Advertisement

Off-label Antidepressant Use for Treatment and Management of Chronic Pain: Evolving Understanding and Comprehensive Review

  • Ivan UritsEmail author
  • Jacquelin Peck
  • Mariam Salisu Orhurhu
  • John Wolf
  • Riki Patel
  • Vwaire Orhurhu
  • Alan D. Kaye
  • Omar Viswanath
Other Pain (A Kaye and N Vadivelu, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Other Pain

Abstract

Purpose of Review

While clinicians have been using antidepressants for off-label indications in the treatment of chronic pain in recent years, newer studies have proven effectiveness and provided additional mechanistic understanding and defined potential adverse effects. As depression and chronic pain are frequently comorbid conditions, the use of antidepressants has allowed for treatment of both conditions concomitantly in the same patient population.

Recent Findings

The most commonly used antidepressants for chronic pain are tricyclic antidepressants (TCAs), though selective serotonin or noradrenaline reuptake inhibitors and other atypical antidepressants have been shown to be effective at treating chronic pain. In addition to neuropathic pain, bupropion has also demonstrated effectiveness in treating chronic pain caused by inflammatory bowel disease. Selective norepinephrine receptor inhibitors (SNRIs), including duloxetine, serve to suppress neuropathic pain by altering recovery of the noradrenergic descending inhibitory system in the spinal cord. While the direct mechanism of action is largely unknown, TCAs may suppress the noradrenergic descending inhibitory system to produce an antihyperalgesic effect.

Summary

The use of antidepressants offers alternative and adjunctive therapy options for patients suffering from chronic pain from various modalities. TCAs, mono-amine oxidase inhibitors, selective serotonin receptor inhibitors, SNRIs, and atypical antidepressants have been shown to have analgesic and sometimes antiinflammatory capabilities that are independent of their mood-stabilizing effects. Further studies are warranted to establish better safety profiles and efficacy of antidepressant use in chronic pain.

Keywords

Off-label antidepressants Antidepressants Chronic pain TCAs SNRIs SSRIs 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ivan Urits, Jacquelin Peck, Mariam Salisu Orhurhu, John Wolf, Riki Patel, Vwaire Orhurhu, and Omar Viswanath declare no conflict of interest. Alan D. Kaye discloses that he is on the Speakers Bureau for Depomed, Inc. and Merck.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jackson KC, St. Onge EL. Antidepressant pharmacotherapy: considerations for the pain clinician. Pain Pract. 2003;3:135–43.CrossRefGoogle Scholar
  2. 2.
    Murnion BP. Neuropathic pain: current definition and review of drug treatment. Aust Prescr NPS Med Wise. 2018;41:60–3.CrossRefGoogle Scholar
  3. 3.
    Mika J, Zychowska M, Makuch W, Rojewska E, Przewlocka B. Neuronal and immunological basis of action of antidepressants in chronic pain – clinical and experimental studies. Pharmacol Reports. 2013;65(6):1611–21.CrossRefGoogle Scholar
  4. 4.
    Morris DW, Trivedi MH, Fava M, Wisniewski SR, Balasubramani GK, Khan AY, et al. Diurnal mood variation in outpatients with major depressive disorder. Depress Anxiety. 2009;26:851–63.CrossRefGoogle Scholar
  5. 5.
    Goldstein DJ, Lu Y, Detke MJ, Lee TC, Iyengar S. Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain. 2005;116:109–18.CrossRefGoogle Scholar
  6. 6.
    Hirschfeld RMA, Mallinckrodt C, Lee TC, Detke MJ. Time course of depression-symptom improvement during treatment with duloxetine. Depress Anxiety. 2005;21:170–7.CrossRefGoogle Scholar
  7. 7.
    Mico J, Ardid D, Berrocoso E, Eschalier A. Antidepressants and pain. Trends Pharmacol Sci. 2006;27:348–54.CrossRefGoogle Scholar
  8. 8.
    •• Riediger C, Schuster T, Barlinn K, Maier S, Weitz J, Siepmann T. Adverse effects of antidepressants for chronic pain: a systematic review and meta-analysis. Front Neurol. 2017;8:307. A systematic review of adverse effects of antidepressants.Google Scholar
  9. 9.
    Fava M, Rush AJ, Thase ME, Clayton A, Stahl SM, Pradko JF, Johnston JA. 15 years of clinical experience with bupropion HCl: from bupropion to bupropion SR to bupropion XL. Prim Care Companion J Clin Psychiatry. 2005;7(3):106–13.CrossRefGoogle Scholar
  10. 10.
    Mikocka-Walus AA, Turnbull DA, Moulding NT, Wilson IG, Andrews JM, Holtmann GJ. Antidepressants and inflammatory bowel disease: a systematic review. Clin Pract Epidemiol Ment Health Bentham Science Publishers. 2006;2:24.CrossRefGoogle Scholar
  11. 11.
    Arias HR. Is the inhibition of nicotinic acetylcholine receptors by bupropion involved in its clinical actions? Int J Biochem Cell Biol. 2009;41:2098–108.CrossRefGoogle Scholar
  12. 12.
    Dhillon S, Yang LPH, Curran MP. Bupropion: a review of its use in the management of major depressive disorder. Drugs. 2008;68:653–89.CrossRefGoogle Scholar
  13. 13.
    Montgomery SA. Antidepressants and seizures: emphasis on newer agents and clinical implications. Int J Clin Pract. 2005;59:1435–40.CrossRefGoogle Scholar
  14. 14.
    Semenchuk MR, Sherman S, Davis B. Double-blind, randomized trial of bupropion SR for the treatment of neuropathic pain. Neurology. 2001;57:1583–8.CrossRefGoogle Scholar
  15. 15.
    Bielefeldt K, Davis B, Binion DG. Pain and inflammatory bowel disease. Inflamm Bowel Dis NIH Public Access. 2009;15:778–88.CrossRefGoogle Scholar
  16. 16.
    Sadeghi H, Hajhashemi V, Minaiyan M, Movahedian A, Talebi A. Further studies on anti-inflammatory activity of maprotiline in carrageenan-induced paw edema in rat. Int Immunopharmacol. 2013;15:505–10.CrossRefGoogle Scholar
  17. 17.
    Kast RE, Altschuler EL. Remission of Crohn’s disease on bupropion. Gastroenterology. 2001;121:1260–1.CrossRefGoogle Scholar
  18. 18.
    Brustolim D, Ribeiro-dos-Santos R, Kast RE, Altschuler EL, Soares MBP. A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int Immunopharmacol. 2006;6:903–7.CrossRefGoogle Scholar
  19. 19.
    Hajhashemi V, Khanjani P. Analgesic and anti-inflammatory activities of bupropion in animal models. Res Pharm Sci Wolters Kluwer -- Medknow Publications. 2014;9:251–7.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Spina E, Trifirò G, Caraci F. Clinically significant drug interactions with newer antidepressants. CNS Drugs. Springer International Publishing. 2012;26:39–67.CrossRefGoogle Scholar
  21. 21.
    Debonnel G, Saint-André E, Hébert C, de Montigny C, Lavoie N, Blier P. Differential physiological effects of a low dose and high doses of venlafaxine in major depression. Int J Neuropsychopharmacol. 2007;10:51–61.CrossRefGoogle Scholar
  22. 22.
    • Ito S, Suto T, Saito S, Obata H. Repeated administration of duloxetine suppresses neuropathic pain by accumulating effects of noradrenaline in the spinal cord. Anesth Analg. 2018;126:298–307. A mechanism of action by which duloxetine serves to reduce neuropathic pain.CrossRefGoogle Scholar
  23. 23.
    Fava GA, Benasi G, Lucente M, Offidani E, Cosci F, Guidi J. Withdrawal symptoms after serotonin-noradrenaline reuptake inhibitor discontinuation: systematic review. Psychother Psychosom Karger Publishers. 2018;87:195–203.CrossRefGoogle Scholar
  24. 24.
    Uchio Y, Enomoto H, Ishida M, Tsuji T, Ochiai T, Konno S. Safety and efficacy of duloxetine in Japanese patients with chronic knee pain due to osteoarthritis: an open-label, long-term, phase III extension study. J Pain Res. 2018;11:1391–403.CrossRefGoogle Scholar
  25. 25.
    Sofat N, Harrison A, Russell MD, Ayis S, Kiely PD, Baker EH, et al. The effect of pregabalin or duloxetine on arthritis pain: a clinical and mechanistic study in people with hand osteoarthritis. J Pain Res Dove Press. 2017;10:2437–49.CrossRefGoogle Scholar
  26. 26.
    Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, et al. Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy. Clin Ther. 2018;40:828–49.CrossRefGoogle Scholar
  27. 27.
    Lunn MP, Hughes RA, Wiffen PJ. Duloxetine for treating painful neuropathy or chronic pain. In: Lunn MP, editor. Cochrane database Syst Rev. Chichester: John Wiley & Sons, Ltd; 2009. p. CD007115.Google Scholar
  28. 28.
    Avan R, Janbabaei G, Hendouei N, Alipour A, Borhani S, Tabrizi N, et al. The effect of pregabalin and duloxetine treatment on quality of life of breast cancer patients with taxane-induced sensory neuropathy: a randomized clinical trial. J Res Med Sci Wolters Kluwer -- Medknow Publications. 2018;23:52.CrossRefGoogle Scholar
  29. 29.
    Farshchian N, Alavi A, Heydarheydari S, Moradian N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother Pharmacol. Springer Berlin Heidelberg. 2018;82:787–93.CrossRefGoogle Scholar
  30. 30.
    Matsuoka H, Ishiki H, Iwase S, Koyama A, Kawaguchi T, Kizawa Y, et al. Study protocol for a multi-institutional, randomised, double-blinded, placebo-controlled phase III trial investigating additive efficacy of duloxetine for neuropathic cancer pain refractory to opioids and gabapentinoids: the DIRECT study. BMJ Open British Medical Journal Publishing Group. 2017;7:e017280.CrossRefGoogle Scholar
  31. 31.
    Alev L, Fujikoshi S, Yoshikawa A, Enomoto H, Ishida M, Tsuji T, Ogawa K, Konno S Duloxetine 60 mg for chronic low back pain: post hoc responder analysis of double-blind, placebo-controlled trials. J Pain Res. Dove Press; 2017;10:1723–1731.CrossRefGoogle Scholar
  32. 32.
    Tsuji T, Itoh N, Ishida M, Ochiai T, Konno S. Response to duloxetine in chronic low back pain: exploratory post hoc analysis of a Japanese phase III randomized study. J Pain Res. 2017;10:2157–68.CrossRefGoogle Scholar
  33. 33.
    Enomoto H, Fujikoshi S, Funai J, Sasaki N, Ossipov M, Tsuji T, et al. Assessment of direct analgesic effect of duloxetine for chronic low back pain: post hoc path analysis of double-blind, placebo-controlled studies. J Pain Res. 2017;10:1357–68.CrossRefGoogle Scholar
  34. 34.
    Lunn MP, Hughes RA, Wiffen PJ. Duloxetine for treating painful neuropathy or chronic pain. In: Lunn MP, editor. Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd; 2009. p. CD007 115.Google Scholar
  35. 35.
    Murakami M, Osada K, Mizuno H, Ochiai T, Alev L, Nishioka K. A randomized, double-blind, placebo-controlled phase III trial of duloxetine in Japanese fibromyalgia patients. Arthritis Res Ther BioMed Central. 2015;17:224.CrossRefGoogle Scholar
  36. 36.
    Welsch P, Üçeyler N, Klose P, Walitt B, Häuser W. Serotonin and noradrenaline reuptake inhibitors (SNRIs) for fibromyalgia. Cochrane Database Syst Rev Wiley-Blackwell. 2018;2:CD010292.PubMedGoogle Scholar
  37. 37.
    Gilron I, Chaparro LE, Tu D, Holden RR, Milev R, Towheed T, et al. Combination of pregabalin with duloxetine for fibromyalgia. Pain. 2016;157:1532–40.CrossRefGoogle Scholar
  38. 38.
    Attia JZ, Mansour HS. Perioperative duloxetine and etoricoxibto improve postoperative pain after lumbar laminectomy: a randomized, double-blind, controlled study. BMC Anesthesiol BioMed Central. 2017;17:162.CrossRefGoogle Scholar
  39. 39.
    YaDeau JT, Brummett CM, Mayman DJ, Lin Y, Goytizolo EA, Padgett DE, et al. Duloxetine and subacute pain after knee arthroplasty when added to a multimodal analgesic regimen. Anesthesiology The American Society of Anesthesiologists. 2016;125:561–72.CrossRefGoogle Scholar
  40. 40.
    Forest Pharmaceuticals I. SAVELLA® Tablets (milnacipran HCl) [Internet]. PRESCRIBING INFORMATION. 2011. p. 1–27.Google Scholar
  41. 41.
    Keks NA, Hope J, Keogh S, Copolov DL. Milnacipran: serotonin-noradrenaline reuptake inhibitor approved for fibromyalgia may be a useful antidepressant. Australas Psychiatry. 2018;26:537–40.CrossRefGoogle Scholar
  42. 42.
    Derry S, Phillips T, Moore RA, Wiffen PJ. Milnacipran for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;(7):CD011789.Google Scholar
  43. 43.
    Cording M, Derry S, Phillips T, Moore RA, Wiffen PJ. Milnacipran for pain in fibromyalgia in adults. Cochrane Database Syst Rev. 2015;(10):CD008244.Google Scholar
  44. 44.
    Pickering G, Macian N, Delage N, Picard P, Cardot J-M, Sickout-Arondo S, et al. Milnacipran poorly modulates pain in patients suffering from fibromyalgia: a randomized double-blind controlled study. Drug Des Devel Ther. 2018;12:2485–96.CrossRefGoogle Scholar
  45. 45.
    Petzke F, Jensen KB, Kosek E, Choy E, Carville S, Fransson P, et al. Using fMRI to evaluate the effects of milnacipran on central pain processing in patients with fibromyalgia. Scand J Pain. 2013;4:65–74.CrossRefGoogle Scholar
  46. 46.
    Wyeth Pharmaceuticals. EFFEXOR - venlafaxine hydrochloride tablet [Internet]. Wyeth Pharmaceuticals Inc. 2008. p. 1–21.Google Scholar
  47. 47.
    Gallagher HC, Gallagher RM, Butler M, Buggy DJ, Henman MC. Venlafaxine for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;(8):CD011091.Google Scholar
  48. 48.
    Trouvin A-P, Perrot S, Lloret-Linares C. Efficacy of venlafaxine in neuropathic pain: a narrative review of optimized treatment. Clin Ther. 2017;39:1104–22.CrossRefGoogle Scholar
  49. 49.
    Farshchian N, Alavi A, Heydarheydari S, Moradian N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother Pharmacol. 2018;82:787–93.CrossRefGoogle Scholar
  50. 50.
    Kerr GW, McGuffie AC, Wilkie S. Tricyclic antidepressant overdose: a review. Emerg Med J. 2001;18(4):236–41.CrossRefGoogle Scholar
  51. 51.
    Trindade E, Menon D, Topfer LA, Coloma C. Adverse effects associated with selective serotonin reuptake inhibitors and tricyclic antidepressants: a meta-analysis. CMAJ. 1998;159(10):1245–52.Google Scholar
  52. 52.
    Lynch R. Tricyclic antidepressant overdose. Emerg Med J. 2002;19:596.CrossRefGoogle Scholar
  53. 53.
    Hiroki T, Suto T, Saito S, Obata H. Repeated administration of amitriptyline in neuropathic pain. Anesth Analg. 2017;125:1281–8.CrossRefGoogle Scholar
  54. 54.
    Moore RA, Derry S, Aldington D, Cole P, Wiffen PJ. Amitriptyline for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;(7):CD008242.Google Scholar
  55. 55.
    Derry S, Wiffen PJ, Aldington D, Moore RA. Nortriptyline for neuropathic pain in adults. Cochrane Database Syst Rev. 2015;1:CD011209.PubMedGoogle Scholar
  56. 56.
    Liu W-Q, Kanungo A, Toth C. Equivalency of tricyclic antidepressants in open-label neuropathic pain study. Acta Neurol Scand Wiley/Blackwell (10.1111). 2014;129:132–41.CrossRefGoogle Scholar
  57. 57.
    Blier P, Abbott F. Putative mechanisms of action of antidepressant drugs in affective and anxiety disorders and pain. J Psychiatry Neurosci. 2001;26:37–43.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Slack SE, Pezet S, McMahon SB, Thompson SWN, Malcangio M. Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord. Eur J Neurosci. 2004;20:1769–78.CrossRefGoogle Scholar
  59. 59.
    Henneberger C, Jüttner R, Rothe T, Grantyn R. Postsynaptic action of BDNF on GABAergic synaptic transmission in the superficial layers of the mouse superior colliculus. J Neurophysiol. 2002;88:595–603.CrossRefGoogle Scholar
  60. 60.
    Lee B-H, Kim Y-K. The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig. 2010;7:231–5.CrossRefGoogle Scholar
  61. 61.
    U.S. Food and Drug Administration (FDA). Abnormal heart rhythms associated with high doses of Celexa (citalopram hydrobromide) [Internet]. FDA Drug Safety Communication. 2017. p. 1.Google Scholar
  62. 62.
    Research. C for DE and. Drug safety and availability - FDA drug safety communication: selective serotonin reuptake inhibitor (SSRI) antidepressant use during pregnancy and reports of a rare heart and lung condition in newborn babies. U S food drug Adm home page. Cent Drug Eval Res. 2011.Google Scholar
  63. 63.
    Patetsos E, Horjales-Araujo E. Treating chronic pain with SSRIs: what do we know? Pain Res Manag. 2016;2016:2020915.CrossRefGoogle Scholar
  64. 64.
    Hamdy MM, Elbadr MM, Barakat A. Fluoxetine uses in nociceptive pain management: a promising adjuvant to opioid analgesics. Fundam Clin Pharmacol. 2018;32:532–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ivan Urits
    • 1
    Email author
  • Jacquelin Peck
    • 2
  • Mariam Salisu Orhurhu
    • 3
  • John Wolf
    • 4
  • Riki Patel
    • 4
  • Vwaire Orhurhu
    • 1
  • Alan D. Kaye
    • 5
  • Omar Viswanath
    • 6
    • 7
    • 8
  1. 1.Beth Israel Deaconess Medical Center, Department of Anesthesia, Critical Care, and Pain MedicineHarvard Medical SchoolBostonUSA
  2. 2.Department of AnesthesiologyMt. Sinai Medical Center of FloridaMiami BeachUSA
  3. 3.Department of Anesthesia and Critical Care MedicineJohns Hopkins School of MedicineBaltimoreUSA
  4. 4.School of Medicine - Phoenix Regional CampusCreighton UniversityPhoenixUSA
  5. 5.Department of AnesthesiologyLouisiana State University Health Sciences CenterNew OrleansUSA
  6. 6.Valley Anesthesiology and Pain ConsultantsPhoenixUSA
  7. 7.Department of AnesthesiologyUniversity of Arizona College of Medicine-PhoenixPhoenixUSA
  8. 8.Department of AnesthesiologyCreighton University School of MedicineOmahaUSA

Personalised recommendations