Advertisement

Digital Delivery of Cognitive Behavioral Therapy for Insomnia

  • Annemarie I. LuikEmail author
  • Tanja van der Zweerde
  • Annemieke van Straten
  • Jaap Lancee
Open Access
Sleep Disorders (P Gehrman, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Sleep Disorders

Abstract

Purpose of Review

Digital cognitive behavioral therapy (dCBT) has been available for over a decade. We reviewed the evidence that accumulated over the past 5 years and discuss the implications for introducing dCBT into standard healthcare.

Recent Findings

Studies have consistently supported the use of dCBT to treat insomnia. Evidence is now demonstrating large short-term effects and smaller long-term effects up to 1.5 years after treatment across populations with various co-occurring health problems. The effects also extend into a range of psychological well-being factors. Mediators and moderators have been studied to understand mechanisms and create new opportunities to enhance effectiveness and reduce dropout. Incorporating personalized guidance in dCBT may further enhance effectiveness.

Summary

The evidence for dCBT for insomnia is strong and suggests that dCBT is ready for application in standard healthcare. Further research, digital innovation, and development of effective implementation methods are required to ensure dCBT fulfills its potential.

Keywords

Insomnia Sleep Cognitive behavioral therapy CBT Online Internet 

Introduction

Insomnia disorder is diagnosed when complaints of trouble falling asleep, staying asleep, or waking up too early occur three or more nights per week, for three or more months with significant daytime effects [1]. A substantial percentage of the population suffers from insomnia: estimates range up to 10% for insomnia disorder and 25% for insomnia symptoms [2].

Even though insomnia is a very prevalent disorder, only 37% of those suffering from insomnia report consulting a healthcare provider for their sleep problems [2]. Reasons for these low numbers of help-seeking behavior in persons with insomnia are likely varied, but a reason could be that insomnia disorder is often treated with medication [3, 4]. This is against American and European guidelines that recommend cognitive behavioral therapy (CBT) as the first-line treatment for insomnia disorder [5•, 6] because of its substantial clinical evidence base [7•]. CBT for insomnia is a structured therapy consisting of several components [8, 9]. The therapy typically includes educational, behavioral, and cognitive components. Often relaxation is also considered a standard component and other techniques such as mindfulness are added frequently. More detail about the components of CBT for insomnia can be found in Table 1.
Table 1

Components of cognitive behavioral therapy (CBT) for insomnia

CBT for insomnia component

Important techniques

Educational

Explaining the process and function of normal and disturbed sleep

Explaining how behaviors can promote sleep, for example, by explaining the importance of a healthy lifestyle (e.g., low caffeine and alcohol intake) and by explaining the importance of bedtime routines (e.g., a dark bedroom and fixed bedtimes)

Behavioral

Stimulus control: advising a person to get out of bed when awake for more than 15 to 20 min, and only go back to bed when sleepy, to re-establish the connection between bed and sleep [10]

Sleep restriction: restricting the time in bed to the average time slept in the past week (typically with a minimum of 5 h) to heighten the homeostatic sleep drive. If the sleep efficiency is above 85% or 90%, the amount of time in bed is lengthened [11]

Cognitive

Identifying and challenging misconceptions about sleep (such as “I have to sleep 8 h a night”)

Addressing the “racing mind”: learning how to cope or deal with worries and thought that prevent the person from falling asleep

Paradoxical intention: trying to stay awake instead of falling asleep [12]

Additive

Relaxation: relaxation and breathing techniques to teach persons to unwind [13]

Mindfulness: using techniques from mindfulness to teach persons to unwind [14]

Yet, despite it being the recommended treatment, CBT for insomnia is hardly omnipresent. One of the most important factors for CBT not being widely available seems to be a shortage of therapists and resources. Digital CBT (dCBT) for insomnia was suggested more than a decade ago [15] as a potential solution to address this shortage: did it live up to its potential?

What Is Digital CBT?

Before discussing dCBT for insomnia, specifically, it is important to focus on dCBT in general. Interest for the digital delivery of psychological therapies started in the 1990s. CBT turned out to be a particular suitable candidate because of its highly structured nature. This has led to a wealth of programs being developed and investigated, in particular for psychological problems such as depression and anxiety; generally, these programs have shown to be effective [16]. At first, digitalizing CBT happened by merely translating self-help manuals to a website. More elaborate programs that are highly personalized, tailored, and fully automated have become available since. In this manuscript, we will define dCBT as a “by digital means communicated form of CBT,” where digital covers the full spectrum of digital advances. This includes many other terms that have been used commonly to describe this format such as “online,” “electronic,” “mobile,” and “Internet.” To recognize that the future will likely bring techniques yet unknown, we choose to use the word “digital” here. The digital innovation underlying dCBT will have the capability to tailor the selection and sequencing of CBT elements to the individual, making dCBT highly adaptive. This fits with a personalized behavioral medicine approach [17], creating a reproducible, evidence-based therapy for anyone, anywhere, anytime.

Over the past decade, many dCBT programs have become available with very different levels of digitalization and automation, typically moving away from just publishing self-help information on the Internet. Three main ways have been recognized before [18] (see Table 2 for a short description and example programs for treating insomnia). Briefly, supportive dCBT is where dCBT is used mainly as a support function to augment face-to-face individual or group therapy, but the in-person therapy remains primary. Second is therapist-guided dCBT, where actual therapy content is communicated to the patient with the help of web pages or a mobile app containing text, images, videos, audio, or animations but is supported by a clinical professional. Third is fully automated dCBT, where the program is offered without any human support. Personalization is built into the automated program using algorithms to tailor all aspects of the program, including personalized feedback and a tailored treatment program.
Table 2

Automation of digital cognitive behavioral therapy (dCBT)

 

Definition

Automation

Program examples

Supportive dCBT

dCBT elements are used to support face-to-face therapy

Limited

Gehrman et al. [19]

Lichstein et al. [20]

Kuhn et al. [21]

Therapist-guided dCBT

Automated dCBT with guidance and tailoring supported by human therapists

Partly

Lancee et al. [22]

Van Straten et al. [23]

Blom et al. [24]

Fully automated dCBT

Fully automated and tailored dCBT without in-person clinical support

Fully

Ritterband et al. [25]

Vincent et al. [26]

Espie et al. [27]

We will use the term dCBT for all these intervention formats, but it should be kept in mind that the literature comprises everything from optimized websites through to advanced algorithm-driven systems, each differing considerably in the amount of clinician time, level of automatization, costs, and scalability.

Evidence for dCBT for Insomnia

Returning to dCBT for insomnia specifically, it was in 2004 when Ström and colleagues published the first randomized controlled study investigating an Internet-based treatment for insomnia [28]. They developed a guided program where dCBT was combined with human support. Since then, many more studies and digital programs for insomnia have been developed, both integrating human support [22, 23, 24, 29, 30, 31] and fully automated [25, 26, 27, 32, 33, 34] dCBT. The number of online treatments for insomnia has been growing rapidly and will likely continue to do so. It is important to realize that only a small percentage of programs have been studied in formal research studies, leaving many more programs without clinical evidence available. As scientists in this field, we should emphasize the need for clinical evidence for these programs as they are offered to a vulnerable population, potentially accompanied by unknown efficacy and risks, with the possibility of even causing harm.

Overall, evidence has consistently been demonstrating that dCBT for insomnia is efficacious in treating insomnia. Meta-analyses [35•, 36] demonstrate sizeable effects of dCBT on insomnia. Narrative reviews published over the past years have addressed and identified multiple gaps in the evidence base [18, 37], and considerable amounts of new evidence have been published since. Recent collected evidence mainly centers around four themes: (1) short- and long-term efficacy across populations, (2) effects of dCBT beyond insomnia, 3) improvement of dCBT effectiveness: attrition, non-response, moderators, and mediators; and (4) the role of human support in dCBT.

Evidence for Short- and Long-term Efficacy Across Populations

Since the 2016 meta-analyses of Zachariae et al. [35•] and Seyffert et al. [36], a large number of randomized controlled trials investigating existing and new dCBT for insomnia programs have been published [31, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. These studies reliably show positive effects on insomnia, and most report large effects with Cohen’s d > 1.0, which is similar or larger to effects reported in the previous meta-analyses on dCBT for insomnia. Additionally, the evidence for long-term effects of dCBT has increased, with trials showing sustained effects in uncontrolled follow-ups up to 1.5 years after randomization [60, 61, 62]. One of these studies [62] also assessed the effect in comparison with a control group after 1 year; no significant difference was observed, probably due to improvement of insomnia complaints in the control group. A study assessing a 3-year follow-up period did not find sustained effects for a reduction in insomnia severity, but this study did show that less sleep medication was used by participants who had received dCBT and that the control group had received more additional insomnia treatments during the follow-up period [63].

The positive effects of dCBT on insomnia symptoms are not only seen in adults with insomnia solely. These effects were also established in adolescents [31, 64], breast cancer survivors [65], and patients with concurrent disorders such as depression [38, 57], tinnitus [45], asthma [54], or heightened blood pressure [48] for example. This suggests that dCBT can be of use in a range of populations, even when the target population has insomnia concurrent with other disorders.

Evidence for Effects of dCBT for Insomnia Beyond Insomnia

Much of the evidence collected in the past years has focused on the improvement of symptoms of diseases that are often comorbid with insomnia, in particular symptoms of other mental health disorders [66]. First and foremost, a wealth of evidence has demonstrated that dCBT for insomnia is reducing depressive symptomatology. This has been demonstrated by using dCBT for insomnia not only as an adjunct therapy [57], but also as stand-alone treatment in trials including participants with comorbid symptoms of insomnia and depression [41, 55, 59], independent of whether the treatment was fully automated or guided by healthcare professionals. The effects sizes are typically in the moderate-to-large range. Additionally, in audits of clinical services, improvements in depression were equally seen [67, 68], suggesting these effects hold in real-world, clinical settings. It has even been suggested that the effect of dCBT for insomnia is in the same range as CBT specifically aimed at treating depression [59]. This was confirmed by a direct comparison which demonstrated a within-group post-treatment effect of dCBT for insomnia on depressive symptoms (Cohen’s d 0.74) similar to that of dCBT for depression on depressive symptoms (Cohen’s d 0.66) [38]. The effects have been suggested to retain over time [38, 69], although this was not confirmed by a study with an uncontrolled follow-up [53]. Positive effects of dCBT for insomnia were also seen on symptoms of other mental health disorders, for example, a small-to-moderate effect on anxiety [52•, 68, 70, 71] and a small effect on psychotic experiences and hallucinations [47]. Two randomized controlled trials specifically designed to test mediation have now also demonstrated that a substantial proportion of the improvements in mental health symptoms are mediated by the improvement in insomnia symptoms [47, 52•]. It is important to note that most of the studies mentioned above have been carried out in subclinical samples.

In addition to improvements in mental health, some evidence has emerged that dCBT for insomnia is also effective in reducing cognitive complaints [52•] and improving cognitive performance when assessed with neuropsychological tests [72]; although the effect sizes are typically small. Potentially related to this, self-rated work productivity also shows a small-to-moderate increase after dCBT, together with other work-related constructs such as job satisfaction and work-related rumination [39, 40, 46].

Improving dCBT Effectiveness: Attrition, Non-response, Moderators, and Mediators

Although dCBT is generally effective in improving insomnia, large steps can still be taken to improve the effectiveness and decrease attrition. Several approaches have been taken to gain more insight in these topics over the past few years.

First, average treatment adherence is around 50% for dCBT for insomnia; attrition and adherence therefore need our attention [73]. This is particularly true for studies with no telephone or face-to-face contact, which might be more similar to implementations in some large-scale, real-world scenarios. This is however not unique to dCBT for insomnia; dCBT programs for other disorders have equal, or even larger, problems with attrition [74]. So far, it has proven difficult to find indicators of dropout; studies have suggested that a lower social economic status [55], a longer sleep duration, less severe insomnia complaints, and more depressive symptoms increase dropout [75].

Second, moderators of treatment effects have equally proven hard to establish. For example, no moderating effect of sex, age, race, education, or income on treatment outcome was established [55]. Insomnia-specific indicators such as acceptance of diagnosis-related problems as well as negative emotions and cognitions were associated with better treatment results [76].

Third, knowing by which factors the improvement in insomnia is mediated might help us gain insight in mechanisms underlying dCBT and potentially help us further increase effectiveness. Several cognitive processes have been hypothesized to mediate insomnia improvement. In the past 5 years, the evidence for a role of dysfunctional beliefs about sleep as a mediating factor in the improvement of insomnia after dCBT has grown substantially [30, 51, 58]. Additionally, knowledge, locus of control, sleep-related worry, and pre-sleep arousal have been suggested to mediate improvement in sleep [51, 58].

dCBT: Do We Need a Human Therapist?

Substantial effects of programs both with and without human guidance have been found [7•, 35•, 36], but formal comparisons are scarce. More support, whether via a human therapist or automated, is generally thought to have positive effects on adherence and efficacy of dCBT for depression and anxiety [77]. A study comparing dCBT for insomnia with and without additional motivational support via email showed increased effects for the condition with support [78]. A study assessing human support in a dCBT for insomnia program for adolescents identified four factors that were part of support: forging a working alliance, forging therapy integrity, and forging a positive attitude and sleep expertise. Of these four, only sleep expertise seemed to contribute to improvements [79].

Of note, human support could also take place outside the sphere of mental healthcare professionals; support via web fora was experienced as positive by those taking a dCBT course [80] for example. Research studies making a valid comparison of automated support with no or human support are lacking, but automated support in the form of reminders has been demonstrated to enhance adherence [81]. If dCBT does not reach the same effectiveness without guidance, this does not reduce the value of dCBT per se. It still creates a tremendous opportunity to offer dCBT to those with less complicated complaints in a stepped care approach, as has been previously suggested [15]. A recent study assessed this by increasing the amount of therapist guidance based on the treatment response in the first weeks of dCBT. By increasing guidance, the treatment effect was increased and the number of failed treatments reduced [56•].

Another question often asked is how dCBT compares to face-to-face therapy. Meta-analyses have suggested effect sizes of dCBT for other disorders are in a similar range as face-to-face CBT [82]. Similarly, this has been suggested by comparing effect sizes of meta-analyses incorporating dCBT for insomnia programs with meta-analyses analyzing face-to-face CBT programs [7•, 35•, 36]. However, direct comparisons are still scarce. One study directly comparing face-to-face CBT with dCBT demonstrated that face-to-face CBT outperformed dCBT [43•]. A later study in military personnel confirmed this [50]. A comparison of dCBT against group CBT did however not show any significant differences in improvement in insomnia [24].

Although it might very well be that human involvement in treatment increases effectiveness, we have to note that most dCBT programs so far do not take full advantage of the possibilities that digital solutions can offer to personalize feedback, tailor treatments, and create a therapy bond. It could be that it might not be the support of a human per se, but rather individual tailoring and attention that is crucial to the effectiveness.

The Future of Digital Treatments for Insomnia

Although evidence has been mounting in the last 5 years, this has only resulted in a relatively small increase in the use of dCBT for insomnia in clinical services. The use of dCBT for insomnia seems to remain mostly ad hoc and limited as was noted a decade ago [15]. New initiatives have been seen, for example, by companies providing dCBT approaches for employees in the USA (e.g., www.bighealth.com/sleepio), the UK National Health Service adopting dCBT for insomnia in some of their standard care facilities (e.g., www.good-thinking.uk), and initiatives to integrate dCBT into Dutch GP practices [83]. A consistent overall approach is still lacking, not at least due to different healthcare systems across countries, a lack of knowledge about dCBT for insomnia among professionals and patients, and missing quality control standards for dCBT programs. The role that dCBT for insomnia can play in general healthcare therefore remains unclear for many healthcare professionals. Fulfilling the full potential of dCBT for insomnia is thus a process that still needs work, with many challenges in the field of science and implementation.

The Research Gaps

Despite the fact that the evidence for the positive impact of dCBT for insomnia is strong, several research gaps still exist in the evidence base. We highlight three areas in this paper: (1) negative side effects and harm, (2) insights in moderators and mediators, and (3) costs and savings.

First, negative side effects and potential harm of CBT have in general received little attention when studying CBT; for dCBT, this has not been any different. Recently, one RCT reported side effects of dCBT for insomnia. Participants that received dCBT reported a higher occurrence of headaches, fatigue, extreme sleepiness, reduced energy, irritability, difficulty remembering, and difficulty concentrating than the waitlist control group [52•]. Although based on other outcomes of this trial there is a reason to believe these side effects may be short-lived, they do deserve more of our attention, particularly as they may play a role in attrition. Indeed, we argue that assessing side effects should become standard in each trial on dCBT, irrespective of the disorder investigated.

Second, we need to improve our understanding of moderators and mediators of the effects of dCBT for insomnia to be able to understand the mechanisms at work. This can also further improve treatment and reduce attrition. Although several studies have increased our understanding [30, 47, 51, 52•, 55, 58, 75, 76], we still have a limited understanding of why people drop out and why some do not respond. This is also true for in-person CBT; we still do not know why a third of patients do not respond to CBT for insomnia [84]. dCBT can play a crucial role in understanding these mediators and moderators as it facilitates doing large-scale trials with standardized treatments, ensuring the statistical power to study these associations. This also includes increasing attention for factors known to affect adherence from the broader digital interventions literature, for example, the use of persuasive technology elements [85].

Third, if we want to make dCBT for insomnia a success and ensure implementation in healthcare, we have to demonstrate the costs and savings that accompany dCBT. Some studies assessing costs have appeared over the past years. A cost-benefit analysis of applying dCBT for insomnia in a working population has been estimated to lead to a net benefit of USD 512 per participant [44]. A comparison of dCBT and group CBT for insomnia in adolescents has suggested that dCBT outperforms group CBT with similar results but at lower costs [42]. To really persuade the world dCBT for insomnia deserves a place, we will need more of these studies generating convincing evidence on cost-effectiveness.

Lastly, we would like to end this paragraph with emphasizing that clinical evidence for one program does not mean clinical evidence for all programs. We cannot simply assume that every program that contains CBT is effective simply because it contains evidence-based CBT elements.

Advantages and Disadvantages for Implementing dCBT in Routine Healthcare

The main advantage of dCBT is the ability to reach many more persons with insomnia complaints than can ever be reached with face-to-face CBT, especially in a fully automated format. It is simply impossible to sufficiently train enough therapists to be able to offer face-to-face CBT for insomnia to everyone in need, because of high prevalence rates of insomnia and limited healthcare budgets. Additionally, dCBT has the advantage of being able to reach those who cannot take therapy sessions during working hours as it is available 24/7, those in remote locations as it is available anywhere with a sufficient Internet connection, and those not wanting to visit a mental healthcare clinic as it can be available from the convenience of your own home.

Naturally, dCBT does not only have advantages. One of the main disadvantages is that there is less clinical control over the treatment process than in face-to-face settings, which can pose problems for certain mental health complaints, most prominently suicidality. Therefore, dCBT will need rigorous methods to ensure it can be acted upon when these complaints are endorsed, in both guided and fully automated programs. So far, programs have offered contact details of healthcare professionals or services such as local suicide prevention lifelines, but potentially more can be done to help this group. However, we do need to realize that this is not that dissimilar to face-to-face CBT, as a therapist will not be available 24/7 either. Currently, the regulation of dCBT is very limited and largely dependent on the standards companies or institutions set themselves. A more regulated approach is urgently needed to ensure that dCBT causes benefit and not harm. It is important to keep in mind that the absence of an effect can also be harmful when it limits motivation or faith in future or other treatment opportunities. Next, while we live in a world that becomes more and more digitalized, there will still be those who prefer or need in-person treatment. The use of dCBT can however help to free up time from healthcare professionals to treat those that need or want in-person treatment. Lastly, it is important to realize that digitalization is not a completed process. New digital techniques appear constantly. This can lead to dCBT programs quickly being becoming outdated. Therefore, dCBT will have to continue changing, not just to keep up with the newest technologies, but because these technologies can help improve dCBT. This however creates an additional challenge for regulating bodies as the collection of scientific evidence is typically much slower than any digital advance.

Conclusions

The clinical evidence for dCBT for insomnia has substantially increased over the last few years. Additional evidence has emerged around the short- and long-term efficacy across populations; the effects of dCBT beyond insomnia, attrition, moderators, and mediators of dCBT; and the role of human support in dCBT. The field is by no means done however: important research gaps exist around negative side effects and potential harm, insights in moderators and mediators, and costs and savings. However, we think that dCBT for insomnia is ready for a wider application in healthcare. It will help us ensuring that those in need of help for insomnia can receive the recommended treatment.

Notes

Compliance with Ethical Standards

Conflict of Interest

Tanja van der Zweerde, Annemieke van Straten, and Jaap Lancee each declare no potential conflicts of interest.

Annemarie I. Luik reports previous non-financial support from Big Health Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association; 2013.Google Scholar
  2. 2.
    Morin CM, LeBlanc M, Belanger L, Ivers H, Merette C, Savard J. Prevalence of insomnia and its treatment in Canada. Can J Psychiatr. 2011;56(9):540–8.Google Scholar
  3. 3.
    Morin CM, Drake CL, Harvey AG, Krystal AD, Manber R, Riemann D, et al. Insomnia disorder. Nat Rev Dis Primers. 2015;1:15026.PubMedGoogle Scholar
  4. 4.
    Roy AN, Smith M. Prevalence and cost of insomnia in a state Medicaid fee-for-service population based on diagnostic codes and prescription utilization. Sleep Med. 2010;11(5):462–9.PubMedGoogle Scholar
  5. 5.
    • Qaseem A, Kansagara D, Forciea MA, Cooke M, Denberg TD. Clinical Guidelines Committee of the American College of P. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2016;165(2):125–33 Guideline of the American College of Physicians recommending cognitive behavioral therapy as the treatment of choice for insomnia.PubMedGoogle Scholar
  6. 6.
    Riemann D, Baglioni C, Bassetti C, Bjorvatn B, Dolenc Groselj L, Ellis JG, et al. European guideline for the diagnosis and treatment of insomnia. J Sleep Res. 2017;26(6):675–700.PubMedGoogle Scholar
  7. 7.
    • van Straten A, van der Zweerde T, Kleiboer A, Cuijpers P, Morin CM, Lancee J. Cognitive and behavioral therapies in the treatment of insomnia: a meta-analysis. Sleep Med Rev. 2018;38:3–16 Most recent meta-analysis on the efficacy of cognitive behavioral therapy for insomnia. Google Scholar
  8. 8.
    Edinger JD, Carney CE, editors. Overcoming insomnia: a cognitive-behavioral therapy approach, Therapist Guide (Treatments That Work) (2nd ed.). New York (NY): Oxford University Press; 2014.Google Scholar
  9. 9.
    Manber R, Carney CE. Treatment plans and interventions for insomnia: a case formulation approach. New York: The Guilford Press; 2015.Google Scholar
  10. 10.
    Bootzin RR, Editor stimulus control treatment for insomnia. 80th Annual Conference American Psychiatric Association; 1972.Google Scholar
  11. 11.
    Spielman AJ, Saskin P, Thorpy MJ. Treatment of chronic insomnia by restriction of time in bed. SLEEP. 1987;10(1):45–56.Google Scholar
  12. 12.
    Ascher LM, Turner R. Paradoxical intention and insomnia: an experimental investigation. Behav Res Ther. 1979;17(4):408–11.PubMedGoogle Scholar
  13. 13.
    Morgenthaler T, Kramer M, Alessi C, Friedman L, Boehlecke B, Brown T, et al. Practice parameters for the psychological and behavioral treatment of insomnia: an update. An American academy of sleep medicine report. SLEEP. 2006;29(11):1415–9.Google Scholar
  14. 14.
    Ong JC, Shapiro SL, Manber R. Combining mindfulness meditation with cognitive-behavior therapy for insomnia: a treatment-development study. Behav Ther. 2008;39(2):171–82.PubMedGoogle Scholar
  15. 15.
    Espie CA. “Stepped care”: a health technology solution for delivering cognitive behavioral therapy as a first line insomnia treatment. Sleep. 2009;32(12):1549–58.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Andersson G, Carlbring P. Internet-assisted cognitive behavioral therapy. Psychiatr Clin North Am. 2017;40(4):689–700.PubMedGoogle Scholar
  17. 17.
    Espie CA, Kyle SD, Gehrman P, Ong JC, Hames P. Tailoring cognitive-behavioural therapy for insomnia to specific needs: a personalized behavioural medicine approach. In: Bassetti C, Dogas Z, Peigneux P, editors. ESRS European Sleep Medicine Textbook. Regensburg: European Sleep Research Society (ESRS); 2014.Google Scholar
  18. 18.
    Luik AI, Kyle SD, Espie CA. Digital cognitive behavioral therapy (dCBT) for insomnia: a state-of-the-science review. Curr Sleep Med Rep. 2017;3(2):48–56.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Gehrman P, Shah MT, Miles A, Kuna S, Godleski L. Feasibility of group cognitive-behavioral treatment of insomnia delivered by clinical video telehealth. Telemed J E Health. 2016;22(12):1041–6.PubMedGoogle Scholar
  20. 20.
    Lichstein KL, Scogin F, Thomas SJ, DiNapoli EA, Dillon HR, McFadden A. Telehealth cognitive behavior therapy for co-occurring insomnia and depression symptoms in older adults. J Clin Psychol. 2013;69(10):1056–65.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuhn E, Weiss BJ, Taylor KL, Hoffman JE, Ramsey KM, Manber R, et al. CBT-I coach: a description and clinician perceptions of a mobile app for cognitive behavioral therapy for insomnia. J Clin Sleep Med. 2016;12(4):597–606.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lancee J, van den Bout J, van Straten A, Spoormaker VI. Internet-delivered or mailed self-help treatment for insomnia?: a randomized waiting-list controlled trial. Behav Res Ther. 2012;50(1):22–9.PubMedGoogle Scholar
  23. 23.
    van Straten A, Emmelkamp J, de Wit J, Lancee J, Andersson G, van Someren EJ, et al. Guided Internet-delivered cognitive behavioural treatment for insomnia: a randomized trial. Psychol Med. 2014;44(7):1521–32.PubMedGoogle Scholar
  24. 24.
    Blom K, Tarkian Tillgren H, Wiklund T, Danlycke E, Forssen M, Soderstrom A, et al. Internet-vs. group-delivered cognitive behavior therapy for insomnia: a randomized controlled non-inferiority trial. Behav Res Ther. 2015;70:47–55.PubMedGoogle Scholar
  25. 25.
    Ritterband LM, Thorndike FP, Gonder-Frederick LA, Magee JC, Bailey ET, Saylor DK, et al. Efficacy of an Internet-based behavioral intervention for adults with insomnia. Arch Gen Psychiatry. 2009;66(7):692–8.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Vincent N, Lewycky S. Logging on for better sleep: RCT of the effectiveness of online treatment for insomnia. Sleep. 2009;32(6):807–15.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Espie CA, Kyle SD, Williams C, Ong JC, Douglas NJ, Hames P, et al. A randomized, placebo-controlled trial of online cognitive behavioral therapy for chronic insomnia disorder delivered via an automated media-rich web application. Sleep. 2012;35(6):769–81.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Strom L, Pettersson R, Andersson G. Internet-based treatment for insomnia: a controlled evaluation. J Consult Clin Psychol. 2004;72(1):113–20.PubMedGoogle Scholar
  29. 29.
    Ho FY, Chung KF, Yeung WF, Ng TH, Cheng SK. Weekly brief phone support in self-help cognitive behavioral therapy for insomnia disorder: relevance to adherence and efficacy. Behav Res Ther. 2014;63:147–56.PubMedGoogle Scholar
  30. 30.
    Lancee J, Eisma MC, van Straten A, Kamphuis JH. Sleep-related safety behaviors and dysfunctional beliefs mediate the efficacy of online CBT for insomnia: a randomized controlled trial. Cogn Behav Ther. 2015;44(5):406–22.PubMedGoogle Scholar
  31. 31.
    de Bruin EJ, Bogels SM, Oort FJ, Meijer AM. Efficacy of cognitive behavioral therapy for insomnia in adolescents: a randomized controlled trial with Internet therapy, group therapy and a waiting list condition. Sleep. 2015;38(12):1913–26.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Suzuki E, Tsuchiya M, Hirokawa K, Taniguchi T, Mitsuhashi T, Kawakami N. Evaluation of an internet-based self-help program for better quality of sleep among Japanese workers: a randomized controlled trial. J Occup Health. 2008;50(5):387–99.PubMedGoogle Scholar
  33. 33.
    Bernstein AM, Allexandre D, Bena J, Doyle J, Gendy G, Wang L, et al. “Go! to sleep”: a web-based therapy for insomnia. Telemed J E Health. 2017;23(7):590–9.PubMedGoogle Scholar
  34. 34.
    Horsch CH, Lancee J, Griffioen-Both F, Spruit S, Fitrianie S, Neerincx MA, et al. Mobile phone-delivered cognitive behavioral therapy for insomnia: a randomized waitlist controlled trial. J Med Internet Res. 2017;19(4):e70.PubMedPubMedCentralGoogle Scholar
  35. 35.
    • Zachariae R, Lyby MS, Ritterband LM, O'Toole MS. Efficacy of internet-delivered cognitive-behavioral therapy for insomnia - a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2016;30:1–10 Recent meta-analysis on the efficacy of digital cognitive behavioral therapy for insomnia. PubMedGoogle Scholar
  36. 36.
    Seyffert M, Lagisetty P, Landgraf J, Chopra V, Pfeiffer PN, Conte ML, et al. Internet-delivered cognitive behavioral therapy to treat insomnia: a systematic review and meta-analysis. PLoS One. 2016;11(2):e0149139.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Espie CA, Hames P, McKinstry B. Use of the internet and mobile media for delivery of cognitive behavioral insomnia therapy. Sleep Med Clin. 2013;8(3):407–19.Google Scholar
  38. 38.
    Blom K, Jernelov S, Kraepelien M, Bergdahl MO, Jungmarker K, Ankartjarn L, et al. Internet treatment addressing either insomnia or depression, for patients with both diagnoses: a randomized trial. SLEEP. 2015;38(2):267–77.PubMedGoogle Scholar
  39. 39.
    Thiart H, Lehr D, Ebert DD, Berking M, Riper H. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain - results of a randomized controlled trial. Scand J Work Environ Health. 2015;41(2):164–74.PubMedGoogle Scholar
  40. 40.
    Bostock S, Luik AI, Espie CA. Sleep and productivity benefits of digital cognitive behavioral therapy for insomnia: a randomized controlled trial conducted in the workplace environment. J Occup Environ Med. 2016;58(7):683–9.PubMedGoogle Scholar
  41. 41.
    Christensen H, Batterham PJ, Gosling JA, Ritterband LM, Griffiths KM, Thorndike FP, et al. Effectiveness of an online insomnia program (SHUTi) for prevention of depressive episodes (the GoodNight Study): a randomised controlled trial. Lancet Psychiatry. 2016;3(4):333–41.PubMedGoogle Scholar
  42. 42.
    De Bruin EJ, van Steensel FJ, Meijer AM. Cost-effectiveness of group and Internet cognitive behavioral therapy for insomnia in adolescents: results from a randomized controlled trial. Sleep. 2016;39(8):1571–81.PubMedPubMedCentralGoogle Scholar
  43. 43.
    • Lancee J, van Straten A, Morina N, Kaldo V, Kamphuis JH. Guided online or face-to-face cognitive behavioral treatment for insomnia: a randomized wait-list controlled trial. Sleep. 2016;39(1):183–91 First published trial comparing face-to-face cognitive behavioral therapy with digital cognitive behavioral therapy directly.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Thiart H, Ebert DD, Lehr D, Nobis S, Buntrock C, Berking M, et al. Internet-based cognitive behavioral therapy for insomnia: a health economic evaluation. SLEEP. 2016;39(10):1769–78.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Weise C, Kleinstauber M, Andersson G. Internet-delivered cognitive-behavior therapy for tinnitus: a randomized controlled trial. Psychosom Med. 2016;78(4):501–10.PubMedGoogle Scholar
  46. 46.
    Barnes CM, Miller J, Bostock S. Helping employees sleep well: effects of cognitive behavioral therapy for insomnia on work outcomes. J Appl Psychol. 2017;102:104–13.PubMedGoogle Scholar
  47. 47.
    Freeman D, Sheaves B, Goodwin GM, Yu LM, Nickless A, Harrison PJ, et al. The effects of improving sleep on mental health (OASIS): a randomised controlled trial with mediation analysis. Lancet Psychiatry. 2017;4(10):749–58.PubMedPubMedCentralGoogle Scholar
  48. 48.
    McGrath ER, Espie CA, Power A, Murphy AW, Newell J, Kelly C, et al. Sleep to lower elevated blood pressure: a randomized controlled trial (SLEPT). Am J Hypertens. 2017;30:319–27.PubMedGoogle Scholar
  49. 49.
    Ritterband LM, Thorndike FP, Ingersoll KS, Lord HR, Gonder-Frederick L, Frederick C, et al. Effect of a web-based cognitive behavior therapy for insomnia intervention with 1-year follow-up: a randomized clinical trial. JAMA Psychiatry. 2017;74:68–75.PubMedGoogle Scholar
  50. 50.
    Taylor DJ, Peterson AL, Pruiksma KE, Young-McCaughan S, Nicholson K, Mintz J, et al. Internet and in-person cognitive behavioral therapy for insomnia in military personnel: a randomized clinical trial. Sleep. 2017;40(6):zsx075.Google Scholar
  51. 51.
    Chow PI, Ingersoll KS, Thorndike FP, Lord HR, Gonder-Frederick L, Morin CM, et al. Cognitive mechanisms of sleep outcomes in a randomized clinical trial of internet-based cognitive behavioral therapy for insomnia. Sleep Med. 2018;47:77–85.PubMedGoogle Scholar
  52. 52.
    • Espie CA, Emsley R, Kyle SD, Gordon C, Drake CL, Siriwardena AN, et al. Effect of digital cognitive behavioral therapy for insomnia on health, psychological well-being, and sleep-related quality of life: a randomized clinical trial. JAMA Psychiatry. 2018. Trial including assessment of the potential side effects of digital cognitive behavioral therapy for insomnia. Google Scholar
  53. 53.
    Hagatun S, Vedaa O, Harvey AG, Nordgreen T, Smith ORF, Pallesen S, et al. Internet-delivered cognitive-behavioral therapy for insomnia and comorbid symptoms. Internet Interv. 2018;12:11–5.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Luyster FS, Ritterband LM, Sereika SM, Buysse DJ, Wenzel SE, Strollo PJ. Internet-based cognitive-behavioral therapy for insomnia in adults with asthma: a pilot study. Behav Sleep Med. 2018:1–13.Google Scholar
  55. 55.
    Cheng P, Luik AI, Fellman-Couture C, Peterson E, Joseph CLM, Tallent G, et al. Efficacy of digital CBT for insomnia to reduce depression across demographic groups: a randomized trial. Psychol Med. 2019;49(3):491–500.PubMedGoogle Scholar
  56. 56.
    • Forsell E, Jernelov S, Blom K, Kraepelien M, Svanborg C, Andersson G, et al. Proof of concept for an adaptive treatment strategy to prevent failures in Internet-delivered CBT: a single-blind randomized clinical trial with insomnia patients. Am J Psychiatry. 2019;176:315–23 Trial investigating how digitial cognitive behavioral therapy could be used in a stepped care approach. PubMedGoogle Scholar
  57. 57.
    Glozier N, Christensen H, Griffiths KM, Hickie IB, Naismith SL, Biddle D, et al. Adjunctive Internet-delivered cognitive behavioural therapy for insomnia in men with depression: a randomised controlled trial. Aust N Z J Psychiatry. 2019;53:350–60.PubMedGoogle Scholar
  58. 58.
    Lancee J, Effting M, van der Zweerde T, van Daal L, van Straten A, Kamphuis JH. Cognitive processes mediate the effects of insomnia treatment: evidence from a randomized wait-list controlled trial. Sleep Med. 2019;54:86–93.PubMedGoogle Scholar
  59. 59.
    van der Zweerde T, van Straten A, Effting M, Kyle SD, Lancee J. Does online insomnia treatment reduce depressive symptoms? A randomized controlled trial in individuals with both insomnia and depressive symptoms. Psychol Med. 2019;49(3):501–9.PubMedGoogle Scholar
  60. 60.
    Lorenz N, Heim E, Roetger A, Birrer E, Maercker A. Randomized controlled trial to test the efficacy of an unguided online intervention with automated feedback for the treatment of insomnia. Behav Cogn Psychother. 2018;47:287–302.PubMedGoogle Scholar
  61. 61.
    Vedaa O, Hagatun S, Kallestad H, Pallesen S, Smith ORF, Thorndike FP, et al. Long-term effects of an unguided online cognitive behavioral therapy for chronic insomnia. J Clin Sleep Med. 2019;15(1):101–10.PubMedGoogle Scholar
  62. 62.
    Kaldo V, Jernelov S, Blom K, Ljotsson B, Brodin M, Jorgensen M, et al. Guided internet cognitive behavioral therapy for insomnia compared to a control treatment - a randomized trial. Behav Res Ther. 2015;71:90–100.PubMedGoogle Scholar
  63. 63.
    Blom K, Jernelov S, Ruck C, Lindefors N, Kaldo V. Three-year follow-up of insomnia and hypnotics after controlled Internet treatment for insomnia. SLEEP. 2016;39(6):1267–74.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Werner-Seidler A, Johnston L, Christensen H. Digitally-delivered cognitive-behavioural therapy for youth insomnia: a systematic review. Internet Interv. 2018;11:71–8.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Zachariae R, Amidi A, Damholdt MF, Clausen CDR, Dahlgaard J, Lord H, et al. Internet-delivered cognitive-behavioral therapy for insomnia in breast cancer survivors: a randomized controlled trial. J Natl Cancer Inst. 2018;110(8):880–7.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ye YY, Zhang YF, Chen J, Liu J, Li XJ, Liu YZ, et al. Internet-based cognitive behavioral therapy for insomnia (ICBT-i) improves comorbid anxiety and depression-a meta-analysis of randomized controlled trials. PLoS One. 2015;10(11):e0142258.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Elison S, Ward J, Williams C, Espie C, Davies G, Dugdale S, et al. Feasibility of a UK community-based, eTherapy mental health service in Greater Manchester: repeated-measures and between-groups study of ‘Living Life to the Full Interactive’, ‘Sleepio’ and ‘Breaking Free Online’ at ‘Self Help Services. BMJ Open. 2017;7(7):e016392.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Luik AI, Bostock S, Chisnall L, Kyle SD, Lidbetter N, Baldwin N, et al. Treating depression and anxiety with digital cognitive behavioural therapy for insomnia: a real world NHS evaluation using standardized outcome measures. Behav Cogn Psychother. 2017;45:91–6.PubMedGoogle Scholar
  69. 69.
    Batterham PJ, Christensen H, Mackinnon AJ, Gosling JA, Thorndike FP, Ritterband LM, et al. Trajectories of change and long-term outcomes in a randomised controlled trial of internet-based insomnia treatment to prevent depression. BJPsych Open. 2017;3(5):228–35.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Morris J, Firkins A, Millings A, Mohr C, Redford P, Rowe A. Internet-delivered cognitive behavior therapy for anxiety and insomnia in a higher education context. Anxiety Stress Coping. 2016;29(4):415–31.PubMedGoogle Scholar
  71. 71.
    Gosling JA, Batterham P, Ritterband L, Glozier N, Thorndike F, Griffiths KM, et al. Online insomnia treatment and the reduction of anxiety symptoms as a secondary outcome in a randomised controlled trial: the role of cognitive-behavioural factors. Aust N Z J Psychiatry. 2018;52(12):1183–93.PubMedGoogle Scholar
  72. 72.
    de Bruin EJ, Dewald-Kaufmann JF, Oort FJ, Bogels SM, Meijer AM. Differential effects of online insomnia treatment on executive functions in adolescents. Sleep Med. 2015;16(4):510–20.PubMedGoogle Scholar
  73. 73.
    Horsch C, Lancee J, Beun RJ, Neerincx MA, Brinkman WP. Adherence to technology-mediated insomnia treatment: a meta-analysis, interviews, and focus groups. J Med Internet Res. 2015;17(9):e214.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Ho FY, Chung KF, Yeung WF, Ng TH, Kwan KS, Yung KP, et al. Self-help cognitive-behavioral therapy for insomnia: a meta-analysis of randomized controlled trials. Sleep Med Rev. 2015;19:17–28.PubMedGoogle Scholar
  75. 75.
    Yeung WF, Chung KF, Ho FY, Ho LM. Predictors of dropout from internet-based self-help cognitive behavioral therapy for insomnia. Behav Res Ther. 2015;73:19–24.PubMedGoogle Scholar
  76. 76.
    Blom K, Jernelov S, Lindefors N, Kaldo V. Facilitating and hindering factors in Internet-delivered treatment for insomnia and depression. Internet Interv. 2016;4:51–60.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Spek V, Cuijpers P, Nyklicek I, Riper H, Keyzer J, Pop V. Internet-based cognitive behaviour therapy for symptoms of depression and anxiety: a meta-analysis. Psychol Med. 2007;37(3):319–28.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Lancee J, van den Bout J, Sorbi MJ, van Straten A. Motivational support provided via email improves the effectiveness of internet-delivered self-help treatment for insomnia: a randomized trial. Behav Res Ther. 2013;51(12):797–805.PubMedGoogle Scholar
  79. 79.
    de Bruin EJ, Meijer AM. The impact of online therapeutic feedback on outcome measures in Internet-CBTI for adolescents with insomnia. Sleep Med. 2017;29:68–75.PubMedGoogle Scholar
  80. 80.
    Coulson NS, Smedley R, Bostock S, Kyle SD, Gollancz R, Luik AI, et al. The pros and cons of getting engaged in an online social community embedded within digital cognitive behavioral therapy for insomnia: survey among users. J Med Internet Res. 2016;18(4):e88.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Horsch C, Spruit S, Lancee J, van Eijk R, Beun RJ, Neerincx M, et al. Reminders make people adhere better to a self-help sleep intervention. Health Technol (Berl). 2017;7(2):173–88.Google Scholar
  82. 82.
    Carlbring P, Andersson G, Cuijpers P, Riper H, Hedman-Lagerlof E. Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: an updated systematic review and meta-analysis. Cogn Behav Ther. 2018;47(1):1–18.PubMedGoogle Scholar
  83. 83.
    van der Zweerde T, Lancee J, Slottje P, Bosmans J, Van Someren E, Reynolds C 3rd, et al. Cost-effectiveness of i-Sleep, a guided online CBT intervention, for patients with insomnia in general practice: protocol of a pragmatic randomized controlled trial. BMC Psychiatry. 2016;16:85.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Morin CM, Benca R. Chronic insomnia. Lancet. 2012;379(9821):1129–41.PubMedGoogle Scholar
  85. 85.
    Kelders SM, Kok RN, Ossebaard HC, Van Gemert-Pijnen JE. Persuasive system design does matter: a systematic review of adherence to web-based interventions. J Med Internet Res. 2012;14(6):e152.PubMedPubMedCentralGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Annemarie I. Luik
    • 1
    Email author
  • Tanja van der Zweerde
    • 2
  • Annemieke van Straten
    • 2
  • Jaap Lancee
    • 3
    • 4
  1. 1.Department of EpidemiologyErasmus MC University Medical CenterRotterdamNetherlands
  2. 2.Department of Clinical, Neuro and Developmental Psychology, Amsterdam Public Health Research InstituteVrije Universiteit AmsterdamAmsterdamNetherlands
  3. 3.Department of Clinical PsychologyUniversity of AmsterdamAmsterdamNetherlands
  4. 4.PsyQ AmsterdamAmsterdamNetherlands

Personalised recommendations