Advertisement

Inflammation in Fibrodysplasia Ossificans Progressiva and Other Forms of Heterotopic Ossification

  • Koji Matsuo
  • Robert Dalton Chavez
  • Emilie Barruet
  • Edward C. HsiaoEmail author
Osteoimmunology (M Nakamura and J Lorenzo, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Osteoimmunology

Abstract

Purpose of review

Heterotopic ossification (HO) is associated with inflammation. The goal of this review is to examine recent findings on the roles of inflammation and the immune system in HO. We examine how inflammation changes in fibrodysplasia ossificans progressiva, in traumatic HO, and in other clinical conditions of HO. We also discuss how inflammation may be a target for treating HO.

Recent findings

Both genetic and acquired forms of HO show similarities in their inflammatory cell types and signaling pathways. These include macrophages, mast cells, and adaptive immune cells, along with hypoxia signaling pathways, mesenchymal stem cell differentiation signaling pathways, vascular signaling pathways, and inflammatory cytokines.

Summary

Because there are common inflammatory mediators across various types of HO, these mediators may serve as common targets for blocking HO. Future research may focus on identifying new inflammatory targets and testing combinatorial therapies based on these results.

Keywords

Heterotopic ossification Inflammation Immune activation Macrophages Cytokines 

Notes

Acknowledgements

The authors thank Mary Nakamura for critical advice on this manuscript. ECH received support from 1R01AR066735 and 1R01AR073015. RDC received support from 5R21AR072778.

Compliance with Ethical Standards

Conflict of Interest

Edward Hsiao serves on the registry advisory board of the International Fibrodysplasia Ossificans Progressiva Association, is on the International Clinical Council on FOP, and is on the Fibrous Dysplasia Foundation Medical Advisory Board. ECH receives clinical trials research support through his institution from Clementia Pharmaceuticals Inc. to support clinical trials of palovarotene in FOP. ECH previously received clinical trials support through his institution from Regeneron Pharmaceuticals, Inc. These pose no conflicts for this study.

