Advertisement

Mechanisms Underlying Normal Fracture Healing and Risk Factors for Delayed Healing

  • Cheng Cheng
  • Dolores ShobackEmail author
Epidemiology and Pathophysiology (F Cosman and D Shoback, Section Editors)
  • 84 Downloads
Part of the following topical collections:
  1. Topical Collection on Epidemiology and Pathophysiology
  2. Topical Collection on Epidemiology and Pathophysiology

Abstract

Purpose of Review

Substantial advances have been made in understanding the biological basis of fracture healing. Yet, it is unclear whether the presence of osteoporosis or prior or current osteoporosis therapy influences the healing process or is associated with impaired healing. This review discusses the normal process of fracture healing and the role of osteoporosis and patient-specific factors in relation to fracture repair.

Recent Findings

The definitive association of osteoporosis to impaired fracture healing remains inconclusive because of limited evidence addressing this point. eStudies testing anabolic agents in preclinical models of ovariectomized animals with induced fractures have produced mostly positive findings showing enhanced fracture repair. Prospective human clinical trials, although few in number and limited in design and to testing only one anabolic agent, have similarly yielded modestly favorable results.

Summary

Interest is high for exploring currently available osteoporosis therapies for efficacy in fracture repair. Definitive data supporting their efficacy are essential in achieving approval for this indication.

Keywords

Fracture healing Risk factors Osteoporosis Bisphosphonates Denosumab Estrogen Raloxifene Parathyroid hormone (PTH) PTH-related peptide Atypical femoral fracture Sclerostin Dickkopf-1 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dolores Shoback reports personal fees from Radius Pharamaceutical, outside the submitted work. Cheng Cheng declares that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Bahney CS, Hu DP, Miclau T, Marcucio RS. The multifaceted role of the vasculature in endochondral fracture repair. Front Endocrinol. 2015;6:4.CrossRefGoogle Scholar
  2. 2.
    Tzioupis C, Giannoudis PV. Prevalence of long-bone non-unions. Injury. 2007;38(Suppl 2):S3–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.CrossRefPubMedGoogle Scholar
  4. 4.
    Eastell R, Lambert H. Strategies for skeletal health in the elderly. Proc Nutr Soc. 2002;61(2):173–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Sanders KM, Pasco JA, Ugoni AM, Nicholson GC, Seeman E, Martin TJ, et al. The exclusion of high trauma fractures may underestimate the prevalence of bone fragility fractures in the community: the Geelong Osteoporosis Study. J Bone Miner Res. 1998;13(8):1337–42.CrossRefPubMedGoogle Scholar
  6. 6.
    Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, et al. Delayed union and non-unions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(Suppl 2):S3–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Beaver R, Brinker MR, Barrack RL. An analysis of the actual cost of tibial non-unions. J La State Med Soc. 1997;149:200–6.PubMedGoogle Scholar
  8. 8.
    Antonova E, Le TK, Burge R, Mershon J. Tibia shaft fractures: costly burden of non-unions. BMC Musculoskelet Disord. 2013;14:42.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alt V, Donell ST, Chhabra A, Bentley A, Eicher A, Schnettler R. A health economic analysis of the use of rhBMP-2 in Gustilo-Anderson grade III open tibial fractures for the UK, Germany, and France. Injury. 2009;40(12):1269–75.CrossRefPubMedGoogle Scholar
  10. 10.
    Tulipan J, Jones CM, Ilyas AM. The effect of osteoporosis on healing of distal radius fragility fractures. Orthop Clin North Am. 2015;46(4):541–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Gómez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and non-unions. Bone. 2015;70:93–101.CrossRefPubMedGoogle Scholar
  12. 12.
    Azar FM, Beaty JH, Canale ST. Fractures, dislocations, and fracture-dislocations of the spine. In: Williams KD, editor. Campbell’s operative orthopaedics. 13th ed. Philadelphia, PA: Elsevier; 2017.Google Scholar
  13. 13.
    United States Food and Drug Administration (USFDA), Office of Device Evaluation, Guidance Document for Industry and CDRH Staff for the Preparation of Investigational Device Exemptions and Premarket Approval Application for Bone Growth Stimulator Devices. 1988.Google Scholar
  14. 14.
    Weber BG, Cech O. Pseudarthrosis, pathotogy, biomechanics, therapy, results. Can Med Assoc J. 1977;117(4):337–8.Google Scholar
  15. 15.
    Morshed S. Current options for determining fracture union. Adv Med. 2014;2014:708574.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kostenuik P, Mirza FM. Fracture healing physiology and the quest for therapies for delayed healing and non-union. J Orthop Res. 2017;35(2):213–23.CrossRefPubMedGoogle Scholar
  17. 17.
    •• Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54 This paper provides a comprehensive review of all aspects of fracture healing with a particularly thorough description of the biological process of healing.CrossRefPubMedGoogle Scholar
  18. 18.
    Copuroglu C, Calori GM, Giannoudis PV. Fracture non-union: who is at risk? Injury. 2013;44(11):1379–82.CrossRefPubMedGoogle Scholar
  19. 19.
    Ferreira N, Marais LC, Aldous C. The pathogenesis of tibial non-union. SA Orthop. J. 2016;15(1):51–59.Google Scholar
  20. 20.
    Féron JM, Mauprivez R. Fracture repair: general aspects and influence of osteoporosis and anti-osteoporosis treatment. Injury. 2016;47(Suppl 1):S10–4.CrossRefPubMedGoogle Scholar
  21. 21.
    • Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 2007;38(Suppl 1):S90–9 This is the most comprehensive review in the literature that summarizes special aspects of healing in osteoporotic fractures based on findings of current animal fracture models.CrossRefPubMedGoogle Scholar
  22. 22.
    Hagiwara H, Inoue N, Matsuzaki H. Relationship between structural anisotropy of the vertebral body and bone mineral density. Trans Orthop Res Soc. 2000;25:738.Google Scholar
  23. 23.
    Carden A, Morris MD. Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt. 2000;5:259–68.CrossRefPubMedGoogle Scholar
  24. 24.
    Khan AZ, Rames RD, Miller AN. Clinical management of osteoporotic fractures. Curr Osteoporos Rep. 2018;16(3):299–311.CrossRefPubMedGoogle Scholar
  25. 25.
    Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA guidelines and animal models for osteoporosis. Bone. 1995;17:125S–33S.CrossRefPubMedGoogle Scholar
  26. 26.
    Wong RMY, Choy MHV, Li MCM, Leung KS, K-H Chow S, Cheung WH, et al. A systematic review of current osteoporotic metaphyseal fracture animal models. Bone Joint Res. 2018;7(1):6–11.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen L, Yang L, Yao M, Cui XJ, Xue CC, Wang YJ, et al. Biomechanical characteristics of osteoporotic fracture healing in ovariectomized rats: a systematic review. PLoS One. 2016;11(4):e0153120.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lill CA, Fluegel AK, Schneider E. Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. J Orthop Trauma. 2000;14(8):559–65 discussion 565-6.CrossRefPubMedGoogle Scholar
  29. 29.
    Namkung-Matthai H, Appleyard R, Jansen J, Hao Lin J, Maastricht S, Swain M, et al. Osteoporosis influences the early period of fracture healing in a rat osteoporotic model. Bone. 2001;28(1):80–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang JW, Li W, Xu SW, Yang DS, Wang Y, Lin M, et al. Osteoporosis influences the middle and late periods of fracture healing in a rat osteoporotic model. Chin J Traumatol. 2005;8:111–6.PubMedGoogle Scholar
  31. 31.
    Qiao L, Xu KH, Liu HW, Liu HQ. Effects of ovariectomy on fracture healing in female rats. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005;36(1):108–11.PubMedGoogle Scholar
  32. 32.
    Cheung WH, Miclau T, Chow SK, Yang FF, Alt V. Fracture healing in osteoporotic bone. Injury. 2016;47(Suppl 2):S21–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Alt V, Thormann U, Ray S, Zahner D, Dürselen L, Lips K, et al. A new metaphyseal bone defect model in osteoporotic rats to study biomaterials for the enhancement of bone healing in osteoporotic fractures. Acta Biomater. 2013;9:7035–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Stuermer EK, Sehmisch S, Rack T, Wenda E, Seidlova-Wuttke D, Tezval M, et al. Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbeck's Arch Surg. 2010;395:163–72.CrossRefGoogle Scholar
  35. 35.
    Santolini E, West R, Giannoudis PV. Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence. Injury. 2015;46(Suppl 8):S8–S19.CrossRefPubMedGoogle Scholar
  36. 36.
    Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non-unions. Injury. 2007;38S:S11–8.CrossRefGoogle Scholar
  37. 37.
    Donigan JA, Fredericks DC, Nepola JV, Smucker JD. The effect of transdermal nicotine on fracture healing in a rabbit model. J Orthop Trauma. 2012;26(12):724–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Forrest CR, Pang CY, Lindsay WK. Pathogenesis of ischemic necrosis in random pattern skin flaps induced by long-term low-dose nicotine treatment in the rat. Plast Reconstr Surg. 1991;87(3):518–28.CrossRefPubMedGoogle Scholar
  39. 39.
    Adams CI, Keating JF, Court-Brown CM. Cigarette smoking and open tibial fractures. Injury. 2001 Jan;32(1):61–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD, Kristiansen TK. Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop Relat Res. 1997;337:198–207.CrossRefGoogle Scholar
  41. 41.
    Kyrö A, Usenius JP, Aarnio M, Kunnamo I, Avikainen V. Are smokers a risk group for delayed healing of tibial shaft fractures? Ann Chir Gynaecol. 1993;82(4):254–62.PubMedGoogle Scholar
  42. 42.
    Elmali N, Ertem K, Ozen S, Inan M, Baysal T, Güner G, et al. Fracture healing and bone mass in rats fed on liquid diet containing ethanol. Alcohol Clin Exp Res. 2002;26(4):509–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Chakkalakal DA, Novak JR, Fritz ED, Mollner TJ, McVicker DL, Garvin KL, et al. Inhibition of bone repair in a rat model for chronic and excessive alcohol consumption. Alcohol. 2005;36(3):201–14.CrossRefPubMedGoogle Scholar
  44. 44.
    Almeida M, Han L, Martin-Millan M, O'Brien CA, Manolagas SC. Oxidative stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription. J Biol Chem. 2007;282(37):27298–305.CrossRefPubMedGoogle Scholar
  45. 45.
    Shin SY, Kim CG, Jho EH, Rho MS, Kim YS, Kim YH, et al. Hydrogen peroxide negatively modulates Wnt signaling through downregulation of beta-catenin. Cancer Lett. 2004;212(2):225–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Obermeyer TS, Yonick D, Lauing K, Stock SR, Nauer R, Strotman P, et al. Mesenchymal stem cells facilitate fracture repair in an alcohol-induced impaired healing model. J Orthop Trauma. 2012;26(12):712–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Levy RS, Hebert CK, Munn BG, Barrack RL. Drug and alcohol use in orthopedic trauma patients: a prospective study. J Orthop Trauma. 1996;10(1):21–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Duckworth AD, Bennet SJ, Aderinto J, Keating JF. Fixation of intracapsular fractures of the femoral neck in young patients: risk factors for failure. J Bone Joint Surg Br. 2011;93(6):811–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Janghorbani M, Feskanich D, Willett WC, Hu F. Prospective study of diabetes and risk of hip fracture: the nurses’ health study. Diabetes Care. 2006;29(7):1573–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Folk JW, Starr AJ, Early JS. Early wound complications of operative treatment of calcaneus fractures: analysis of 190 fractures. J Orthop Trauma. 1999;13(5):369–72.CrossRefPubMedGoogle Scholar
  51. 51.
    Retzepi M, Donos N. The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res. 2010;21(7):673–81.CrossRefPubMedGoogle Scholar
  52. 52.
    Dede AD, Tournis S, Dontas I, Trovas G. Type 2 diabetes mellitus and fracture risk. Metabolism. 2014;63(12):1480–90.CrossRefPubMedGoogle Scholar
  53. 53.
    Foulke BA, Kendal AR, Murray DW, Pandit H. Fracture healing in the elderly: a review. Maturitas. 2016;92:49–55.CrossRefPubMedGoogle Scholar
  54. 54.
    Tang SY, Zeenath U, Vashishth D. Effects of non-enzymatic glycation on cancellous bone fragility. Bone. 2007;40(4):1144–51.CrossRefPubMedGoogle Scholar
  55. 55.
    Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28(2):195–201.CrossRefPubMedGoogle Scholar
  56. 56.
    Jones KB, Maiers-Yelden KA, Marsh JL, Zimmerman MB, Estin M, Saltzman CL. Ankle fractures in patients with diabetes mellitus. J Bone Joint Surg Br. 2005;87(4):489–95.CrossRefPubMedGoogle Scholar
  57. 57.
    Shibuya N, Humphers JM, Fluhman BL, Jupiter DC. Factors associated with non-union, delayed union, and malunion in foot and ankle surgery in diabetic patients. J Foot Ankle Surg. 2013;52(2):207–11.CrossRefPubMedGoogle Scholar
  58. 58.
    Kates SL, Ackert-Bicknell CL. How do bisphosphonates affect fracture healing? Injury. 2016;47(Suppl 1):S65–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Feher A, Koivunemi A, Koivunemi M, Fuchs RK, Burr DB, Phipps RJ, et al. Bisphosphonates do not inhibit periosteal bone formation in estrogen deficient animals and allow enhanced bone modeling in response to mechanical loading. Bone. 2010;46(1):203–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Fu LJ, Tang TT, Hao YQ, Dai KR. Long-term effects of alendronate on fracture healing and bone remodeling of femoral shaft in ovariectomized rats. Acta Pharmacol Sin. 2013;34(3):387–92.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Molvik H, Khan W. Bisphosphonates and their influence on fracture healing: a systematic review. Osteoporos Int. 2015;26(4):1251–60.CrossRefPubMedGoogle Scholar
  62. 62.
    Solomon DH, Hochberg MC, Mogun H, Schneeweiss S. The relation between bisphosphonate use and non-union of fractures of the humerus in older adults. Osteoporos Int. 2009;20:895–901.CrossRefPubMedGoogle Scholar
  63. 63.
    Tang ZH, Kumar VP. Alendronate-associated ulnar and tibial fractures: a case report. J Orthop Surg (Hong Kong). 2011;19:370–2.CrossRefGoogle Scholar
  64. 64.
    Rozental TD, Vazquez MA, Chacko AT, Ayogu N, Bouxsein ML. Comparison of radiographic fracture healing in the distal radius for patients on and off bisphosphonate therapy. J Hand Surg [Am]. 2009;34:595–602.CrossRefGoogle Scholar
  65. 65.
    Gerstenfeld LC, Sacks DJ, Pelis M, Mason ZD, Graves DT, Barrero M, et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res. 2009;24(2):196–208.CrossRefPubMedGoogle Scholar
  66. 66.
    Pountos I, Georgouli T, Blokhuis TJ, Pape HC, Giannoudis PV. Pharmacological agents and impairment of fracture healing: what is the evidence? Injury. 2008;39(4):384–94.CrossRefPubMedGoogle Scholar
  67. 67.
    Blunt JW, Plotz CM, Lattes R, Howes EL, Meyer K, Ragan C. Effect of cortisone on experimental fractures in the rabbit. Proc Soc Exp Biol Med. 1950;73:678–81.CrossRefPubMedGoogle Scholar
  68. 68.
    Sisson HA, Hadfield GJ. The influence of cortisone on the repair of experimental fracture in rabbit. Br J Surg. 1951;38:172–8.CrossRefGoogle Scholar
  69. 69.
    Sato S, Kim T, Arai T, et al. Comparison between the effects of dexamethasone and indomethacin on bone wound healing. Jpn J Pharmacol. 1986;42:71–8.CrossRefPubMedGoogle Scholar
  70. 70.
    Key JA, Odell RT, Taylor LW. Failure of cortisone to delay or to prevent the healing of fractures in rats. J Bone Joint Surg Am. 1952;24:665–75.CrossRefPubMedGoogle Scholar
  71. 71.
    Weiss R, Ickowich M. The influence of cortisone on the healing of experimental fractures in rats. Acta Anat (Basel). 1964;59:163–81.CrossRefGoogle Scholar
  72. 72.
    Reikeraas O, Engebretsen L. Effects of ketoralac tromethamine and indomethacin on primary and secondary bone healing. An experimental study in rats. Arch Orthop Trauma Surg. 1998;118:50–2.CrossRefPubMedGoogle Scholar
  73. 73.
    Brown KM, Saunders MM, Kirsch T, Donahue HJ, Reid JS. Effect of COX-2-specific inhibition on fracture-healing in the rat femur. J Bone Joint Surg Am. 2004;86-A:116–23.CrossRefPubMedGoogle Scholar
  74. 74.
    Gerstenfeld LC, Thiede M, Seibert K, Mielke C, Phippard D, Svagr B, et al. Differential inhibition of fracture healing by non-selective and cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs. J Orthop Res. 2003;21:670–5.CrossRefPubMedGoogle Scholar
  75. 75.
    Deguchi M, Rapoff AJ, Zdeblick TA. Posterolateral fusion for isthmic spondylolisthesis in adults: analysis of fusion rate and clinical results. J Spinal Disord. 1998;11:459–64.CrossRefPubMedGoogle Scholar
  76. 76.
    Glassman SD, Rose SM, Dimar JR, Puno RM, Campbell MJ, Johnson JR. The effect of postoperative nonsteroidal anti-inflammatory drug administration on spinal fusion. Spine. 1998;23:834–8.CrossRefPubMedGoogle Scholar
  77. 77.
    Reuben SS, Ablett D, Kaye R. High dose nonsteroidal antiinflammatory drugs compromise spinal fusion. Can J Anaesth. 2005;52:506–12.CrossRefPubMedGoogle Scholar
  78. 78.
    Ritter MA, Vaughan RB. Ectopic ossification after total hip arthroplasty. Predisposing factors, frequency, and effect on results. J Bone Joint Surg Am. 1977;59:345–51.CrossRefPubMedGoogle Scholar
  79. 79.
    Einhorn TA, Bonnarens F, Burstein AH. The contributions of dietary protein and mineral to the healing of experimental fractures. A biomechanical study. J Bone Joint Surg Am. 1986;68(9):1389–95.CrossRefPubMedGoogle Scholar
  80. 80.
    Doepfner W. Consequences of calcium and-or phosphorus defcient diets on various parameters of callus formation and on growth rate in young rats. Br J Pharmacol. 1970;39(1):188–9.Google Scholar
  81. 81.
    Melhus G, Solberg LB, Dimmen S, Madsen JE, Nordsletten L, Reinholt FP. Experimental osteoporosis induced by ovariectomy and vitamin D deficiency does not markedly affect fracture healing in rats. Acta Orthop. 2007;78(3):393–403.CrossRefPubMedGoogle Scholar
  82. 82.
    Fischer V, Haffner-Luntzer M, Prystaz K, Scheidt AV, Busse B, Schinke T, et al. Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. Sci Rep. 2017;7(1):7223.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Brinker MR, O'Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with non-unions. J Orthop Trauma. 2007;21(8):557–70.CrossRefPubMedGoogle Scholar
  84. 84.
    Boszczyk AM, Zakrzewski P, Pomianowski S. Vitamin D concentration in patients with normal and impaired bone union. Pol Orthop Traumatol. 2013;78:1–3.PubMedGoogle Scholar
  85. 85.
    Dodds RA, Catterall A, Bitensky L, Chayen J. Abnormalities in fracture healing induced by vitamin B6-deficiency in rats. Bone. 1986;7:489–95.CrossRefPubMedGoogle Scholar
  86. 86.
    Mohan S, Kapoor A, Singgih A, Zhang Z, Taylor T, Yu H, et al. Spontaneous fractures in the mouse mutant sfx are caused by deletion of the gulonolactone oxidase gene, causing vitamin C deficiency. J Bone Miner Res. 2005;20:1597–610.CrossRefPubMedGoogle Scholar
  87. 87.
    Koval KJ, Maurer SG, Su ET, Aharonoff GB, Zuckerman JD. The effects of nutritional status on outcome after hip fracture. J Orthop Trauma. 1999;13:164–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Aspenberg P. Bisphosphonates and implants: an overview. Acta Orthop. 2009;80(1):119–23.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Moroni A, Faldini C, Hoang-Kim A, Pegreffi F, Giannini S. Alendronate improves screw fixation in osteoporotic bone. J Bone Joint Surg Am. 2007;89(1):96–101.CrossRefPubMedGoogle Scholar
  90. 90.
    Hilding M, Aspenberg P. Local peroperative treatment with a bisphosphonate improves the fixation of total knee prostheses: a randomized, double-blind radiostereometric study of 50 patients. Acta Orthop. 2007;78(6):795–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Lyles KW, Colón-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.CrossRefPubMedGoogle Scholar
  92. 92.
    Colón-Emeric C, Nordsletten L, Olson S, Major N, Boonen S, Haentjens P, et al. Association between timing of zoledronic acid infusion and hip fracture healing. Osteoporos Int. 2011;22(8):2329–36.CrossRefPubMedGoogle Scholar
  93. 93.
    Eriksen EF, Lyles KW, Colón-Emeric CS, Pieper CF, Magaziner JS, Adachi JD, et al. Antifracture efficacy and reduction of mortality in relation to timing of the first dose of zoledronic acid after hip fracture. J Bone Miner Res. 2009;24(7):1308–13.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Chapurlat RD, Genant HK. Osteoporosis: treatment. In: Jameson JL, DeGroot LJ, editors. Endocrinology adult and pediatric. 7th ed. Philadelphia: Saunders Elsevier; 2016.Google Scholar
  95. 95.
    Bernhardsson M, Sandberg O, Aspenberg P. Anti-RANKL treatment improves screw fixation in cancellous bone in rats. Injury. 2015;46(6):990–5.CrossRefPubMedGoogle Scholar
  96. 96.
    Adami S, Libanati C, Boonen S, Cummings SR, Ho PR, Wang A, et al. Denosumab administration is not associated with fracture healing complications in postmenopausal women with osteoporosis: results from the FREEDOM trial. J Bone Joint Surg Am. 2012;94(23):2113–9.CrossRefPubMedGoogle Scholar
  97. 97.
    •• Goldhahn J, Féron JM, Kanis J, Papapoulos S, Reginster JY, Rizzoli R, et al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int. 2012;90(5):343–53 This paper provides both good bench and clinical evidence of all pharmacologic osteoporosis agents in fracture healing.CrossRefPubMedGoogle Scholar
  98. 98.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288(3):321–33.CrossRefPubMedGoogle Scholar
  99. 99.
    Cao Y, Mori S, Mashiba T, Westmore MS, Ma L, Sato M, et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res. 2002;17(12):2237–46.CrossRefPubMedGoogle Scholar
  100. 100.
    Spiro AS, Khadem S, Jeschke A, Marshall RP, Pogoda P, Ignatius A, et al. The SERM raloxifene improves diaphyseal fracture healing in mice. J Bone Miner Metab. 2013;31:629–36.CrossRefPubMedGoogle Scholar
  101. 101.
    Spiro AS, Khadem S, Jeschke A, Marshall RP, Pogoda P, Ignatius A, et al. Effects of estrogen on fracture healing in mice. J Bone Miner Metab. 2013;31(6):629–36.CrossRefPubMedGoogle Scholar
  102. 102.
    Holzer G, Majeska RJ, Lundy MW, Hartke JR, Einhorn TA. Parathyroid hormone enhances fracture healing: a preliminary report. Clin Orthop Relat Res. 1999;366:258–63.CrossRefGoogle Scholar
  103. 103.
    Andreassen TT, Fledelius C, Ejersted C, Oxlund H. Increases in callus formation and mechanical strength of healing fractures in old rats treated with parathyroid hormone. Acta Orthop Scand. 2001;72(3):304–7.CrossRefPubMedGoogle Scholar
  104. 104.
    Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, et al. Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1–34). J Bone Miner Res. 2002;17(11):2038–47.CrossRefPubMedGoogle Scholar
  105. 105.
    Nakazawa T, Nakajima A, Shiomi K, Moriya H, Einhorn TA, Yamazaki M. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1–34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37(5):711–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Morgan EF, Mason ZD, Bishop G, Davis AD, Wigner NA, Gerstenfeld LC, et al. Combined effects of recombinant human BMP-7 (rhBMP-7) and parathyroid hormone (1–34) in metaphyseal bone healing. Bone. 2001;28(5):538–47.CrossRefGoogle Scholar
  107. 107.
    Manabe T, Mori S, Mashiba T, Kaji Y, Iwata K, Komatsubara S, et al. Human parathyroid hormone (1–34) accelerates natural fracture healing process in the femoral osteotomy model of cynomolgus monkeys. Bone. 2007;40(6):1475–82.CrossRefPubMedGoogle Scholar
  108. 108.
    Hegde V, Jo JE, Andreopoulou P, Lane JM. Effect of osteoporosis medications on fracture healing. Osteoporos Int. 2016;27(3):861–71.CrossRefPubMedGoogle Scholar
  109. 109.
    Lou S, Lv H, Wang G, Zhang L, Li M, Li Z, et al. The effect of teriparatide on fracture healing of osteoporotic patients: a meta-analysis of randomized controlled trials. Biomed Res Int. 2016;2016:6040379.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25:404–14.CrossRefPubMedGoogle Scholar
  111. 111.
    Peichl P, Holzer LA, Maier R, Holzer G. Parathyroid hormone 1–84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg. 2011;93:1583–7.CrossRefPubMedGoogle Scholar
  112. 112.
    Resmini G, Iolascon G. 79-Year-old post-menopausal woman with humerus fracture during teriparatide treatment. Aging Clin Exp Res. 2007;19:30–1.PubMedGoogle Scholar
  113. 113.
    Rubery PT, Bukata SV. Teriparatide may accelerate healing in delayed unions of type III odontoid fractures: a report of 3 cases. J Spinal Disord Tech. 2010;23:151–5.CrossRefPubMedGoogle Scholar
  114. 114.
    Shane E, Burr D, Abrahamsen B, Adler R, Brown T, Cheung A, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29(1):1–23.CrossRefPubMedGoogle Scholar
  115. 115.
    Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2010;25(11):2267–94.CrossRefPubMedGoogle Scholar
  116. 116.
    Park-Wyllie LY, Mamdani MM, Juurlink DN, Hawker GA, Gunraj N, Austin PC, et al. Bisphosphonate use and the risk of subtrochanteric or femoral shaft fractures in older women. JAMA. 2011;305(8):783–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Yeh WL, Su CY, Chang CW, Chen CH, Fu TS, Chen LH, et al. Surgical outcome of atypical subtrochanteric and femoral fracture related to bisphosphonates use in osteoporotic patients with or without teriparatide treatment. BMC Musculoskelet Disord. 2017;18(1):527.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Miyakoshi N, Aizawa T, Sasaki S, Ando S, Maekawa S, Aonuma H, et al. Healing of bisphosphonate-associated atypical femoral fractures in patients with osteoporosis: a comparison between treatment with and without teriparatide. J Bone Miner Metab. 2015;33(5):553–9.CrossRefPubMedGoogle Scholar
  119. 119.
    Watts NB, Aggers D, McCarthy EF, Savage T, Martinez S, Patterson R, et al. Responses to treatment with teriparatide in patients with atypical femur fractures previously treated with bisphosphonates. J Bone Miner Res. 2017;32(5):1027–33.CrossRefPubMedGoogle Scholar
  120. 120.
    Chiang CY, Zebaze RM, Ghasem-Zadeh A, Iuliano-Burns S, Hardidge A, Seeman E. Teriparatide improves bone quality and healing of atypical femoral fractures associated with bisphosphonate therapy. Bone. 2013;52(1):360–5.CrossRefPubMedGoogle Scholar
  121. 121.
    Maes C, Kronenberg HM. Bone development and remodeling. In: Jameson JL, DeGroot LJ, editors. Endocrinology adult and pediatric. 7th ed. Philadelphia: Saunders Elsevier; 2016.Google Scholar
  122. 122.
    Wang YH, Qiu Y, Han XD, Xiong J, Chen YX, Shi HF, et al. Haploinsufficiency of endogenous parathyroid hormone-related peptide impairs bone fracture healing. Clin Exp Pharmacol Physiol. 2013;40(11):715–23.CrossRefPubMedGoogle Scholar
  123. 123.
    Wang M, Nasiri AR, Broadus AE, Tommasini SM. Periosteal PTHrP regulates cortical bone remodeling during fracture healing. Bone. 2015;81:104–11.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Wang Y, Fang X, Wang C, Ding C, Lin H, Liu A, et al. Exogenous PTHrP repairs the damaged fracture healing of PTHrP+/− mice and accelerates fracture healing of wild mice. Int J Mol Sci. 2017;6:18 (2).Google Scholar
  125. 125.
    Bostrom MP, Gamradt SC, Asnis P, et al. Parathyroid hormone-related protein analog RS-66271 is an effective therapy for impaired bone healing in rabbits on corticosteroid therapy. Bone. 2000;26:437–42.CrossRefPubMedGoogle Scholar
  126. 126.
    Lozano D, de Castro LF, Dapia S, et al. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology. 2009;150:2027–35.CrossRefPubMedGoogle Scholar
  127. 127.
    Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33.CrossRefPubMedGoogle Scholar
  128. 128.
    Gamie Z, Korres N, Leonidou A, Gray AC, Tsiridis E. Sclerostin monoclonal antibodies on bone metabolism and fracture healing. Expert Opin Investig Drugs. 2012;21(10):1523–34.CrossRefPubMedGoogle Scholar
  129. 129.
    Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, et al. Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med. 2016;375(16):1532–43.CrossRefPubMedGoogle Scholar
  130. 130.
    Kramer I, Loots GG, Studer A, Keller H, Kneissel M. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res. 2010;25(2):178–89.CrossRefPubMedGoogle Scholar
  131. 131.
    Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D'Agostin D, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res. 2008;23(6):860–9.CrossRefPubMedGoogle Scholar
  132. 132.
    McDonald MM, Morse A, Mikulec K, Peacock L, Yu N, Baldock PA, et al. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res. 2012;30(10):1541–8.CrossRefPubMedGoogle Scholar
  133. 133.
    Liu Y, Rui Y, Cheng TY, Huang S, Xu L, Meng F, et al. Effects of sclerostin antibody on the healing of femoral fractures in ovariectomised rats. Calcif Tissue Int. 2016;98(3):263–74.CrossRefPubMedGoogle Scholar
  134. 134.
    Alaee F, Virk MS, Tang H, Sugiyama O, Adams DJ, Stolina M, et al. Evaluation of the effects of systemic treatment with a sclerostin neutralizing antibody on bone repair in a rat femoral defect model. J Orthop Res. 2014;32(2):197–203.CrossRefPubMedGoogle Scholar
  135. 135.
    Virk MS, Alaee F, Tang H, Ominsky MS, Ke HZ, Lieberman JR. Systemic administration of sclerostin antibody enhances bone repair in a critical-sized femoral defect in a rat model. J Bone Joint Surg Am. 2013;95(8):694–701.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Jawad MU, Fritton KE, Ma T, Ren PG, Goodman SB, Ke HZ, et al. Effects of sclerostin antibody on healing of a non-critical size femoral bone defect. J Orthop Res. 2013;31(1):155–63.CrossRefPubMedGoogle Scholar
  137. 137.
    Suen PK, He YX, Chow DH, Huang L, Li C, Ke HZ, et al. Sclerostin monoclonal antibody enhanced bone fracture healing in an open osteotomy model in rats. J Orthop Res. 2014;32(8):997–1005.CrossRefPubMedGoogle Scholar
  138. 138.
    Alkhiary YM, Gerstenfeld LC, Krall E, Westmore M, Sato M, Mitlak BH, et al. Enhancement of experimental fracture-healing by systemic administration of recombinant human parathyroid hormone (PTH 1–34). J Bone Joint Surg Am. 2005;87(4):731–41.PubMedGoogle Scholar
  139. 139.
    Komrakova M, Stuermer EK, Werner C, Wicke M, Kolios L, Sehmisch S, et al. Effect of human parathyroid hormone hPTH (1–34) applied at different regimes on fracture healing and muscle in ovariectomized and healthy rats. Bone. 2010;47(3):480–92.CrossRefPubMedGoogle Scholar
  140. 140.
    Kim HW, Jahng JS. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Iowa Orthop J. 1999;19:71–7.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Chintamaneni S, Finzel K, Gruber BL. Successful treatment of sternal fracture non-union with teriparatide. Osteoporos Int. 2010;21:1059–63.CrossRefPubMedGoogle Scholar
  142. 142.
    Yee CS, Xie L, Hatsell S, Hum N, Murugesh D, Economides AN, et al. Sclerostin antibody treatment improves fracture outcomes in a type I diabetic mouse model. Bone. 2016;82:122–34.CrossRefPubMedGoogle Scholar
  143. 143.
    Suen PK, Zhu TY, Chow DH, Huang L, Zheng LZ, Qin L. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength of intact bones in adult male rats. Sci Rep. 2015;5:15632.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Morse A, Yu NY, Peacock L, Mikulec K, Kramer I, Kneissel M, et al. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength. Bone. 2015;71:155–63.CrossRefPubMedGoogle Scholar
  145. 145.
    Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, et al. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011;26(5):1012–21.CrossRefPubMedGoogle Scholar
  146. 146.
    Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33(5):747–83.CrossRefPubMedGoogle Scholar
  147. 147.
    Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D, et al. Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res. 2011;26:2610–21.CrossRefPubMedGoogle Scholar
  148. 148.
    Chen Y, Whetstone HC, Lin AC, Nadesan P, Wei Q, Poon R, et al. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med. 2007;4(7):e249.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Komatsu DE, Mary MN, Schroeder RJ, Robling AG, Turner CH, Warden SJ. Modulation of Wnt signaling influences fracture repair. J Orthop Res. 2010 Jul;28(7):928–36.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B, et al. A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun. 2016;7:11505.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Endocrine Research Unit, Department of MedicineSan Francisco Veterans Affairs Medical CenterSan FranciscoUSA
  2. 2.Division of Endocrinology and Metabolism, Department of MedicineUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations