–22.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Fitch KV, Srinivasa S, Abbara S, Burdo TH, Williams KC, Eneh P, et al. Noncalcified coronary atherosclerotic plaque and immune activation in HIV-infected women. J Infect Dis. 2013;208(11):1737–46.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Martin GE, Gouillou M, Hearps AC, Angelovich TA, Cheng AC, Lynch F, et al. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women. PLoS One. 2013;8(1):e55279.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Looby SE, Fitch KV, Srinivasa S, Lo J, Rafferty D, Martin A, et al. Reduced ovarian reserve relates to monocyte activation and subclinical coronary atherosclerotic plaque in women with HIV. AIDS. 2016;30(3):383–93.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Hanna DB, Lin J, Post WS, Hodis HN, Xue X, Anastos K, et al. Association of macrophage inflammation biomarkers with progression of subclinical carotid artery atherosclerosis in HIV-infected women and men. J Infect Dis. 2017;215(9):1352–61.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Burdo TH, Weiffenbach A, Woods SP, Letendre S, Ellis RJ, Williams KC. Elevated sCD163 in plasma but not cerebrospinal fluid is a marker of neurocognitive impairment in HIV infection. AIDS. 2013;27(9):1387–95.PubMedGoogle Scholar
  70. 70.
    Krebs SJ, Slike BM, Sithinamsuwan P, Allen IE, Chalermchai T, Tipsuk S, et al. Sex differences in soluble markers vary before and after the initiation of antiretroviral therapy in chronically HIV infected individuals. AIDS. 2016;30(10):1533–42.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther. 2010;7:15.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Dunbar N, Pemberton L, Perdices M, Brew BJ. Clinical markers of the presence of dementia and neuropsychological impairment in HIV infection. J NeuroAIDS. 1996;1(4):31–48.PubMedGoogle Scholar
  73. 73.
    Magarinos AM, Somoza G, De Nicola AF. Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm Metab Res. 1987;19(3):105–9.PubMedGoogle Scholar
  74. 74.
    Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci. 1993;13(9):3839–47.PubMedGoogle Scholar
  75. 75.
    Meaney MJ, Aitken DH. [3H] Dexamethasone binding in rat frontal cortex. Brain Res. 1985;328(1):176–80.PubMedGoogle Scholar
  76. 76.
    McEwen BS, De Kloet ER, Rostene W. Adrenal steroid receptors and actions in the nervous system. Physiol Rev. 1986;66(4):1121–88.PubMedGoogle Scholar
  77. 77.
    Sanchez MM, Young LJ, Plotsky PM, Insel TR. Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci. 2000;20(12):4657–68.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Alderson AL, Novack TA. Neurophysiological and clinical aspects of glucocorticoids and memory: a review. J Clin Exp Neuropsychol. 2002;24(3):335–55.PubMedGoogle Scholar
  79. 79.
    McEwen BS, Sapolsky RM. Stress and cognitive function. Curr Opin Neurobiol. 1995;5(2):205–16.PubMedGoogle Scholar
  80. 80.
    McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev. 2007;87(3):873–904.PubMedGoogle Scholar
  81. 81.
    Jacobs S, Moxley K, Womersley JS, Spies G, Hemmings SM, Seedat S. HPA-axis genes as potential risk variants for neurocognitive decline in trauma-exposed, HIV-positive females. Neuropsychiatr Dis Treat. 2018;14:2497–504.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Zapanti E, Terzidis K, Chrousos G. Dysfunction of the hypothalamic-pituitary-adrenal axis in HIV infection and disease. Hormones (Athens). 2008;7(3):205–16.Google Scholar
  83. 83.
    Kumar M, Kumar AM, Waldrop D, Antoni MH, Eisdorfer C. HIV-1 infection and its impact on the HPA axis, cytokines, and cognition. Stress. 2003;6(3):167–72.PubMedGoogle Scholar
  84. 84.
    Patterson S, Moran P, Epel E, Sinclair E, Kemeny ME, Deeks SG, et al. Cortisol patterns are associated with T cell activation in HIV. PLoS One. 2013;8(7):e63429.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Valdez A, Rubin LH, Neigh GN. Untangling the Gordian knot of HIV, stress, and cognitive impairment. Neurobiol Stress. 2016;4:44–54.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Raffi F, Brisseau JM, Planchon B, Remi JP, Barrier JH, Grolleau JY. Endocrine function in 98 HIV-infected patients: a prospective study. AIDS. 1991;5(6):729–33.PubMedGoogle Scholar
  87. 87.
    Hilton CW, Harrington PT, Prasad C, Svec F. Adrenal insufficiency in the acquired immunodeficiency syndrome. South Med J. 1988;81(12):1493–5.PubMedGoogle Scholar
  88. 88.
    Biglino A, Limone P, Forno B, Pollono A, Cariti G, Molinatti GM, et al. Altered adrenocorticotropin and cortisol response to corticotropin-releasing hormone in HIV-1 infection. Eur J Endocrinol. 1995;133(2):173–9.PubMedGoogle Scholar
  89. 89.
    Verges B, Chavanet P, Desgres J, Vaillant G, Waldner A, Brun JM, et al. Adrenal function in HIV infected patients. Acta Endocrinol. 1989;121(5):633–7.PubMedGoogle Scholar
  90. 90.
    Enwonwu CO, Meeks VI, Sawiris PG. Elevated cortisol levels in whole saliva in HIV infected individuals. Eur J Oral Sci. 1996;104(3):322–4.PubMedGoogle Scholar
  91. 91.
    Lortholary O, Christeff N, Casassus P, Thobie N, Veyssier P, Trogoff B, et al. Hypothalamo-pituitary-adrenal function in human immunodeficiency virus-infected men. J Clin Endocrinol Metab. 1996;81(2):791–6.PubMedGoogle Scholar
  92. 92.
    Christeff N, Gherbi N, Mammes O, Dalle MT, Gharakhanian S, Lortholary O, et al. Serum cortisol and DHEA concentrations during HIV infection. Psychoneuroendocrinology. 1997;22(Suppl 1):S11–8.PubMedGoogle Scholar
  93. 93.
    Chittiprol S, Kumar AM, Shetty KT, Kumar HR, Satishchandra P, Rao RS, et al. HIV-1 clade C infection and progressive disruption in the relationship between cortisol, DHEAS and CD4 cell numbers: a two-year follow-up study. Clin Chim Acta. 2009;409(1–2):4–10.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kumar M, Kumar AM, Morgan R, Szapocznik J, Eisdorfer C. Abnormal pituitary-adrenocortical response in early HIV-1 infection. J Acquir Immune Defic Syndr. 1993;6(1):61–5.PubMedGoogle Scholar
  95. 95.
    Rondanelli M, Solerte SB, Fioravanti M, Scevola D, Locatelli M, Minoli L, et al. Circadian secretory pattern of growth hormone, insulin-like growth factor type I, cortisol, adrenocorticotropic hormone, thyroid-stimulating hormone, and prolactin during HIV infection. AIDS Res Hum Retrovir. 1997;13(14):1243–9.PubMedGoogle Scholar
  96. 96.
    Kajantie E, Phillips DI. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31(2):151–78.PubMedGoogle Scholar
  97. 97.
    Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: a review. Biol Psychol. 2005;69(1):113–32.Google Scholar
  98. 98.
    Seeman TE, McEwen BS, Singer BH, Albert MS, Rowe JW. Increase in urinary cortisol excretion and memory declines: MacArthur studies of successful aging. J Clin Endocrinol Metab. 1997;82(8):2458–65.PubMedGoogle Scholar
  99. 99.
    McCormick CM, Lewis E, Somley B, Kahan TA. Individual differences in cortisol levels and performance on a test of executive function in men and women. Physiol Behav. 2007;91(1):87–94.PubMedGoogle Scholar
  100. 100.
    Rubin LH, Phan KL, Keating SM, Maki PM. A single low-dose of hydrocortisone enhances cognitive functioning in HIV-infected women. AIDS. 2018;32(14):1983–93.PubMedGoogle Scholar
  101. 101.
    Rubin LH, Phan KL, Keating SM, Weber KM, Maki PM. Brief report: low-dose hydrocortisone has acute enhancing effects on verbal learning in HIV-infected men. J Acquir Immune Defic Syndr. 2017;75(3):e65–70.PubMedGoogle Scholar
  102. 102.
    Hantsoo L, Kornfield S, Iannelli C, Podcasy J, Metzger D, Sammel MD, Epperson CN Glucocorticoid-immune response to acute stress in women and men living with HIV. J Behav Med 2019.Google Scholar
  103. 103.
    Bekhbat M, Mehta CC, Kelly SD, Vester A, Ofotokun I, Felger J, et al. HIV and symptoms of depression are independently associated with impaired glucocorticoid signaling. Psychoneuroendocrinology. 2018;96:118–25.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Leah H. Rubin
    • 1
    • 2
    Email author
  • Gretchen N. Neigh
    • 3
  • Erin E. Sundermann
    • 4
  • Yanxun Xu
    • 5
    • 6
  • Eileen P. Scully
    • 7
  • Pauline M. Maki
    • 8
    • 9
  1. 1.Department of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of EpidemiologyJohns Hopkins School of Public HealthBaltimoreUSA
  3. 3.Department of Anatomy and Neurobiology, School of MedicineVirginia Commonwealth UniversityRichmondUSA
  4. 4.School of MedicineUniversity of California San DiegoLa JollaUSA
  5. 5.Department of Applied Mathematics and StatisticsJohns Hopkins UniversityBaltimoreUSA
  6. 6.Division of Biostatistics and Bioinformatics at The Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUSA
  7. 7.Division of Infectious Diseases, Department of MedicineJohns Hopkins School of MedicineBaltimoreUSA
  8. 8.Department of PsychiatryUniversity of Illinois at ChicagoChicagoUSA
  9. 9.Department of PsychologyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations