Advertisement

Effects of Diabetes on Bone Material Properties

  • Sashank Lekkala
  • Erik A. Taylor
  • Heather B. Hunt
  • Eve DonnellyEmail author
Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • 102 Downloads
Part of the following topical collections:
  1. Topical Collection on Bone and Diabetes

Abstract

Purpose of Review

Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties.

Recent Findings

Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle.

Summary

Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.

Keywords

Bone material properties Type 1 diabetes mellitus (T1DM) Type 2 diabetes mellitus (T2DM) Advanced glycation end products (AGEs) Diabetic murine models In vitro glycation 

Notes

Funding Information

Funding for this work was provided in part by NIH K01 AR064314 to ED.

Compliance with Ethical Standards

Conflict of Interest

Sashank Lekkala, Erik A. Taylor, Heather B. Hunt, and Eve Donnelly declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes - a meta-analysis. Osteoporos Int. 2007;18:427–44.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166:495–505.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Shah VN, Carpenter RD, Ferguson VL, Schwartz AV. Bone health in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2018;25:231–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE, et al. Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA - J Am Med Assoc. 2011;305:2184–92.CrossRefGoogle Scholar
  5. 5.
    Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, et al. Risk of fracture in women with type 2 diabetes: the women’s health initiative observational study. J Clin Endocrinol Metab. 2006;91:3404–10.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Starup-Linde J, Frost M, Vestergaard P, Abrahamsen B. Epidemiology of fractures in diabetes. Calcif Tissue Int. Elsevier Inc. 2017;100:109–21.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Schwartz AV. Epidemiology of fractures in type 2 diabetes. Bone. 2016;82:2–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hough FS, Pierroz DD. Cooper C, Ferrari SL, IOF CSA Bone and Diabetes Working Group _. Mechanisms in endocrinology: mechanisms and evaluation of bone fragility in type 1 diabetes mellitus. Eur J Endocrinol. 2016;174:R127–38.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. Nat Publ Group. 2017;13:208–19.Google Scholar
  10. 10.
    Shanbhogue VV, Mitchell DM, Rosen CJ, Bouxsein ML. Type 2 diabetes and the skeleton: new insights into sweet bones. Lancet Diabetes Endocrinol. 2016;4:159–73.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    •• Hunt H, Torres A, Palomino P, Marty E, Saiyed R, Cohn M, et al. Altered tissue composition, microarchitecture, and mechanical performance in cancellous bone from men with type 2 diabetes mellitus. J Bone Miner Res. 2019; This study relating compositional and mechanical properties found increased pentosidine and mineralization in men with T2DM, and showed that high concentrations of AGEs can increase fragility, especially for T2DM patients with low BV/TV.Google Scholar
  12. 12.
    Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17:1514–23.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40:1144–51.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yamagishi S-I. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. EXG. 2011;46:217–24.Google Scholar
  16. 16.
    Keenan HA, Maddaloni E. Bone Microarchitecture in type 1 diabetes: it is complicated. Curr Osteoporos Rep Springer US. 2016;14:351–8.CrossRefGoogle Scholar
  17. 17.
    Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. 2017;32:1062–71.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kalaitzoglou E, Popescu I, Bunn RC, Fowlkes JL, Thrailkill KM. Effects of type 1 diabetes on osteoblasts, osteocytes, and osteoclasts. Curr Osteoporos Rep. Springer US. 2016;14:310–9.CrossRefGoogle Scholar
  19. 19.
    • Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Diabetes mellitus, a state of low bone turnover-a systematic review and meta-analysis. Eur J Endocrinol. 2017;176:R137–57 This extensive review of biochemical markers of bone formation and resorption in diabetes and found that low bone turnover is observed in both T1DM and T2DM conditions. PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zhukouskaya VV, Eller-Vainicher C, Shepelkevich AP, Dydyshko Y, Cairoli E, Chiodini I. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice. J Endocrinol Invest. Springer International Publishing. 2015;38:941–50.Google Scholar
  21. 21.
    Hamann C, Kirschner S, Günther KP, Hofbauer LC. Bone, sweet bone - osteoporotic fractures in diabetes mellitus. Nat Rev Endocrinol Nature Publishing Group. 2012;8:297–305.CrossRefGoogle Scholar
  22. 22.
    •• Farlay D, Armas LAG, Gineyts E, Akhter MP, Recker RR, Boivin G. Nonenzymatic glycation and degree of mineralization are higher in bone from fractured patients with type 1 diabetes mellitus. J Bone Miner Res. 2016;31:190–5 This is the only study to our knowledge to have assessed compositional properties in patients with T1DM and found increased AGE accumulation in patients with T1DM.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fleischli JG, Laughlin TJ, Lavery LA, Shah B, Lanctot D, Agrawal CM, et al. The effects of diabetes mellitus on the material properties of human metatarsal bones. J Foot Ankle Surg. 1998;37:195–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Fleischli JG, Laughlin TJ, Athanasiou K, Lanctot DR, Lavery L, Wang X, et al. Effect of diabetes mellitus on the material properties of the distal tibia. J Am Podiatr Med Assoc. 2014;96:91–5.CrossRefGoogle Scholar
  25. 25.
    Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51:216–26.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    •• Fajardo RJ, Karim L, Calley VI, Bouxsein ML. A review of rodent models of type 2 diabetic skeletal fragility. J Bone Miner Res. 2014;29:1025–40 This extensive review discusses the effect of T2DM on the skeletal phenotype of different rodent models.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M. Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res. 2001;16:1821–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Oliveira Limirio PHJ, Da Rocha HA, De Morais RB, Hiraki KRN, Balbi APC, Soares PBF, et al. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats. PLoS ONE. 2018;13.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Bozkurt O, Bilgin MD, Evis Z, Pleshko N, Severcan F. Early alterations in bone characteristics of type I diabetic rat femur: a Fourier transform infrared (FT-IR) imaging study. Appl Spectrosc. 2016;70:2005–15.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Donmez BO, Unal M, Ozdemir S, Ozturk N, Oguz N, Akkus O. Effects of losartan treatment on the physicochemical properties of diabetic rat bone. J Bone Miner Metab. 2017;35:161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Silva MJ, Brodt MD, Lynch MA, McKenzie JA, Tanouye KM, Nyman JS, et al. Type 1 diabetes in young rats leads to progressive trabecular bone loss, cessation of cortical bone growth, and diminished whole bone strength and fatigue life. J Bone Miner Res. 2009;24:1618–27.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al. Stable incretin mimetics counter rapid deterioration of bone quality in type 1 diabetes mellitus. J Cell Physiol. 2015;230:3009–18.PubMedCrossRefGoogle Scholar
  33. 33.
    Mieczkowska A, Mansur SA, Irwin N, Flatt PR, Chappard D, Mabilleau G. Alteration of the bone tissue material properties in type 1 diabetes mellitus: a Fourier transform infrared microspectroscopy study. Bone. 2015;76:31–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Facchini DM, Yuen VG, Battell ML, McNeill JH, Grynpas MD. The effects of vanadium treatment on bone in diabetic and non-diabetic rats. Bone. 2006;38:368–77.PubMedCrossRefGoogle Scholar
  35. 35.
    Makowski AJ, Patil CA, Mahadevan-Jansen A, Nyman JS. Polarization control of Raman spectroscopy optimizes the assessment of bone tissue. J Biomed Opt International Society for Optics and Photonics. 2013;18:055005.Google Scholar
  36. 36.
    Taylor EA, Lloyd AA, Salazar-Lara C, Donnelly E. Raman and Fourier transform infrared (FT-IR) mineral to matrix ratios correlate with physical chemical properties of model compounds and native bone tissue. Appl Spectrosc. 2017;71:2404–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Nyman JS, Even JL, Jo CH, Herbert EG, Murry MR, Cockrell GE, et al. Increasing duration of type 1 diabetes perturbs the strength-structure relationship and increases brittleness of bone. Bone. 2011;48:733–40.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Zhang H, Gan L, Zhu X, Wang J, Han L, Cheng P, et al. Moderate-intensity 4 mT static magnetic fields prevent bone architectural deterioration and strength reduction by stimulating bone formation in streptozotocin-treated diabetic rats. Bone. 2018;107:36–44.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rubin MR, Paschalis EP, Poundarik A, Sroga GE, McMahon DJ, Gamsjaeger S, et al. Correction: advanced glycation endproducts and bone material properties in type 1 diabetic mice. PLoS ONE. 2016;11:1–14.Google Scholar
  40. 40.
    Epstein PN, Overbeek PA, Means AR. Calmodulin-induced early-onset diabetes in transgenic mice. Cell. 1989;58:1067–73.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Thrailkill KM, Lumpkin CK, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289:E735–45.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lecka-Czernik B. Safety of antidiabetic therapies on bone. Clin Rev Bone Miner Metab. 2013;11:49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    •• Karim L, Moulton J, Van Vliet M, Velie K, Robbins A, Malekipour F, et al. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes. Bone. Elsevier. 2018;114:32–9 This is the first study to examine compositional and mechanical properties of bone from humans with T2DM and found reduced resistance to creep indentation in cortical bone from patients with T2DM. CrossRefGoogle Scholar
  44. 44.
    Bucknell A, King KB, Oren TW, Botolin S, Williams A. Arthroplasty in veterans: analysis of cartilage, bone, serum, and synovial fluid reveals differences and similarities in osteoarthritis with and without comorbid diabetes. J Rehabil Res Dev. 2012;48:1195.Google Scholar
  45. 45.
    Pritchard JM, Papaioannou A, Tomowich C, Giangregorio LM, Atkinson SA, Beattie KA, et al. Bone mineralization is elevated and less heterogeneous in adults with type 2 diabetes and osteoarthritis compared to controls with osteoarthritis alone. Bone. Elsevier Inc. 2013;54:76–82.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:3240–50.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    •• Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29:787–95 This comprehensive assessment of geometric and microarchitectural properties in women with T2DM demonstrated that bone material strength index decreased with 10-year HbA1c.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, Mcmahon DJ, et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101:2502–10.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Arnold M, Zhao S, Ma S, Giuliani F, Hansen U, Cobb JP, et al. Microindentation – a tool for measuring cortical bone stiffness? Bone Jt Res. 2017;6:542–9.CrossRefGoogle Scholar
  50. 50.
    Poundarik AA, Wu PC, Evis Z, Sroga GE, Ural A, Rubin M, et al. A direct role of collagen glycation in bone fracture. J Mech Behav Biomed Mater. 2015;50:82–92.CrossRefGoogle Scholar
  51. 51.
    Karim L, Tang SY, Sroga GE, Vashishth D. Differences in non-enzymatic glycation and collagen cross-links between human cortical and cancellous bone. Osteoporos Int. 2013;24:2441–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schmidt FN, Zimmermann EA, Campbell GM, Sroga GE, Püschel K, Amling M, et al. Assessment of collagen quality associated with non-enzymatic cross-links in human bone using Fourier-transform infrared imaging. Bone. 2017;97:243–51.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. Elsevier Inc. 2013;52:611–22.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Marin C, Papantonakis G, Sels K, Van Lenthe GH, Falgayrac G, Vangoitsenhoven R, et al. Unraveling the compromised biomechanical performance of type 2 diabetes- and Roux-en-Y gastric bypass bone by linking mechanical-structural and physico-chemical properties. Sci Rep Springer US. 2018;8:1–12.Google Scholar
  55. 55.
    Ionova-Martin SS, Wade JM, Tang S, Shahnazari M, Ager JW, Lane NE, et al. Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporos Int. 2011;22:2283–93.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kerckhofs G, Durand M, Vangoitsenhoven R, Marin C, Van Der Schueren B, Carmeliet G, et al. Changes in bone macro-and microstructure in diabetic obese mice revealed by high resolution microfocus X-ray computed tomography. Sci Rep Nature Publishing Group. 2016;6:1–13.Google Scholar
  57. 57.
    Ionova-Martin SS, Do SH, Barth HD, Szadkowska M, Porter AE, Ager JW, et al. Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity. Bone. Elsevier Inc. 2010;46:217–25.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Clark JB, Palmer CJ, Shaw WN. The diabetic Zucker fatty rat. Proc Soc Exp Biol Med. 1983;173:68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fu C, Zhang X, Ye F, Yang J. High insulin levels in KK-Ay diabetic mice cause increased cortical bone mass and impaired trabecular micro-structure. Int J Mol Sci. 2015;16:8213–26.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Reinwald S, Peterson RG, Allen MR, Burr DB. Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models. Am J Physiol Endocrinol Metab. 2009;296:E765–74.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Prisby RD, Swift JM, Bloomfield SA, Hogan HA, Delp MD. Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J Endocrinol. 2008;199:379–88.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pereira M, Gohin S, Lund N, Hvid A, Smitham PJ, Oddy MJ, et al. Sclerostin does not play a major role in the pathogenesis of skeletal complications in type 2 diabetes mellitus. Osteoporos Int Osteoporosis International. 2017;28:309–20.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hamann C, Goettsch C, Mettelsiefen J, Henkenjohann V, Rauner M, Hempel U, et al. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Metab. 2011;301:E1220–8.Google Scholar
  64. 64.
    Xu F, Dong Y, Huang X, Li M, Qin L, Ren Y, et al. Decreased osteoclastogenesis, osteoblastogenesis and low bone mass in a mouse model of type 2 diabetes. Mol Med Rep. 2014;10:1935–41.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Hunt HB, Pearl JC, Diaz DR, King KB, Donnelly E. Bone tissue collagen maturity and mineral content increase with sustained hyperglycemia in the KK-Ay murine model of type 2 diabetes. J Bone Miner Res. 2018;33:921–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Takagi S, Miura T, Yamashita T, Ando N, Nakao H, Ishihara E, et al. Characteristics of diabetic osteopenia in KK-Ay diabetic mice. Biol Pharm Bull. 2012;35:438–43.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ealey KN, Fonseca D, Archer MC, Ward WE. Bone abnormalities in adolescent leptin-deficient mice. Regul Pept. 2006;136:9–13.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, et al. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res. 2011;26:1698–709.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Huang L, You YK, Zhu TY, Zheng LZ, Huang XR, Chen HY, et al. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis. Sci Rep Nature Publishing Group. 2016;6:1–7.Google Scholar
  70. 70.
    Kim JH, Sen Ś, Avery CS, Simpson E, Chandler P, Nishina PM, et al. Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics. 2001;74:273–86.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kutscher CL, Miller M, Schmalbach NL. Renal deficiency associated with diabetes insipidus in the SWR/J mouse. Physiol Behav. 1975;14:815–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hammond MA, Gallant MA, Burr DB, Wallace JM. Nanoscale changes in collagen are reflected in physical and mechanical properties of bone at the microscale in diabetic rats. Bone. Elsevier Inc. 2013;60:26–32.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Creecy A, Uppuganti S, Merkel AR, O’Neal D, Makowski AJ, Granke M, et al. Changes in the fracture resistance of bone with the progression of type 2 diabetes in the ZDSD rat. Calcif Tissue Int Springer US. 2016;99:289–301.CrossRefGoogle Scholar
  74. 74.
    Creecy A, Uppuganti S, Unal M, Clay Bunn R, Voziyan P, Nyman JS. Low bone toughness in the TallyHO model of juvenile type 2 diabetes does not worsen with age. Bone. Elsevier Inc. 2018;110:204–14.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Gallant MA, Brown DM, Organ JM, Allen MR, Burr DB. Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing. Bone. Elsevier Inc. 2013;53:301–5.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Igarashi C, Maruyama T, Ezawa I, Takei I, Saruta T. WBN/Kob rat: a new model of spontaneous diabetes, osteopenia and systemic hemosiderin deposition. Bone Miner. 1994;27:133–44.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Devlin MJ, Van Vliet M, Motyl K, Karim L, Brooks DJ, Louis L, et al. Early-onset type 2 diabetes impairs skeletal acquisition in the male TALLYHO/JngJ mouse. Endocrinology. 2014;155:3806–16.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sashank Lekkala
    • 1
  • Erik A. Taylor
    • 2
  • Heather B. Hunt
    • 1
  • Eve Donnelly
    • 1
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  2. 2.Sibley School of Mechanical and Aerospace EngineeringCornell UniversityIthacaUSA
  3. 3.Research DivisionHospital for Special SurgeryNew YorkUSA

Personalised recommendations