Advertisement

Neuroimaging Markers of Risk, Disease Expression, and Resilience to Bipolar Disorder

  • Sophia FrangouEmail author
Precision Medicine in Psychiatry (S Kennedy, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Precision Medicine in Psychiatry

Abstract

Purpose of Review

Familial predisposition to bipolar disorder is associated with increased risk of affective morbidity in the first-degree relatives of patients. Nevertheless, a substantial proportion of relatives remain free of psychopathology throughout their lifetime. A series of studies reviewed here were designed to test whether resilience in these high-risk individuals is associated with adaptive brain plasticity.

Recent Findings

The findings presented here derive from structural and functional magnetic resonance imaging data obtained from patients, their resilient first-degree relatives, and healthy individuals. Patients and relatives showed similar abnormalities in activation and connectivity while performing tasks of interference control and facial affect recognition and in the resting-state connectivity of sensory and motor regions. Resilient relatives manifested unique neuroimaging features that differentiated them from patients and healthy individuals. Specifically, they had larger cerebellar vermis volume, enhanced prefrontal connectivity during task performance, and enhanced functional integration of the default mode network in task-free conditions.

Summary

Resilience to bipolar disorder is not the reverse of risk but is associated with adaptive brain changes indicative of increased neural reserve. This line of research may open new avenues in preventing and treating bipolar disorder.

Keywords

Familial high risk Magnetic resonance imaging Mood disorders Bipolar disorder Resilience Resting-state functional MRI Working memory Interference control Facial affect Task-related functional MRI Brain imaging 

Notes

Compliance with Ethical Standards

Conflict of Interest

Sophia Frangou declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    McLaughlin KA, Gadermann AM, Hwang I, Sampson NA, Al-Hamzawi A, Andrade LH, et al. Parent psychopathology and offspring mental disorders: results from the WHO World Mental Health Surveys. Br J Psychiatry. 2012;200(4):290–9.  https://doi.org/10.1192/bjp.bp.111.101253.CrossRefPubMedGoogle Scholar
  2. 2.
    Belbasis L, Köhler CA, Stefanis N, Stubbs B, van Os J, Vieta E, et al. Risk factors and peripheral biomarkers for schizophrenia spectrum disorders: an umbrella review of meta-analyses. Acta Psychiatr Scand. 2018;137(2):88–97.  https://doi.org/10.1111/acps.12847.CrossRefPubMedGoogle Scholar
  3. 3.
    Bortolato B, Köhler CA, Evangelou E, León-Caballero J, Solmi M, Stubbs B, et al. Systematic assessment of environmental risk factors for bipolar disorder: an umbrella review of systematic reviews and meta-analyses. Bipolar Disord. 2017;19(2):84–96.  https://doi.org/10.1111/bdi.12490.CrossRefPubMedGoogle Scholar
  4. 4.
    Köhler CA, Evangelou E, Stubbs B, Solmi M, Veronese N, Belbasis L, et al. Mapping risk factors for depression across the lifespan: an umbrella review of evidence from meta-analyses and Mendelian randomization studies. J Psychiatr Res. 2018;103:189–207.  https://doi.org/10.1016/j.jpsychires.2018.05.020.CrossRefPubMedGoogle Scholar
  5. 5.
    Kan C, Silva N, Golden SH, Rajala U, Timonen M, Stahl D, et al. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care. 2013;36(2):480–9.  https://doi.org/10.2337/dc12-1442.CrossRefPubMedGoogle Scholar
  6. 6.
    Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74(3):261–9.  https://doi.org/10.1001/jamapsychiatry.2016.3803.CrossRefPubMedGoogle Scholar
  7. 7.
    Perry BI, Upthegrove R, Thompson A, Marwaha S, Zammit S, Singh SP, et al. Dysglycaemia, inflammation and psychosis: findings from the UK ALSPAC Birth Cohort. Schizophr Bull. 2018.  https://doi.org/10.1093/schbul/sby040.CrossRefGoogle Scholar
  8. 8.
    Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9.  https://doi.org/10.1016/S0140-6736(12)62129-1.CrossRefGoogle Scholar
  9. 9.
    Rutter M. Protective factors in children’s responses to stress and disadvantage. Ann Acad Med Singapore. 1979;8(3):324–38.PubMedGoogle Scholar
  10. 10.
    Rutter M. Developmental catch-up, and deficit, following adoption after severe global early privation. English and Romanian Adoptees (ERA) Study Team. J Child Psychol Psychiatry. 1998;39(4):465–76.CrossRefGoogle Scholar
  11. 11.
    Rutter M. Implications of resilience concepts for scientific understanding. Ann N Y Acad Sci. 2006;1094:1–12.  https://doi.org/10.1196/annals.1376.002.CrossRefPubMedGoogle Scholar
  12. 12.
    Rutter M. Resilience, competence, and coping. Child Abuse Negl. 2007;31(3):205–9.  https://doi.org/10.1016/j.chiabu.2007.02.001.CrossRefPubMedGoogle Scholar
  13. 13.
    Rutter M. Institutional effects on children: design issues and substantive findings. Monogr Soc Res Child Dev. 2008;73(3):271–8.CrossRefGoogle Scholar
  14. 14.
    Rutter M. Resilience as a dynamic concept. Dev Psychopathol. 2012;24(2):335–44.  https://doi.org/10.1017/S0954579412000028.CrossRefPubMedGoogle Scholar
  15. 15.
    Rutter M. Annual research review: resilience—clinical implications. J Child Psychol Psychiatry. 2013;54(4):474–87.  https://doi.org/10.1111/j.1469-7610.2012.02615.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Rutter M, Colvert E, Kreppner J, Beckett C, Castle J, Groothues C, et al. Early adolescent outcomes for institutionally-deprived and non-deprived adoptees. I: disinhibited attachment. J Child Psychol Psychiatry. 2007;48(1):17–30.  https://doi.org/10.1111/j.1469-7610.2006.01688.x.CrossRefPubMedGoogle Scholar
  17. 17.
    Ungar M. A constructionist discourse on resilience: multiple contexts, multiple realities among at-risk children and youth. Youth & Society. 2004;35(3):341–65.  https://doi.org/10.1177/0044118X03257030.CrossRefGoogle Scholar
  18. 18.
    Ungar M, Brown M, Liebenberg l CM, Levine K. Distinguishing differences in pathways to resilience among Canadian youth. CJCMH. 2008;27:1):1–13.  https://doi.org/10.7870/cjcmh-2008-0001.CrossRefGoogle Scholar
  19. 19.
    Ungar M, Brown M, Liebenberg L, Othman R, Kwong WM, Armstrong M, et al. Unique pathways to resilience across cultures. Adolescence. 2007 Summer;42(166):287–310.PubMedGoogle Scholar
  20. 20.
    Werner EE, Smith RS. Vulnerable but invincible: a study of resilient children. New York: McGraw-Hill; 1982.Google Scholar
  21. 21.
    Werner EE. High-risk children in young adulthood: a longitudinal study from birth to 32 years. Am J Orthopsychiatry. 1989;59(1):72–81.  https://doi.org/10.1111/j.1467-8624.1991.tb01555.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Garmezy N, Tellegen A. Studies of stress-resistant children: methods, variables and preliminary findings. In: Morrison FJ, Lord C, Keating DP, editors. Applied developmental psychology, vol. 1. New York: Academic Press; 1984.Google Scholar
  23. 23.
    Garmezy N, Masten AS, Tellegen A. The study of stress and competence in children: a building block for developmental psychopathology. Child Dev. 1984;55(1):97–111.  https://doi.org/10.2307/1129837.CrossRefPubMedGoogle Scholar
  24. 24.
    Masten AS, Garmezy N, Tellegen A, Pellegrini DS, Larkin K, Larsen A. Competence and stress in school children: the moderating effects of individual and family qualities. J Child Psychol Psychiatry. 1988;29(6):745–64.  https://doi.org/10.1111/j.1469-7610.1988.tb00751.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Luthar SS. Vulnerability and resilience: a study of high-risk adolescents. Child Dev. 1991;62(3):600–16.  https://doi.org/10.1111/j.1467-8624.1991.tb01555.x.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Frangou S. Risk and resilience in bipolar disorder: rationale and design of the Vulnerability to Bipolar Disorders Study (VIBES). Biochem Soc Trans. 2009;37(Pt 5:1085–9.  https://doi.org/10.1042/BST0371085.CrossRefPubMedGoogle Scholar
  27. 27.
    Kempton MJ, Haldane M, Jogia J, Grasby PM, Collier D, Frangou S. Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. J Neurosci. 2009;29(35):10863–10,868.  https://doi.org/10.1523/JNEUROSCI.2204-09.2009.CrossRefPubMedGoogle Scholar
  28. 28.
    Walterfang M, Wood AG, Barton S, Velakoulis D, Chen J, Reutens DC, et al. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(6):1050–7.  https://doi.org/10.1016/j.pnpbp.2009.05.019.CrossRefPubMedGoogle Scholar
  29. 29.
    Takahashi T, Walterfang M, Wood SJ, Kempton MJ, Jogia J, Lorenzetti V, et al. Pituitary volume in patients with bipolar disorder and their first-degree relatives. J Affect Disord. 2010;124(3):256–61.  https://doi.org/10.1016/j.jad.2009.12.002.CrossRefPubMedGoogle Scholar
  30. 30.
    Pompei F, Jogia J, Tatarelli R, Girardi P, Rubia K, Kumari V, et al. Familial and disease specific abnormalities in the neural correlates of the Stroop Task in Bipolar Disorder. Neuroimage. 2011;56(3):1677–84.  https://doi.org/10.1016/j.neuroimage.2011.02.052.CrossRefPubMedGoogle Scholar
  31. 31.
    Pompei F, Dima D, Rubia K, Kumari V, Frangou S. Dissociable functional connectivity changes during the Stroop task relating to risk, resilience and disease expression in bipolar disorder. Neuroimage. 2011;57(2):576–82.  https://doi.org/10.1016/j.neuroimage.2011.04.055.CrossRefPubMedGoogle Scholar
  32. 32.
    Forcada I, Papachristou E, Mur M, Christodoulou T, Jogia J, Reichenberg A, et al. The impact of general intellectual ability and white matter volume on the functional outcome of patients with bipolar disorder and their relatives. J Affect Disord. 2011;130(3):413–20.  https://doi.org/10.1016/j.neuroimage.2016.08.066.CrossRefPubMedGoogle Scholar
  33. 33.
    Lelli-Chiesa G, Kempton MJ, Jogia J, Tatarelli R, Girardi P, Powell J, et al. The impact of the Val158Met catechol-O-methyltransferase genotype on neural correlates of sad facial affect processing in patients with bipolar disorder and their relatives. Psychol Med. 2011;41(4):779–88.  https://doi.org/10.1017/S0033291710001431.CrossRefPubMedGoogle Scholar
  34. 34.
    Frangou S. Brain structural and functional correlates of resilience to Bipolar Disorder. Front Hum Neurosci. 2012;5:184.  https://doi.org/10.3389/fnhum.2011.00184.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.••
    Dima D, Roberts RE, Frangou S. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder. Transl Psychiatry. 2016;6:e706.  https://doi.org/10.1038/tp.2015.193 This study provided first evidence for task-specific aspects of resilience in healthy relatives of patients with bipolar disorder by showing dissociation between working memory and specific aspects of facial affect processing. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Frangou S, Dima D, Jogia J. Toward person-centered neuroimaging markers for resilience and vulnerability in Bipolar Disorder. Neuroimage. 2017;145(Pt B):230–7.  https://doi.org/10.1016/j.neuroimage.2016.08.066.CrossRefPubMedGoogle Scholar
  37. 37.••
    Doucet GE, Bassett DS, Yao N, Glahn DC, Frangou S. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry. 2017;174(12):1214–22.  https://doi.org/10.1176/appi.ajp.2017.17010095 This is the first study to show that the functional integration of the default mode network plays an important role in differentiating resilient from affected siblings.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.CrossRefGoogle Scholar
  39. 39.
    Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 2003;123C(1):48–58.  https://doi.org/10.1002/ajmg.c.20013.CrossRefPubMedGoogle Scholar
  40. 40.
    Mesman E, Nolen WA, Reichart CG, Wals M, Hillegers MH. The Dutch bipolar offspring study: 12-year follow-up. Am J Psychiatry. 2013;170:542–9.  https://doi.org/10.1176/appi.ajp.2012.12030401.CrossRefPubMedGoogle Scholar
  41. 41.
    Loftus J, Etain B, Scott J. What can we learn from offspring studies in bipolar disorder? BJPsych Advances. 2016;22(3):176–85.  https://doi.org/10.1192/apt.bp.114.013086.CrossRefGoogle Scholar
  42. 42.
    Carpenter SR, Walker B, Anderies JM, Abel N. From metaphor to measurement: resilience of what to what? Ecosystems. 2001;4(8):765–81.  https://doi.org/10.1007/s10021-001-0045-9.CrossRefGoogle Scholar
  43. 43.
    Hibar DP, Westlye LT, van Erp TG, Rasmussen J, Leonardo CD, Faskowitz J, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21(12):1710–6.  https://doi.org/10.1038/mp.2015.227.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23(4):932–42.  https://doi.org/10.1038/mp.2017.73.CrossRefPubMedGoogle Scholar
  45. 45.
    Pezzoli S, Emsell L, Yip SW, Dima D, Giannakopoulos P, Zarei M, et al. Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data. Neurosci Biobehav Rev. 2018;84:162–70.  https://doi.org/10.1016/j.neubiorev.2017.11.005.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Arts B, Jabben N, Krabbendam L, van Os J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med. 2008;38(6):771–85.  https://doi.org/10.1017/S0033291707001675.CrossRefPubMedGoogle Scholar
  47. 47.
    Glahn DC, Almasy L, Barguil M, Hare E, Peralta JM, Kent JW Jr, et al. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Arch Gen Psychiatry. 2010;67(2):168–77.  https://doi.org/10.1001/archgenpsychiatry.2009.184.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13(1):1–15.  https://doi.org/10.1111/j.1399-5618.2011.00893.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O, et al. Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol. 2012;22(2):100–13.  https://doi.org/10.1016/j.euroneuro.2011.07.003.CrossRefPubMedGoogle Scholar
  50. 50.
    Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15.  https://doi.org/10.1038/s41537-017-0013-9.CrossRefPubMedGoogle Scholar
  51. 51.
    Vargas C, López-Jaramillo C, Vieta E. A systematic literature review of resting state network—functional MRI in bipolar disorder. J Affect Disord. 2013;150(3):727–35.  https://doi.org/10.1016/j.jad.2013.05.083.CrossRefPubMedGoogle Scholar
  52. 52.
    Ongür D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, et al. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res. 2010;183(1):59–68.  https://doi.org/10.1016/j.pscychresns.2010.04.008.CrossRefPubMedGoogle Scholar
  53. 53.
    Calhoun VD, Sui J, Kiehl K, Turner JA, Allen EA, Pearlson G. Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Front Psychiatry. 2012;2:75.  https://doi.org/10.3389/fpsyt.2011.00075.CrossRefPubMedGoogle Scholar
  54. 54.
    Khadka S, Meda SA, Stevens MC, Glahn DC, Calhoun VD, Sweeney JA, et al. Is aberrant functional connectivity psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biol Psychiatry. 2013;74(6):458–66.  https://doi.org/10.1016/j.biopsych.2013.04.024.CrossRefPubMedGoogle Scholar
  55. 55.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82.  https://doi.org/10.1073/pnas.98.2.676.CrossRefPubMedGoogle Scholar
  56. 56.
    Ladouceur CD, Almeida JR, Birmaher B, Axelson DA, Nau S, Kalas C, et al. Subcortical gray matter volume abnormalities in healthy bipolar offspring: potential neuroanatomical risk marker for bipolar disorder? J Am Acad Child Adolesc Psychiatry. 2008;47(5):532–9.  https://doi.org/10.1097/CHI.0b013e318167656e.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hajek T, Gunde E, Slaney C, Propper L, MacQueen G, Duffy A, et al. Amygdala and hippocampal volumes in relatives of patients with bipolar disorder: a high-risk study. Can J Psychiatry. 2009;54(11):726–33.  https://doi.org/10.1177/070674370905401102.CrossRefPubMedGoogle Scholar
  58. 58.
    Hajek T, Gunde E, Slaney C, Propper L, MacQueen G, Duffy A, et al. Striatal volumes in affected and unaffected relatives of bipolar patients—high-risk study. J Psychiatr Res. 2009;43(7):724–9.  https://doi.org/10.1016/j.jpsychires.2008.10.008.CrossRefPubMedGoogle Scholar
  59. 59.
    Hajek T, Gunde E, Bernier D, Slaney C, Propper L, Grof P, et al. Subgenual cingulate volumes in affected and unaffected offspring of bipolar parents. J Affect Disord. 2008;108:263–9.  https://doi.org/10.1016/j.jad.2007.10.024.CrossRefPubMedGoogle Scholar
  60. 60.
    Hajek T, Novak T, Kopecek M, et al. Subgenual cingulate volumes in offspring of bipolar parents and in sporadic bipolar patients. Eur Arch Psychiatry Clin Neurosci. 2010;260:297–304.  https://doi.org/10.1007/s00406-009-0077-2.CrossRefPubMedGoogle Scholar
  61. 61.
    Singh MK, Delbello MP, Adler CM, Kopecek M, Gunde E, Alda M, et al. Neuroanatomical characterization of child offspring of bipolar parents. J Am Acad Child Adolesc Psychiatry. 2008;47(4):526–31.  https://doi.org/10.1097/CHI.0b013e318167655a.CrossRefPubMedGoogle Scholar
  62. 62.
    Fusar-Poli P, Howes O, Bechdolf A, Borgwardt S. Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies. J Psychiatry Neurosci. 2012;37(3):170–84.  https://doi.org/10.1503/jpn.110061.CrossRefPubMedGoogle Scholar
  63. 63.
    Bertocci MA, Bebko G, Versace A, Fournier JC, Iyengar S, Olino T, et al. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth. Mol Psychiatry. 2016;21(9):1194–201.  https://doi.org/10.1038/mp.2016.5.CrossRefPubMedGoogle Scholar
  64. 64.
    Hafeman D, Bebko G, Bertocci MA, Fournier JC, Chase HW, Bonar L, et al. Amygdala-prefrontal cortical functional connectivity during implicit emotion processing differentiates youth with bipolar spectrum from youth with externalizing disorders. J Affect Disord. 2017;208:94–100.  https://doi.org/10.1016/j.jad.2016.09.064.CrossRefPubMedGoogle Scholar
  65. 65.
    Manelis A, Ladouceur CD, Graur S, Monk K, Bonar LK, Hickey MB, et al. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder. Brain. 2015;138(Pt 9):2777–90.  https://doi.org/10.1093/brain/awv176.CrossRefPubMedGoogle Scholar
  66. 66.
    Ladouceur CD, Diwadkar VA, White R, Bass J, Birmaher B, Axelson DA, et al. Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Dev Cogn Neurosci. 2013;5:185–96.  https://doi.org/10.1016/j.dcn.2013.03.004.CrossRefPubMedGoogle Scholar
  67. 67.
    Breakspear M, Roberts G, Green MJ, Nguyen VT, Frankland A, Levy F, et al. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder. Brain. 2015;138(Pt 11:3427–39.  https://doi.org/10.1093/brain/awv261.CrossRefPubMedGoogle Scholar
  68. 68.
    Roberts G, Lord A, Frankland A, Wright A, Lau P, Levy F, et al. Functional dysconnection of the inferior frontal gyrus in young people with bipolar disorder or at genetic high risk. Biol Psychiatry. 2017;81(8):718–27.  https://doi.org/10.1016/j.biopsych.2016.08.018.CrossRefPubMedGoogle Scholar
  69. 69.
    Lui S, Yao L, Xiao Y, Keedy SK, Reilly JL, Keefe RS, et al. Resting-state brain function in schizophrenia and psychotic bipolar probands and their first-degree relatives. Psychol Med. 2015;45(1):97–108.  https://doi.org/10.1017/S003329171400110X.CrossRefPubMedGoogle Scholar
  70. 70.
    Meda SA, Gill A, Stevens MC, Lorenzoni RP, Glahn DC, Calhoun VD, et al. Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biol Psychiatry. 2012;71(10):881–9.  https://doi.org/10.1016/j.biopsych.2012.01.025.CrossRefPubMedGoogle Scholar
  71. 71.
    McIntosh AM, Job DE, Moorhead TW, Harrison LK, Forrester K, Lawrie SM, et al. Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiatry. 2004;56(8):544–52.  https://doi.org/10.1016/j.biopsych.2004.07.020.CrossRefPubMedGoogle Scholar
  72. 72.
    van der Schot AC, Vonk R, Brans RG, van Haren NE, Koolschijn PC, Nuboer V, et al. Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry. 2009;66(2):142–51.  https://doi.org/10.1001/archgenpsychiatry.2008.541.CrossRefPubMedGoogle Scholar
  73. 73.
    de Zwarte S, Brouwer R, Ching C, van Erp T, Thompson P, Andreassen O, Turner J, van Haren N, ENIGMA Relatives Group. Biol Psychiatry. 2018; 83 (9): S220.Google Scholar
  74. 74.
    Reis DJ, Golanov EV. Autonomic and vasomotor regulation. Int Rev. Neurobiol. 1997;41:121–49.CrossRefGoogle Scholar
  75. 75.
    Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci U S A. 2000;97(5):2332–6.  https://doi.org/10.1073/pnas.040555497.CrossRefPubMedGoogle Scholar
  76. 76.
    Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev. Neurosci. 2002;3(8):655–66.  https://doi.org/10.1038/nrn894.CrossRefPubMedGoogle Scholar
  77. 77.
    Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62.  https://doi.org/10.1126/science.1093535.CrossRefPubMedGoogle Scholar
  78. 78.
    Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129(Pt 2):290–2.  https://doi.org/10.1093/brain/awh729.CrossRefPubMedGoogle Scholar
  79. 79.
    Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121 (Pt 4:561–79.CrossRefGoogle Scholar
  80. 80.
    Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501.  https://doi.org/10.1016/j.neuroimage.2008.08.039.CrossRefPubMedGoogle Scholar
  81. 81.
    Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.  https://doi.org/10.1016/j.cortex.2009.11.008.CrossRefPubMedGoogle Scholar
  82. 82.
    Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004 Summer;16(3):367–78.  https://doi.org/10.1176/jnp.16.3.367.CrossRefPubMedGoogle Scholar
  83. 83.
    Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev. Neurosci. 2006;7(7):511–22.  https://doi.org/10.1038/nrn1953.CrossRefPubMedGoogle Scholar
  84. 84.
    Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162(3):756–62.  https://doi.org/10.1016/j.neuroscience.2009.01.064.CrossRefPubMedGoogle Scholar
  85. 85.
    Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–8.  https://doi.org/10.1136/jnnp.72.1.116.CrossRefPubMedGoogle Scholar
  86. 86.
    Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41.  https://doi.org/10.1016/j.neuropsychologia.2006.09.023.CrossRefPubMedGoogle Scholar
  87. 87.
    Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;XVIII:643–62.CrossRefGoogle Scholar
  88. 88.
    Owen AM, McMillan KM, Laird AR, Bullmore ET. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59.  https://doi.org/10.1002/hbm.20131.CrossRefPubMedGoogle Scholar
  89. 89.
    Said CP, Haxby JV, Todorov A. Brain systems for assessing the affective value of faces. Philos Trans R Soc Lond B Biol Sci. 2011;366(1571):1660–70.  https://doi.org/10.1098/rstb.2010.0351.CrossRefPubMedGoogle Scholar
  90. 90.
    Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia. 2007;45(1):174–94.  https://doi.org/10.1016/j.neuropsychologia.2006.06.003.CrossRefPubMedGoogle Scholar
  91. 91.
    Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012;12(2):241–68.  https://doi.org/10.3758/s13415-011-0083-5.CrossRefPubMedGoogle Scholar
  92. 92.
    Wager TD, Sylvester CY, Lacey SC, Nee DE, Franklin M, Jonides J. Common and unique components of response inhibition revealed by fMRI. Neuroimage. 2005;27(2):323–40.  https://doi.org/10.1016/j.neuroimage.2005.01.054.CrossRefPubMedGoogle Scholar
  93. 93.
    Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1–17.  https://doi.org/10.3758/CABN.7.1.1.CrossRefPubMedGoogle Scholar
  94. 94.
    Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):917–32.  https://doi.org/10.1098/rstb.2007.2097.CrossRefPubMedGoogle Scholar
  95. 95.
    Pochon JB, Riis J, Sanfey AG, Nystrom LE, Cohen JD. Functional imaging of decision conflict. J Neurosci. 2008;28(13):3468–73.  https://doi.org/10.1523/JNEUROSCI.4195-07.2008.CrossRefPubMedGoogle Scholar
  96. 96.
    Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4(6):223–33.  https://doi.org/10.1016/S1364-6613(00)01482-0.CrossRefPubMedGoogle Scholar
  97. 97.
    Hoffman EA, Haxby JV. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci. 2000;3(1):80–4.  https://doi.org/10.1038/71152.CrossRefPubMedGoogle Scholar
  98. 98.
    Haxby JV, Hoffman EA, Gobbini MI. Human neural systems for face recognition and social communication. Biol Psychiatry. 2000;51(1):59–67.  https://doi.org/10.1016/S0006-3223(01)01330-0.CrossRefGoogle Scholar
  99. 99.
    Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002;12(2):169–77.  https://doi.org/10.1016/S0959-4388(02)00301-X.CrossRefPubMedGoogle Scholar
  100. 100.
    Dima D, Stephan KE, Roiser JP, Friston KJ, Frangou S. Effective connectivity during processing of facial affect: evidence for multiple parallel pathways. J Neurosci. 2011;31(40):14378–14,385.  https://doi.org/10.1523/JNEUROSCI.2400-11.2011.CrossRefPubMedGoogle Scholar
  101. 101.
    LeDoux JE. The emotional brain: the mysterious underpinnings of emotional life. New York: Touchstone; 1998.Google Scholar
  102. 102.
    Rolls ET. The brain and emotion. Oxford: Oxford UP; 1999.Google Scholar
  103. 103.
    Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9(9):242–9.  https://doi.org/10.1016/j.tics.2005.03.010.CrossRefPubMedGoogle Scholar
  104. 104.
    Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol. 2006;16(6):723–7.  https://doi.org/10.1016/j.conb.2006.07.004.CrossRefPubMedGoogle Scholar
  105. 105.
    Friston KJ, Harrison L, Penny W. Dynamic causal modeling. Neuroimage. 2003;19:1273–302.  https://doi.org/10.1016/S1053-8119(03)00202-7.CrossRefPubMedGoogle Scholar
  106. 106.
    Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci. 2010;4:22.  https://doi.org/10.3389/fnsys.2010.00022.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Reynaud E, Lesourd M, Navarro J, Osiurak F. On the neurocognitive origins of human tool use: a critical review of neuroimaging data. Neurosci Biobehav Rev. 2016;64:421–37.  https://doi.org/10.1016/j.neubiorev.2016.03.009.CrossRefPubMedGoogle Scholar
  108. 108.
    Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, et al. The role of the dorsal stream for gesture production. Neuroimage. 2006;29(2):417–28.  https://doi.org/10.1016/j.neuroimage.2005.07.026.CrossRefPubMedGoogle Scholar
  109. 109.
    Igelström KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. 2017;105:70–83.  https://doi.org/10.1016/j.neuropsychologia.2017.01.001.CrossRefPubMedGoogle Scholar
  110. 110.
    Cona G, Semenza C. Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci Biobehav Rev. 2017;72:28–42.  https://doi.org/10.1016/j.neubiorev.2016.10.033.CrossRefPubMedGoogle Scholar
  111. 111.
    Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev. 2016;68:602–10.  https://doi.org/10.1016/j.neubiorev.2016.06.030.CrossRefPubMedGoogle Scholar
  112. 112.
    Gu S, Satterthwaite TD, Medaglia JD, Yang M, Gur RE, Gur RC, et al. Emergence of system roles in normative neurodevelopment. Proc Natl Acad Sci U S A. 2015;3;112(44):13,681–6.  https://doi.org/10.1073/pnas.1502829112.CrossRefGoogle Scholar
  113. 113.
    Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54(5):515–28.  https://doi.org/10.1016/S0006-3223(03)00171-9.CrossRefPubMedGoogle Scholar
  114. 114.
    Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10(1):105–16.  https://doi.org/10.1038/sj.mp.4001585.CrossRefPubMedGoogle Scholar
  115. 115.••
    Fischer AS, Camacho MC, Ho TC, Whitfield-Gabrieli S, Gotlib IH. Neural markers of resilience in adolescent females at familial risk for major depressive disorder. JAMA Psychiatry. 2018;75(5):493–502.  https://doi.org/10.1001/jamapsychiatry.2017.4516 This study provided evidence of enhanced connectivity being associated with resilience to major affective disorder using a longitudinal design.CrossRefPubMedGoogle Scholar
  116. 116.
    Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–60.  https://doi.org/10.1017/S1355617702813248.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations