Advertisement

Current Osteoporosis Reports

, Volume 17, Issue 4, pp 178–185 | Cite as

RNA-seq in Skeletal Biology

  • Ugur AyturkEmail author
Skeletal Biology and Regulation (M Forwood and A Robling, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Skeletal Biology and Regulation

Abstract

Purpose of Review

The goal of this paper is to review state-of-the-art transcriptome profiling methods and their recent applications in the field of skeletal biology.

Recent Findings

Next-generation sequencing of mRNA (RNA-seq) methods have been established and routinely used in skeletal biology research. RNA-seq has led to the identification of novel genes and transcription factors involved in skeletal development and disease, through its application in small and large animal models, as well as human tissue and cells. With the availability of advanced techniques such as single-cell RNA-seq, novel cell types in skeletal tissues are being identified.

Summary

As the sequencing technologies are rapidly evolving, the exciting discoveries supported by transcriptomics will continue to emerge and improve our understanding of the biology of the skeleton.

Keywords

RNA-seq Single-cell RNA-seq Bone Cartilage Ligament Wnt signaling 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ugur Ayturk declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.  https://doi.org/10.1038/nmeth.1226.Google Scholar
  2. 2.
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008;320(5881):1344–9.  https://doi.org/10.1126/science.1158441.
  3. 3.
    Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, et al. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature. 2008;453(7199):1239–43.  https://doi.org/10.1038/nature07002.
  4. 4.
    Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 2014;12:42.  https://doi.org/10.1186/1741-7007-12-42.Google Scholar
  5. 5.
    Choi S, Ray HE, Lai SH, Alwood JS, Globus RK. Preservation of multiple mammalian tissues to maximize science return from ground based and spaceflight experiments. PLoS One. 2016;11(12):e0167391.  https://doi.org/10.1371/journal.pone.0167391.Google Scholar
  6. 6.
    Li D, Ren W, Wang X, Wang F, Gao Y, Ning Q, et al. A modified method using TRIzol reagent and liquid nitrogen produces high-quality RNA from rat pancreas. Appl Biochem Biotechnol. 2009;158(2):253–61.  https://doi.org/10.1007/s12010-008-8391-0.
  7. 7.
    Auer H, Mobley JA, Ayers LW, Bowen J, Chuaqui RF, Johnson LA, et al. The effects of frozen tissue storage conditions on the integrity of RNA and protein. Biotech Histochem. 2014 Oct;89(7):518–28.  https://doi.org/10.3109/10520295.2014.904927.
  8. 8.
    Carter LE, Kilroy G, Gimble JM, Floyd ZE. An improved method for isolation of RNA from bone. BMC Biotechnol. 2012;12:5.  https://doi.org/10.1186/1472-6750-12-5.Google Scholar
  9. 9.
    Cepollaro S, Della Bella E, de Biase D, Visani M, Fini M. Evaluation of RNA from human trabecular bone and identification of stable reference genes. J Cell Physiol. 2018;233(6):4401–7.  https://doi.org/10.1002/jcp.26319.Google Scholar
  10. 10.
    Clements DN, Vaughan-Thomas A, Peansukmanee S, Carter SD, Innes JF, Ollier WE, et al. Assessment of the use of RNA quality metrics for the screening of articular cartilage specimens from clinically normal dogs and dogs with osteoarthritis. Am J Vet Res. 2006;67(8):1438–44.  https://doi.org/10.2460/ajvr.67.8.1438.Google Scholar
  11. 11.
    • Grinstein M, Dingwall HL, Shah RR, Capellini TD, Galloway JL. A robust method for RNA extraction and purification from a single adult mouse tendon. PeerJ. 2018;6:e4664.  https://doi.org/10.7717/peerj.4664 This paper describes methods for extracting RNA from tendon. Google Scholar
  12. 12.
    Hughes A, Stewart TL, Mann V. Extraction of nucleic acids from bone. Methods Mol Biol. 2012;816:249–59.  https://doi.org/10.1007/978-1-61779-415-5_17.Google Scholar
  13. 13.
    • Kelly NH, Schimenti JC, Patrick Ross F, van der Meulen MC. A method for isolating high quality RNA from mouse cortical and cancellous bone. Bone. 2014;68:1–5.  https://doi.org/10.1016/j.bone.2014.07.022 This paper describes methods for extracting RNA from cortical and cancellous bone. Google Scholar
  14. 14.
    • Le Bleu HK, Kamal FA, Kelly M, Ketz JP, Zuscik MJ, Elbarbary RA. Extraction of high-quality RNA from human articular cartilage. Anal Biochem. 2017;518:134–8.  https://doi.org/10.1016/j.ab.2016.11.018 This paper describes methods for extracting RNA from articular cartilage. Google Scholar
  15. 15.
    Li X, Qin L, Partridge NC. In vivo parathyroid hormone treatments and RNA isolation and analysis. Methods Mol Biol. 2008;455:79–87.  https://doi.org/10.1007/978-1-59745-104-8_5.Google Scholar
  16. 16.
    McKenna LA, Gehrsitz A, Soder S, Eger W, Kirchner T, Aigner T. Effective isolation of high-quality total RNA from human adult articular cartilage. Anal Biochem. 2000;286(1):80–5.  https://doi.org/10.1006/abio.2000.4779.Google Scholar
  17. 17.
    Ruettger A, Neumann S, Wiederanders B, Huber R. Comparison of different methods for preparation and characterization of total RNA from cartilage samples to uncover osteoarthritis in vivo. BMC Res Notes. 2010;3:7.  https://doi.org/10.1186/1756-0500-3-7.Google Scholar
  18. 18.
    Bandyopadhyay U, Fenton WA, Horwich AL, Nagy M. Production of RNA for transcriptomic analysis from mouse spinal cord motor neuron cell bodies by laser capture microdissection. J Vis Exp. 2014;83:e51168.  https://doi.org/10.3791/51168.Google Scholar
  19. 19.
    Farris S, Wang Y, Ward JM, Dudek SM. Optimized method for robust transcriptome profiling of minute tissues using laser capture microdissection and low-input RNA-Seq. Front Mol Neurosci. 2017;10:185.  https://doi.org/10.3389/fnmol.2017.00185.Google Scholar
  20. 20.
    Lovatt D, Bell T, Eberwine J. Single-neuron isolation for RNA analysis using pipette capture and laser capture microdissection. Cold Spring Harb Protoc. 2015;2015(1):pdb prot072439.  https://doi.org/10.1101/pdb.prot072439.Google Scholar
  21. 21.
    •• Ayturk UM, Jacobsen CM, Christodoulou DC, Gorham J, Seidman JG, Seidman CE, et al. An RNA-seq protocol to identify mRNA expression changes in mouse diaphyseal bone: applications in mice with bone property altering Lrp5 mutations. J Bone Miner Res. 2013;28(10):2081–93.  https://doi.org/10.1002/jbmr.1946 This paper outlines computational methods to filter cortical bone RNA-seq data.
  22. 22.
    Sieker JT, Proffen BL, Waller KA, Chin KE, Karamchedu NP, Akelman MR, et al. Transcriptional profiling of synovium in a porcine model of early post-traumatic osteoarthritis. J Orthop Res. 2018;36:2128–39.  https://doi.org/10.1002/jor.23876.
  23. 23.
    Liu Y, Zhou J, White KP. RNA-seq differential expression studies: more sequence or more replication? Bioinformatics. 2014;30(3):301–4.  https://doi.org/10.1093/bioinformatics/btt688.Google Scholar
  24. 24.
    Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 2013;14(9):R95.  https://doi.org/10.1186/gb-2013-14-9-r95.
  25. 25.
    Busby MA, Stewart C, Miller CA, Grzeda KR, Marth GT. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics. 2013;29(5):656–7.  https://doi.org/10.1093/bioinformatics/btt015.Google Scholar
  26. 26.
    Ching T, Huang S, Garmire LX. Power analysis and sample size estimation for RNA-Seq differential expression. RNA. 2014;20(11):1684–96.  https://doi.org/10.1261/rna.046011.114.Google Scholar
  27. 27.
    Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann I. powsimR: power analysis for bulk and single cell RNA-seq experiments. Bioinformatics. 2017;33(21):3486–8.  https://doi.org/10.1093/bioinformatics/btx435.Google Scholar
  28. 28.
    Yu L, Fernandez S, Brock G. Power analysis for RNA-Seq differential expression studies. BMC Bioinformatics. 2017;18(1):234.  https://doi.org/10.1186/s12859-017-1648-2.Google Scholar
  29. 29.
    Sieker JT, Proffen BL, Waller KA, Chin KE, Karamchedu NP, Akelman MR, et al. Transcriptional profiling of articular cartilage in a porcine model of early post-traumatic osteoarthritis. J Orthop Res. 2018;36(1):318–29.  https://doi.org/10.1002/jor.23644.
  30. 30.
  31. 31.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.  https://doi.org/10.1093/bioinformatics/bts635. Accessed 7 May 2019.
  32. 32.
    Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics. 2011;27(18):2518–28.  https://doi.org/10.1093/bioinformatics/btr427.
  33. 33.
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.  https://doi.org/10.1038/nprot.2013.084.
  34. 34.
    Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.  https://doi.org/10.1186/gb-2010-11-10-r106.Google Scholar
  35. 35.
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.  https://doi.org/10.1093/bioinformatics/btp616.Google Scholar
  36. 36.
    Benjamini Y, Hochberg Y. Controlling false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57:289–300.Google Scholar
  37. 37.
    Goecks J, Nekrutenko A, Taylor J, Galaxy T. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.  https://doi.org/10.1186/gb-2010-11-8-r86.Google Scholar
  38. 38.
    • St John HC, Bishop KA, Meyer MB, Benkusky NA, Leng N, Kendziorski C, et al. The osteoblast to osteocyte transition: epigenetic changes and response to the vitamin D3 hormone. Mol Endocrinol. 2014;28(7):1150–65.  https://doi.org/10.1210/me.2014-1091 This paper describes the changes in osteoblast transcriptome during in vitro differentiation. Google Scholar
  39. 39.
    • St John HC, Meyer MB, Benkusky NA, Carlson AH, Prideaux M, Bonewald LF, et al. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function. Bone. 2015;72:81–91.  https://doi.org/10.1016/j.bone.2014.11.010 This paper describes the changes in osteoblast transcriptome during in vitro differentiation. Google Scholar
  40. 40.
    Khayal LA, Grunhagen J, Provaznik I, Mundlos S, Kornak U, Robinson PN, et al. Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses. Bone. 2018;113:29–40.  https://doi.org/10.1016/j.bone.2018.04.006.Google Scholar
  41. 41.
    Khani F, Thaler R, Paradise CR, Deyle DR, Kruijthof-de Julio M, Galindo M, et al. Histone H4 methyltransferase Suv420h2 maintains fidelity of osteoblast differentiation. J Cell Biochem. 2017;118(5):1262–72.  https://doi.org/10.1002/jcb.25787.
  42. 42.
    Camilleri E, Dudakovic A, Riester SM, Galeano-Garces C, Paradise CR, Bradley EW, et al. Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem. 2018;293:19001–11.  https://doi.org/10.1074/jbc.RA118.003909.Google Scholar
  43. 43.
    Droscha CJ, Diegel CR, Ethen NJ, Burgers TA, McDonald MJ, Maupin KA, et al. Osteoblast-specific deletion of Hrpt2/Cdc73 results in high bone mass and increased bone turnover. Bone. 2017;98:68–78.  https://doi.org/10.1016/j.bone.2016.12.006.Google Scholar
  44. 44.
    Wein MN, Liang Y, Goransson O, Sundberg TB, Wang J, Williams EA, et al. SIKs control osteocyte responses to parathyroid hormone. Nat Commun. 2016;7:13176.  https://doi.org/10.1038/ncomms13176.
  45. 45.
    Kedlaya R, Veera S, Horan DJ, Moss RE, Ayturk UM, Jacobsen CM, et al. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med. 2013;5(211):211ra158.  https://doi.org/10.1126/scitranslmed.3006627.
  46. 46.
    Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455–98.  https://doi.org/10.1146/annurev.bioeng.8.061505.095721.Google Scholar
  47. 47.
    Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem. 2008;283(9):5866–75.  https://doi.org/10.1074/jbc.M705092200.
  48. 48.
    Sawakami K, Robling AG, Ai M, Pitner ND, Liu D, Warden SJ, et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem. 2006;281(33):23698–711.  https://doi.org/10.1074/jbc.M601000200.
  49. 49.
    •• Kelly NH, Schimenti JC, Ross FP, van der Meulen MC. Transcriptional profiling of cortical versus cancellous bone from mechanically-loaded murine tibiae reveals differential gene expression. Bone. 2016;86:22–9.  https://doi.org/10.1016/j.bone.2016.02.007 This paper describes the mechanical loading-induced transcriptional changes in cortical and cancellous bone. Google Scholar
  50. 50.
    Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG. Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading. J Bone Miner Res. 2018;33(3):486–98.  https://doi.org/10.1002/jbmr.3330.Google Scholar
  51. 51.
    Govey PM, Kawasawa YI, Donahue HJ. Mapping the osteocytic cell response to fluid flow using RNA-Seq. J Biomech. 2015;48(16):4327–32.  https://doi.org/10.1016/j.jbiomech.2015.10.045.Google Scholar
  52. 52.
    Li L, Zhang C, Chen JL, Hong FF, Chen P, Wang JF. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Cell Prolif. 2018;52:e12539.  https://doi.org/10.1111/cpr.12539.Google Scholar
  53. 53.
    Niziolek PJ, Warman ML, Robling AG. Mechanotransduction in bone tissue: the A214V and G171V mutations in Lrp5 enhance load-induced osteogenesis in a surface-selective manner. Bone. 2012;51(3):459–65.  https://doi.org/10.1016/j.bone.2012.05.023.Google Scholar
  54. 54.
    Zhao L, Shim JW, Dodge TR, Robling AG, Yokota H. Inactivation of Lrp5 in osteocytes reduces young’s modulus and responsiveness to the mechanical loading. Bone. 2013;54(1):35–43.  https://doi.org/10.1016/j.bone.2013.01.033.Google Scholar
  55. 55.
    Lim J, Munivez E, Jiang MM, Song IW, Gannon F, Keene DR, et al. mTORC1 signaling is a critical regulator of postnatal tendon development. Sci Rep. 2017;7(1):17175.  https://doi.org/10.1038/s41598-017-17384-0.
  56. 56.
    Liu H, Xu J, Liu CF, Lan Y, Wylie C, Jiang R. Whole transcriptome expression profiling of mouse limb tendon development by using RNA-seq. J Orthop Res. 2015;33(6):840–8.  https://doi.org/10.1002/jor.22886.Google Scholar
  57. 57.
    Brophy RH, Rothermich MA, Tycksen ED, Cai L, Rai MF. Presence of meniscus tear alters gene expression profile of anterior cruciate ligament tears. J Orthop Res. 2018;36(10):2612–21.  https://doi.org/10.1002/jor.24025.Google Scholar
  58. 58.
    Rai MF, Tycksen ED, Sandell LJ, Brophy RH. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. J Orthop Res. 2018;36(1):484–97.  https://doi.org/10.1002/jor.23661.Google Scholar
  59. 59.
    Sebastian A, Chang JC, Mendez ME, Murugesh DK, Hatsell S, Economides AN, et al. Comparative transcriptomics identifies novel genes and pathways involved in post-traumatic osteoarthritis development and progression. Int J Mol Sci. 2018;19(9).  https://doi.org/10.3390/ijms19092657.
  60. 60.
    Sieker JT, Ayturk UM, Proffen BL, Weissenberger MH, Kiapour AM, Murray MM. Immediate administration of intraarticular triamcinolone acetonide after joint injury modulates molecular outcomes associated with early synovitis. Arthritis Rheum. 2016;68(7):1637–47.  https://doi.org/10.1002/art.39631.Google Scholar
  61. 61.
    Bowen ME, Ayturk UM, Kurek KC, Yang W, Warman ML. SHP2 regulates chondrocyte terminal differentiation, growth plate architecture and skeletal cell fates. PLoS Genet. 2014;10(5):e1004364.  https://doi.org/10.1371/journal.pgen.1004364.Google Scholar
  62. 62.
    Dai J, Yu D, Wang Y, Chen Y, Sun H, Zhang X, et al. Kdm6b regulates cartilage development and homeostasis through anabolic metabolism. Ann Rheum Dis. 2017;76(7):1295–303.  https://doi.org/10.1136/annrheumdis-2016-210407.
  63. 63.
    Oh CD, Lu Y, Liang S, Mori-Akiyama Y, Chen D, de Crombrugghe B, et al. SOX9 regulates multiple genes in chondrocytes, including genes encoding ECM proteins, ECM modification enzymes, receptors, and transporters. PLoS One. 2014;9(9):e107577.  https://doi.org/10.1371/journal.pone.0107577.
  64. 64.
    Ohba S, He X, Hojo H, McMahon AP. Distinct transcriptional programs underlie Sox9 regulation of the mammalian chondrocyte. Cell Rep. 2015;12(2):229–43.  https://doi.org/10.1016/j.celrep.2015.06.013.Google Scholar
  65. 65.
    Wang JS, Infante CR, Park S, Menke DB. PITX1 promotes chondrogenesis and myogenesis in mouse hindlimbs through conserved regulatory targets. Dev Biol. 2018;434(1):186–95.  https://doi.org/10.1016/j.ydbio.2017.12.013.Google Scholar
  66. 66.
    Dunn SL, Soul J, Anand S, Schwartz JM, Boot-Handford RP, Hardingham TE. Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthr Cartil. 2016;24(8):1431–40.  https://doi.org/10.1016/j.joca.2016.03.007.Google Scholar
  67. 67.
    Ji Q, Zheng Y, Zhang G, Hu Y, Fan X, Hou Y, et al. Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. Ann Rheum Dis. 2018;78:100–10.  https://doi.org/10.1136/annrheumdis-2017-212863.
  68. 68.
    •• Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202–14.  https://doi.org/10.1016/j.cell.2015.05.002 This paper describes the droplet-based single cell capture and sequencing techniques.
  69. 69.
    Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10(11):1096–8.  https://doi.org/10.1038/nmeth.2639.Google Scholar
  70. 70.
    Ramskold D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30(8):777–82.  https://doi.org/10.1038/nbt.2282.Google Scholar
  71. 71.
    •• Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. 2017;14(9):865–8.  https://doi.org/10.1038/nmeth.4380 This paper describes a multiplexing technique in the preparation of scRNA-seq libraries.
  72. 72.
    Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2(3):666–73.  https://doi.org/10.1016/j.celrep.2012.08.003.Google Scholar
  73. 73.
    Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016;166(5):1308–23 e30.  https://doi.org/10.1016/j.cell.2016.07.054.
  74. 74.
    •• Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018;562(7725):133–9.  https://doi.org/10.1038/s41586-018-0554-8 This paper demonstrates how scRNA-seq can be utilized in describing a novel stem cell population.
  75. 75.
    Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature. 2018;560(7718):319–24.  https://doi.org/10.1038/s41586-018-0393-7.
  76. 76.
    Plasschaert LW, Zilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718):377–81.  https://doi.org/10.1038/s41586-018-0394-6.Google Scholar
  77. 77.
    • Takahashi A, Nagata M, Gupta A, Matsushita Y, Yamaguchi T, Mizuhashi K, et al. Autocrine regulation of mesenchymal progenitor cell fates orchestrates tooth eruption. Proc Natl Acad Sci U S A. 2019;116(2):575–80.  https://doi.org/10.1073/pnas.1810200115 This study utilizes single cell RNA-seq to complement lineage tracing experiments.
  78. 78.
    • Mizuhashi K, Nagata M, Matsushita Y, Ono W, Ono N. Growth plate borderline chondrocytes behave as transient mesenchymal precursor cells. J Bone Miner Res. 2019.  https://doi.org/10.1002/jbmr.3719 This study utilizes single cell RNA-seq to complement lineage tracing experiments.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Musculoskeletal Integrity ProgramHospital for Special SurgeryNew YorkUSA

Personalised recommendations