Koji Matsuo, Robert Dalton Chavez, and Emilie Barruet declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Long F. Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol. 2011;13(1):27–38.  https://doi.org/10.1038/nrm3254.CrossRefPubMedGoogle Scholar
  2. 2.
    Udagawa N. The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. J Bone Miner Metab. 2003;21(6):337–43.  https://doi.org/10.1007/s00774-003-0439-1.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253(2):395–400.  https://doi.org/10.1006/bbrc.1998.9788.CrossRefPubMedGoogle Scholar
  4. 4.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.  https://doi.org/10.1073/pnas.95.7.3597.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vi L, Baht GS, Whetstone H, Ng A, Wei Q, Poon R, et al. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J Bone Miner Res. 2015;30(6):1090–102.  https://doi.org/10.1002/jbmr.2422.CrossRefPubMedGoogle Scholar
  6. 6.
    Raggatt LJ, Wullschleger ME, Alexander KA, Wu AC, Millard SM, Kaur S, et al. Fracture healing via periosteal callus formation requires macrophages for both initiation and progression of early endochondral ossification. Am J Pathol. 2014;184(12):3192–204.  https://doi.org/10.1016/j.ajpath.2014.08.017.CrossRefPubMedGoogle Scholar
  7. 7.
    Negishi-Koga T, Gober HJ, Sumiya E, Komatsu N, Okamoto K, Sawa S, et al. Immune complexes regulate bone metabolism through FcRgamma signalling. Nat Commun. 2015;6:6637.  https://doi.org/10.1038/ncomms7637.CrossRefPubMedGoogle Scholar
  8. 8.
    Schett G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Investig. 2011;41(12):1361–6.  https://doi.org/10.1111/j.1365-2362.2011.02545.x.CrossRefGoogle Scholar
  9. 9.
    Kaplan FS, Chakkalakal SA, Shore EM. Fibrodysplasia ossificans progressiva: mechanisms and models of skeletal metamorphosis. Dis Model Mech. 2012;5(6):756–62.  https://doi.org/10.1242/dmm.010280.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McCarthy EF, Sundaram M. Heterotopic ossification: a review. Skelet Radiol. 2005;34(10):609–19.  https://doi.org/10.1007/s00256-005-0958-z.CrossRefGoogle Scholar
  11. 11.
    Kocic M, Lazovic M, Mitkovic M, Djokic B. Clinical significance of the heterotopic ossification after total hip arthroplasty. Orthopedics. 2010;33(1):16.  https://doi.org/10.3928/01477447-20091124-13.CrossRefPubMedGoogle Scholar
  12. 12.
    Leung C, Casey AT, Goffin J, Kehr P, Liebig K, Lind B, et al. Clinical significance of heterotopic ossification in cervical disc replacement: a prospective multicenter clinical trial. Neurosurgery. 2005;57(4):759–63; discussion -63.  https://doi.org/10.1093/neurosurgery/57.4.759.CrossRefPubMedGoogle Scholar
  13. 13.
    Hurvitz EA, Mandac BR, Davidoff G, Johnson JH, Nelson VS. Risk factors for heterotopic ossification in children and adolescents with severe traumatic brain injury. Arch Phys Med Rehabil. 1992;73(5):459–62.PubMedGoogle Scholar
  14. 14.
    Potter BK, Burns TC, Lacap AP, Granville RR, Gajewski DA. Heterotopic ossification following traumatic and combat-related amputations. Prevalence, risk factors, and preliminary results of excision. J Bone Joint Surg Am. 2007;89(3):476–86.  https://doi.org/10.2106/JBJS.F.00412.CrossRefPubMedGoogle Scholar
  15. 15.
    Beckmann JT, Wylie JD, Potter MQ, Maak TG, Greene TH, Aoki SK. Effect of naproxen prophylaxis on heterotopic ossification following hip arthroscopy: a double-blind randomized placebo-controlled trial. J Bone Joint Surg Am. 2015;97(24):2032–7.  https://doi.org/10.2106/JBJS.N.01156.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Evans KN, Forsberg JA, Potter BK, Hawksworth JS, Brown TS, Andersen R, et al. Inflammatory cytokine and chemokine expression is associated with heterotopic ossification in high-energy penetrating war injuries. J Orthop Trauma. 2012;26(11):e204–13.  https://doi.org/10.1097/BOT.0b013e31825d60a5.CrossRefPubMedGoogle Scholar
  17. 17.
    Forsberg JA, Potter BK, Polfer EM, Safford SD, Elster EA. Do inflammatory markers portend heterotopic ossification and wound failure in combat wounds? Clin Orthop Relat Res. 2014;472(9):2845–54.  https://doi.org/10.1007/s11999-014-3694-7.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pakos EE, Ioannidis JP. Radiotherapy vs. nonsteroidal anti-inflammatory drugs for the prevention of heterotopic ossification after major hip procedures: a meta-analysis of randomized trials. Int J Radiat Oncol Biol Phys. 2004;60(3):888–95.  https://doi.org/10.1016/j.ijrobp.2003.11.015.CrossRefPubMedGoogle Scholar
  19. 19.
    • Barruet E, Morales BM, Cain CJ, Ton AN, Wentworth KL, Chan TV, et al. NF-kappaB/MAPK activation underlies ACVR1-mediated inflammation in human heterotopic ossification. JCI Insight. 2018;3(22).  https://doi.org/10.1172/jci.insight.122958Analysis of FOP patient-derived sera and monocytes strongly indicates the contribution of myeloid cells in ACVR1-mediated inflammation.
  20. 20.
    The International Clinical Consortium on FOP The medical management of fibrodysplasia ossificans progressiva: current treatment considerations. Clin Proc Intl Clin Consort FOP 2011:4:1-100.Google Scholar
  21. 21.
    Baujat G, Choquet R, Bouee S, Jeanbat V, Courouve L, Ruel A, et al. Prevalence of fibrodysplasia ossificans progressiva (FOP) in France: an estimate based on a record linkage of two national databases. Orphanet J Rare Dis. 2017;12(1):123.  https://doi.org/10.1186/s13023-017-0674-5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38(5):525–7.  https://doi.org/10.1038/ng1783.CrossRefPubMedGoogle Scholar
  23. 23.
    • Hino K, Ikeya M, Horigome K, Matsumoto Y, Ebise H, Nishio M, et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc Natl Acad Sci U S A. 2015;112(50):15438–43.  https://doi.org/10.1073/pnas.1510540112This report reveals a novel mechaism of BMP signaling through mutated ACVR1 in FOP. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    • Hatsell SJ, Idone V, Wolken DM, Huang L, Kim HJ, Wang L, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 2015;7(303):303ra137.  https://doi.org/10.1126/scitranslmed.aac4358Activin A, a cytokine produced by many cell types including immune cells, appears to be a key driver of heterotopic ossification in FOP. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Aykul S, Martinez-Hackert E. Transforming growth factor-beta family ligands can function as antagonists by competing for Type II receptor binding. J Biol Chem. 2016;291(20):10792–804.  https://doi.org/10.1074/jbc.M115.713487.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Olsen OE, Wader KF, Hella H, Mylin AK, Turesson I, Nesthus I, et al. Activin A inhibits BMP-signaling by binding ACVR2A and ACVR2B. Cell Commun Signal. 2015;13:27.  https://doi.org/10.1186/s12964-015-0104-z.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shafritz AB, Shore EM, Gannon FH, Zasloff MA, Taub R, Muenke M, et al. Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N Engl J Med. 1996;335(8):555–61.  https://doi.org/10.1056/NEJM199608223350804.CrossRefPubMedGoogle Scholar
  28. 28.
    Kaplan FS, Glaser DL, Shore EM, Pignolo RJ, Xu M, Zhang Y, et al. Hematopoietic stem-cell contribution to ectopic skeletogenesis. J Bone Joint Surg Am. 2007;89(2):347–57.  https://doi.org/10.2106/JBJS.F.00472.CrossRefPubMedGoogle Scholar
  29. 29.
    Lounev VY, Ramachandran R, Wosczyna MN, Yamamoto M, Maidment AD, Shore EM, et al. Identification of progenitor cells that contribute to heterotopic skeletogenesis. J Bone Joint Surg Am. 2009;91(3):652–63.  https://doi.org/10.2106/JBJS.H.01177.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chakkalakal SA, Zhang D, Culbert AL, Convente MR, Caron RJ, Wright AC, et al. An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res. 2012;27(8):1746–56.  https://doi.org/10.1002/jbmr.1637.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    • Wang X, Li F, Xie L, Crane J, Zhen G, Mishina Y, et al. Inhibition of overactive TGF-beta attenuates progression of heterotopic ossification in mice. Nat Commun. 2018;9(1):551.  https://doi.org/10.1038/s41467-018-02988-5This paper suggests the importance of TGF-beta signaling in FOP, indicating TGF-beta is a potential therapeutic target. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Champagne CM, Takebe J, Offenbacher S, Cooper LF. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone. 2002;30(1):26–31.CrossRefGoogle Scholar
  33. 33.
    Del Zotto G, Antonini F, Azzari I, Ortolani C, Tripodi G, Giacopelli F, et al. Peripheral blood mononuclear cell immunophenotyping in fibrodysplasia ossificans progressiva patients: evidence for monocyte DNAM1 up-regulation. Cytometry B Clin Cytom. 2018;94(4):613–22.  https://doi.org/10.1002/cyto.b.21594.CrossRefPubMedGoogle Scholar
  34. 34.
    Gannon FH, Valentine BA, Shore EM, Zasloff MA, Kaplan FS. Acute lymphocytic infiltration in an extremely early lesion of fibrodysplasia ossificans progressiva. Clin Orthop Relat Res. 1998;346:19–25.CrossRefGoogle Scholar
  35. 35.
    Kan L, Hu M, Gomes WA, Kessler JA. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype. Am J Pathol. 2004;165(4):1107–15.  https://doi.org/10.1016/S0002-9440(10)63372-X.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kan L, Liu Y, McGuire TL, Berger DM, Awatramani RB, Dymecki SM, et al. Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification. Stem Cells. 2009;27(1):150–6.  https://doi.org/10.1634/stemcells.2008-0576.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ranganathan K, Agarwal S, Cholok D, Loder S, Li J, Sung Hsieh HH, et al. The role of the adaptive immune system in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. J Surg Res. 2016;206(1):53–61.  https://doi.org/10.1016/j.jss.2016.04.040.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang H, Lindborg C, Lounev V, Kim JH, McCarrick-Walmsley R, Xu M, et al. Cellular hypoxia promotes heterotopic ossification by amplifying BMP signaling. J Bone Miner Res. 2016;31(9):1652–65.  https://doi.org/10.1002/jbmr.2848.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gannon FH, Glaser D, Caron R, Thompson LD, Shore EM, Kaplan FS. Mast cell involvement in fibrodysplasia ossificans progressiva. Hum Pathol. 2001;32(8):842–8.  https://doi.org/10.1053/hupa.2001.26464.CrossRefPubMedGoogle Scholar
  40. 40.
    Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, et al. Depletion of mast cells and macrophages impairs heterotopic ossification in an Acvr1(R206H) mouse model of fibrodysplasia ossificans progressiva. J Bone Miner Res. 2018;33(2):269–82.  https://doi.org/10.1002/jbmr.3304.CrossRefPubMedGoogle Scholar
  41. 41.
    Agarwal S, Loder S, Brownley C, Cholok D, Mangiavini L, Li J, et al. Inhibition of Hif1alpha prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci U S A. 2016;113(3):E338–47.  https://doi.org/10.1073/pnas.1515397113.CrossRefPubMedGoogle Scholar
  42. 42.
    Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, et al. Heterotopic ossification: a comprehensive review. JBMR Plus. 2019;3(4):e10172.  https://doi.org/10.1002/jbm4.10172.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sullivan MP, Torres SJ, Mehta S, Ahn J. Heterotopic ossification after central nervous system trauma: a current review. Bone Joint Res. 2013;2(3):51–7.  https://doi.org/10.1302/2046-3758.23.2000152.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Qureshi AT, Crump EK, Pavey GJ, Hope DN, Forsberg JA, Davis TA. Early Characterization of blast-related heterotopic ossification in a rat model. Clin Orthop Relat Res. 2015;473(9):2831–9.  https://doi.org/10.1007/s11999-015-4240-y.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sung Hsieh HH, Chung MT, Allen RM, Ranganathan K, Habbouche J, Cholok D, et al. Evaluation of salivary cytokines for diagnosis of both trauma-induced and genetic heterotopic ossification. Front Endocrinol. 2017;8:74.  https://doi.org/10.3389/fendo.2017.00074.CrossRefGoogle Scholar
  46. 46.
    Alexander KA, Tseng HW, Fleming W, Jose B, Salga M, Kulina I, et al. Inhibition of JAK1/2 tyrosine kinases reduces neurogenic heterotopic ossification after spinal cord injury. Front Immunol. 2019;10:377.  https://doi.org/10.3389/fimmu.2019.00377.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Genet F, Kulina I, Vaquette C, Torossian F, Millard S, Pettit AR, et al. Neurological heterotopic ossification following spinal cord injury is triggered by macrophage-mediated inflammation in muscle. J Pathol. 2015;236(2):229–40.  https://doi.org/10.1002/path.4519.CrossRefPubMedGoogle Scholar
  48. 48.
    Torossian F, Guerton B, Anginot A, Alexander KA, Desterke C, Soave S, et al. Macrophage-derived oncostatin M contributes to human and mouse neurogenic heterotopic ossifications. JCI insight. 2017;2(21).  https://doi.org/10.1172/jci.insight.96034.
  49. 49.
    Louie CE, Hong J, Bauer DF. Heterotopic ossification following suboccipital craniectomy decompression surgery for Chiari malformation type I: case report. J Neurosurg Pediatr. 2019:1–4.  https://doi.org/10.3171/2019.1.PEDS18680.Google Scholar
  50. 50.
    Newman EA, Holst DC, Bracey DN, Russell GB, Lang JE. Incidence of heterotopic ossification in direct anterior vs posterior approach to total hip arthroplasty: a retrospective radiographic review. Int Orthop. 2016;40(9):1967–73.  https://doi.org/10.1007/s00264-015-3048-4.CrossRefPubMedGoogle Scholar
  51. 51.
    Egan KP, Duque G, Keenan MA, Pignolo RJ. Circulating osteogentic precursor cells in non-hereditary heterotopic ossification. Bone. 2018;109:61–4.  https://doi.org/10.1016/j.bone.2017.12.028.CrossRefPubMedGoogle Scholar
  52. 52.
    Hoff P, Rakow A, Gaber T, Hahne M, Senturk U, Strehl C, et al. Preoperative irradiation for the prevention of heterotopic ossification induces local inflammation in humans. Bone. 2013;55(1):93–101.  https://doi.org/10.1016/j.bone.2013.03.020.CrossRefPubMedGoogle Scholar
  53. 53.
    Dighe AS, Yang S, Madhu V, Balian G, Cui Q. Interferon gamma and T cells inhibit osteogenesis induced by allogeneic mesenchymal stromal cells. J Orthop Res. 2013;31(2):227–34.  https://doi.org/10.1002/jor.22212.CrossRefPubMedGoogle Scholar
  54. 54.
    Botzoris VG, Argyropoulou MI, Voulgari PV, Zikou AK, Drosos AA. Heterotopic ossification in systemic sclerosis. Scand J Rheumatol. 2009;38(4):317–9.  https://doi.org/10.1080/03009740902776919.CrossRefPubMedGoogle Scholar
  55. 55.
    Eckardt JJ, Ivins JC, Perry HO, Unni KK. Osteosarcoma arising in heterotopic ossification of dermatomyositis: case report and review of the literature. Cancer. 1981;48(5):1256–61.  https://doi.org/10.1002/1097-0142(19810901)48:5<1256::aid-cncr2820480534>3.0.co;2-4.CrossRefPubMedGoogle Scholar
  56. 56.
    Preusse C, Allenbach Y, Hoffmann O, Goebel HH, Pehl D, Radke J, et al. Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis. Acta Neuropathol Commun. 2016;4(1):45.  https://doi.org/10.1186/s40478-016-0308-5.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jeziorska M, McCollum C, Wooley DE. Observations on bone formation and remodelling in advanced atherosclerotic lesions of human carotid arteries. Virchows Arch. 1998;433(6):559–65.CrossRefGoogle Scholar
  58. 58.
    Steiner I, Kasparova P, Kohout A, Dominik J. Bone formation in cardiac valves: a histopathological study of 128 cases. Virchows Arch. 2007;450(6):653–7.  https://doi.org/10.1007/s00428-007-0430-7.CrossRefPubMedGoogle Scholar
  59. 59.
    Masi AT, Rodnan GP, Medsger TA, Altman RD, D'Angelo WA, Fries JF, et al. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum. 1980;23(5):581–90.CrossRefGoogle Scholar
  60. 60.
    Dalakas MC, Hohlfeld R. Polymyositis and dermatomyositis. Lancet. 2003;362(9388):971–82.  https://doi.org/10.1016/S0140-6736(03)14368-1.CrossRefGoogle Scholar
  61. 61.
    Hunt JL, Fairman R, Mitchell ME, Carpenter JP, Golden M, Khalapyan T, et al. Bone formation in carotid plaques: a clinicopathological study. Stroke. 2002;33(5):1214–9.CrossRefGoogle Scholar
  62. 62.
    Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.  https://doi.org/10.1161/01.cir.103.11.1522.CrossRefPubMedGoogle Scholar
  63. 63.
    Soor GS, Vukin I, Leong SW, Oreopoulos G, Butany J. Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology. 2008;40(4):385–91.  https://doi.org/10.1080/00313020802036764.CrossRefPubMedGoogle Scholar
  64. 64.
    Campbell GR, Campbell JH. Vascular smooth muscle and arterial calcification. Z Kardiol. 2000;89(Suppl 2):54–62.CrossRefGoogle Scholar
  65. 65.
    Cheng SL, Shao JS, Charlton-Kachigian N, Loewy AP, Towler DA. MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem. 2003;278(46):45969–77.  https://doi.org/10.1074/jbc.M306972200.CrossRefPubMedGoogle Scholar
  66. 66.
    Liu T, Lin J, Ju T, Chu L, Zhang L. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine. Mol Cell Biochem. 2015;406(1-2):139–49.  https://doi.org/10.1007/s11010-015-2432-0.CrossRefPubMedGoogle Scholar
  67. 67.
    Tintut Y, Alfonso Z, Saini T, Radcliff K, Watson K, Bostrom K, et al. Multilineage potential of cells from the artery wall. Circulation. 2003;108(20):2505–10.  https://doi.org/10.1161/01.CIR.0000096485.64373.C5.CrossRefPubMedGoogle Scholar
  68. 68.
    Medici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stem-like cells. Nat Med. 2010;16(12):1400–6.  https://doi.org/10.1038/nm.2252.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Doherty MJ, Ashton BA, Walsh S, Beresford JN, Grant ME, Canfield AE. Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res. 1998;13(5):828–38.  https://doi.org/10.1359/jbmr.1998.13.5.828.CrossRefPubMedGoogle Scholar
  70. 70.
    Kuwana M, Okazaki Y, Kodama H, Izumi K, Yasuoka H, Ogawa Y, et al. Human circulating CD14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. J Leukoc Biol. 2003;74(5):833–45.  https://doi.org/10.1189/jlb.0403170.CrossRefPubMedGoogle Scholar
  71. 71.
    Weston AD, Rosen V, Chandraratna RA, Underhill TM. Regulation of skeletal progenitor differentiation by the BMP and retinoid signaling pathways. J Cell Biol. 2000;148(4):679–90.  https://doi.org/10.1083/jcb.148.4.679.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pacifici M, Cossu G, Molinaro M, Tato F. Vitamin A inhibits chondrogenesis but not myogenesis. Exp Cell Res. 1980;129(2):469–74.  https://doi.org/10.1016/0014-4827(80)90517-0.CrossRefPubMedGoogle Scholar
  73. 73.
    • Chakkalakal SA, Uchibe K, Convente MR, Zhang D, Economides AN, Kaplan FS, et al. Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice with the human ACVR1(R206H) fibrodysplasia ossificans progressiva (FOP) mutation. J Bone Miner Res. 2016;31(9):1666–75.  https://doi.org/10.1002/jbmr.2820Palovalone is a potential therapeutic agent which is currently being tested in clinical trials in FOP patients. It may function by both blocking chondrocyte mineralization as well as immune cell function. CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lees-Shepard JB, Nicholas SE, Stoessel SJ, Devarakonda PM, Schneider MJ, Yamamoto M, et al. Palovarotene reduces heterotopic ossification in juvenile FOP mice but exhibits pronounced skeletal toxicity. eLife. 2018;7.  https://doi.org/10.7554/eLife.40814.
  75. 75.
    Wheatley BM, Cilwa KE, Dey D, Qureshi AT, Seavey JG, Tomasino AM, et al. Palovarotene inhibits connective tissue progenitor cell proliferation in a rat model of combat-related heterotopic ossification. J Orthop Res. 2018;36(4):1135–44.  https://doi.org/10.1002/jor.23747.CrossRefPubMedGoogle Scholar
  76. 76.
    Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.  https://doi.org/10.1016/j.cell.2012.03.017.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Qureshi AT, Dey D, Sanders EM, Seavey JG, Tomasino AM, Moss K, et al. Inhibition of mammalian target of rapamycin signaling with rapamycin prevents trauma-induced heterotopic ossification. Am J Pathol. 2017;187(11):2536–45.  https://doi.org/10.1016/j.ajpath.2017.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hino K, Zhao C, Horigome K, Nishio M, Okanishi Y, Nagata S, et al. An mTOR signaling modulator suppressed heterotopic ossification of fibrodysplasia ossificans progressiva. Stem Cell Reports. 2018;11(5):1106–19.  https://doi.org/10.1016/j.stemcr.2018.10.007.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    IFOPA. Rapamycin Clinical Trial for FOP 2019. Available from: https://www.ifopa.org/rapamycin. Accessed 1 July 2019
  80. 80.
    Kaplan FS, Zeitlin L, Dunn SP, Benor S, Hagin D, Al Mukaddam M, et al. Acute and chronic rapamycin use in patients with fibrodysplasia ossificans progressiva: a report of two cases. Bone. 2018;109:281–4.  https://doi.org/10.1016/j.bone.2017.12.011.CrossRefPubMedGoogle Scholar
  81. 81.
    Peterson JR, De La Rosa S, Eboda O, Cilwa KE, Agarwal S, Buchman SR, et al. Treatment of heterotopic ossification through remote ATP hydrolysis. Sci Transl Med. 2014;6(255):255ra132.  https://doi.org/10.1126/scitranslmed.3008810.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zhang K, Wang L, Zhang S, Yu B, Liu F, Cui Z, et al. Celecoxib inhibits the heterotopic ossification in the rat model with Achilles tenotomy. Eur J Orthop Surg Traumatol 2013;23(2):145–148.  https://doi.org/10.1007/s00590-012-0944-9.CrossRefGoogle Scholar
  83. 83.
    Lavernia CJ, Contreras JS, Villa JM, Rossi MD. Celecoxib and heterotopic bone formation after total hip arthroplasty. J Arthroplast. 2014;29(2):390–2.  https://doi.org/10.1016/j.arth.2013.06.039.CrossRefGoogle Scholar
  84. 84.
    Robertson AD, Chiaramonti AM, Nguyen TP, Jaffe DE, Holmes RE, Hanna EL, et al. Failure of indomethacin and radiation to prevent blast-induced heterotopic ossification in a Sprague-Dawley rat model. Clin Orthop Relat Res. 2019;477(3):644–54.  https://doi.org/10.1097/CORR.0000000000000594.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Koji Matsuo
    • 1
    • 2
    • 3
  • Robert Dalton Chavez
    • 1
    • 2
    • 3
  • Emilie Barruet
    • 1
    • 2
    • 3
  • Edward C. Hsiao
    • 1
    • 2
    • 3
    Email author
  1. 1.Division of Endocrinology and MetabolismUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Medicine, The Institute for Human GeneticsUniversity of CaliforniaSan FranciscoUSA
  3. 3.The Program in Craniofacial BiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations