Current Osteoporosis Reports

, Volume 16, Issue 2, pp 169–181 | Cite as

Progress of Regenerative Therapy in Orthopedics

Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Regenerative Biology and Medicine in Osteoporosis

Abstract

Purpose of Review

To conduct a thorough appraisal of recent and inventive advances in the field of bone tissue engineering using biomaterials, cell-based research, along with the incorporation of biomimetic properties using surface modification of scaffolds.

Recent Findings

This paper will provide an overview on different biomaterials and emerging techniques involved in the fabrication of scaffolds, brief description of signaling pathways involved in osteogenesis, and the effect of surface modification on the fate of progenitor cells.

Summary

The current strategies used for regenerative medicine like cell therapy, gene transfer, and tissue engineering have opened numerous therapeutic avenues for the treatment of various disabling orthopedic disorders. Precise strategy utilized for the reconstruction, restoration, or repair of the bone-related tissues exploits cells, biomaterials, morphogenetic signals, and appropriate mechanical environment to provide the basic constituents required for creating new tissue. Combining all the above strategies in clinical trials would pave the way for successful “bench to bedside” transformation in bone healing.

Keywords

Bone tissue engineering Stem cells Osteogenesis Scaffold Biomaterial 

Notes

Acknowledgements

The authors thank A. Revathi for carefully proof-reading the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Pearlin, Sunita Nayak, Geetha Manivasgam and Dwaipayan Sen declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, ••Of major importance

  1. 1.
    Black CR, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo RO. Bone tissue engineering. Curr Mol Biol Rep. 2015;1(3):132–40.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol. 2014;14(1):15–56.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Mackie E, Ahmed Y, Tatarczuch L, Chen K-S, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40(1):46–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Soltanoff CS, Chen W, Yang S, Li Y-P. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr. 2009;19(1):1–46.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthc Mater. 2015;4(9):1268–85.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    O’brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.CrossRefGoogle Scholar
  7. 7.
    Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng. 2012;40(5):363–408.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200.PubMedCrossRefGoogle Scholar
  9. 9.
    Titorencu I, Georgiana Albu M, Nemecz M, Jinga V. Natural polymer-cell bioconstructs for bone tissue engineering. Curr Stem Cell Res Ther. 2017;12(2):165–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu X, Ma PX. Polymeric scaffolds for bone Tissue Eng 2004.Google Scholar
  11. 11.
    Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Alvarez K, Nakajima H. Metallic scaffolds for bone regeneration. Materials. 2009;2(3):790–832.PubMedCentralCrossRefGoogle Scholar
  13. 13.
    Matassi F, Nistri L, Paez DC, Innocenti M. New biomaterials for bone regeneration. Clinical cases in mineral and bone. Metabolism. 2011;8(1):21.Google Scholar
  14. 14.
    Tanner K. Bioactive composites for bone tissue engineering. Proc Inst Mech Eng H J Eng Med. 2010;224(12):1359–72.CrossRefGoogle Scholar
  15. 15.
    Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices. 2005;2(3):303–17.PubMedCrossRefGoogle Scholar
  16. 16.
    Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL. Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol. 2004;64(6):789–817.CrossRefGoogle Scholar
  17. 17.
    Wang M. Composite scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2006.Google Scholar
  18. 18.
    Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress Biomater. 2012;1(1):2.CrossRefGoogle Scholar
  19. 19.
    Navarro M, Michiardi A, Castano O, Planell J. Biomaterials in orthopaedics. J R Soc Interface. 2008;5(27):1137–58.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Coombes A, Meikle M. Resorbable synthetic polymers s replacements for bone graft. Clin Mater. 1994;17(1):35–67.PubMedCrossRefGoogle Scholar
  21. 21.
    Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9(9):8037–45.PubMedCrossRefGoogle Scholar
  22. 22.
    Srinivasan K, Naula DP, Mijares DQ, Janal MN, LeGeros RZ, Zhang Y. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats. J Biomed Mater Res A. 2016;104(7):1622–32.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Radha R, Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magnes Alloys. 2017;5:286–312.CrossRefGoogle Scholar
  24. 24.
    Prasad A, Sankar MR, Katiyar V. State of art on solvent casting particulate leaching method for orthopedic scaffoldsfabrication. Materials Today: Proceedings. 2017;4(2):898–907.CrossRefGoogle Scholar
  25. 25.
    Lv Q, Feng Q. Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J Mater Sci Mater Med. 2006;17(12):1349–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, et al. Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C. 2017;78:1246–62.CrossRefGoogle Scholar
  27. 27.
    Cirllo V, Guarino V, Ambrosio L. Design of bioactive electrospun scaffolds for bone tissue engineering. J Appl Biomater Funct Mater. 2012;10(3)Google Scholar
  28. 28.
    • Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, et al. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci. 2017;5(9):1690–8. Influence 3D-printed ceramic scaffold was evaluated. PubMedCrossRefGoogle Scholar
  29. 29.
    Yang J, Wang J, Yuan T, Zhu X, Xiang Z, Fan Y, et al. The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells. J Mater Sci Mater Med. 2013;24(9):2235–46.PubMedCrossRefGoogle Scholar
  30. 30.
    Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742–62.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wu G-H, Hsu S-H. Polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35(3):285–92.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Stegen S, van Gastel N, Carmeliet G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone. 2015;70:19–27.PubMedCrossRefGoogle Scholar
  33. 33.
    Hasan A, Paul A, Vrana NE, Zhao X, Memic A, Hwang Y-S, et al. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014;35(26):7308–25.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hadjipanayi E, Schilling AF. Hypoxia-based strategies for angiogenic induction: the dawn of a new era for ischemia therapy and tissue regeneration. Organ. 2013;9(4):261–72.Google Scholar
  35. 35.
    Yavropoulou M, Yovos J. The molecular basis of bone mechanotransduction. J Musculoskelet Neuronal Interact. 2016;16(3):221–36.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ramirez-Vick JE. Biophysical stimulation for bone regeneration. JSM Biotechnol Biomed Eng. 2013;1(2):1014.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what’s all the fuss? Indian J Orthop. 2009;43(2):117–20.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    •• Yong Y, Ming ZD, Feng L, Chun ZW, Hua W. Electromagnetic fields promote osteogenesis of rat mesenchymal stem cells through the PKA and ERK1/2 pathways. Journal of tissue engineering and regenerative medicine. 2016;10(10). EMF was able to influence the fate of progenitor cells. Google Scholar
  39. 39.
    Huang W, Yang S, Shao J, Li Y-P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Frontiers in bioscience: a journal and virtual Library. 2007;12:3068.CrossRefGoogle Scholar
  40. 40.
    Zhang C. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J Orthop Surg Res. 2010;5(1):37.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chen LF. Tumor suppressor function of RUNX3 in breast cancer. J Cell Biochem. 2012;113(5):1470–7.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8(5):727–38.  https://doi.org/10.1016/j.devcel.2005.02.013.PubMedCrossRefGoogle Scholar
  43. 43.
    Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, et al. PPARγ and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2016;11(3):216–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8(5):751–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Suzuki A, Guicheux J, Palmer G, Miura Y, Oiso Y, Bonjour J-P, et al. Evidence for a role of p38 MAP kinase in expression of alkaline phosphatase during osteoblastic cell differentiation. Bone. 2002;30(1):91–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Ge C, Xiao G, Jiang D, Yang Q, Hatch NE, Roca H, et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284(47):32533–43.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chen Z, Luo Q, Lin C, Kuang D, Song G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci Rep 2016;6.Google Scholar
  48. 48.
    Marie P. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene. 2003;316:23–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Su N, Jin M, Chen L. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone research. 2014;2:14003.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Miao D, He B, Karaplis AC, Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J Clin Invest. 2002;109(9):1173–82.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mihai R, Farndon J. Parathyroid disease and calcium metabolism. Br J Anaesth. 2000;85(1):29–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Pinheiro PL, Cardoso JC, Power DM, Canário AV. Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken. BMC Evol Biol. 2012;12(1):110.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lupp A, Klenk C, Röcken C, Evert M, Mawrin C, Schulz S. Immunohistochemical identification of the PTHR1 parathyroid hormone receptor in normal and neoplastic human tissues. Eur J Endocrinol. 2010;162(5):979–86.PubMedCrossRefGoogle Scholar
  54. 54.
    Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, et al. Effect of recombinant human parathyroid hormone (1-84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial treatment of postmenopausal osteoporotic women with parathyroid hormone (1-84). Ann Intern Med. 2007;146(5):326–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Sone T, Fukunaga M, Ono S, Nishiyama T. A small dose of human parathyroid hormone (1-34) increased bone mass in the lumbar vertebrae in patients with senile osteoporosis. Miner Electrolyte Metab. 1994;21(1–3):232–5.Google Scholar
  56. 56.
    Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, et al. Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology. 2001;142(9):4047–54.PubMedCrossRefGoogle Scholar
  57. 57.
    Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Åberg T, Cavender A, Gaikwad JS, Bronckers AL, Wang X, Waltimo-Sirén J, et al. Phenotypic changes in dentition of Runx2 homozygote-null mutant mice. J Histochem Cytochem. 2004;52(1):131–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Jena N, Martı́n-Seisdedos C, McCue P, Croce CM. BMP7 null mutation in mice: developmental defects in skeleton, kidney, and eye. Exp Cell Res. 1997;230(1):28–37.PubMedCrossRefGoogle Scholar
  60. 60.
    Tseng Y-H, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–4.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim RY, Robertson EJ, Solloway MJ. Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol. 2001;235(2):449–66.PubMedCrossRefGoogle Scholar
  62. 62.
    Dudley AT, Robertson EJ. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn. 1997;208(3):349–62.PubMedCrossRefGoogle Scholar
  63. 63.
    Katagiri T, Boorla S, Frendo J-L, Hogan BL, Karsenty G. Skeletal abnormalities in doubly heterozygous Bmp4 and Bmp7 mice. Dev Genet. 1998;22(4):340–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Chen D, Harris M, Rossini G, Dunstan C, Dallas S, Feng J, et al. Bone morphogenetic protein 2 (BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in culturesof fetal rat calvarial osteoblasts. Calcif Tissue Int. 1997;60(3):283–90.PubMedCrossRefGoogle Scholar
  65. 65.
    Ma L, Lu M-F, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132(24):5601–11.PubMedCrossRefGoogle Scholar
  66. 66.
    Wang E, Israel D, Kelly S, Luxenberg D. Bone morphogenetic protein-2 causes commitment and differentiation in C3Hl0T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng. 2006;12(12):3459–65.PubMedCrossRefGoogle Scholar
  68. 68.
    Lieberman JR, Le LQ, Wu L, Finerman GA, Berk A, Witte ON, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents. J Orthop Res. 1998;16(3):330–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T. Smad1 and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun. 1997;238(2):574–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk MM, Zwijsen A. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development. 1999;126(8):1631–42.PubMedGoogle Scholar
  71. 71.
    Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Investig. 2001;107(9):1055–61.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C et al. Increased bone formation in osteocalcin-deficient mice. 1996.Google Scholar
  73. 73.
    Patterson-Buckendahl P, Sowinska A, Yee S, Patel D, Pagkalinawan S, Shahid M, et al. Decreased sensory responses in osteocalcin null mutant mice imply neuropeptide function. Cell Mol Neurobiol. 2012;32(5):879–89.PubMedCrossRefGoogle Scholar
  74. 74.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.PubMedCrossRefGoogle Scholar
  75. 75.
    Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, et al. Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol. 2008;173(3):773–80.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Karaplis AC, Luz A, Glowacki J, Bronson RT, Tybulewicz V, Kronenberg HM, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8(3):277–89.PubMedCrossRefGoogle Scholar
  77. 77.
    Miao D, He B, Lanske B, Bai X-Y, Tong X-K, Hendy GN, et al. Skeletal abnormalities in Pth-null mice are influenced by dietary calcium. Endocrinology. 2004;145(4):2046–53.PubMedCrossRefGoogle Scholar
  78. 78.
    Datta NS, Abou-Samra AB. PTH and PTHrP signaling in osteoblasts. Cell Signal. 2009;21(8):1245–54.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Qiu T, Wu X, Zhang F, Clemens TL, Wan M, Cao X. TGF-β type II receptor phosphorylates PTH receptor to integrate bone remodelling signalling. Nat Cell Biol. 2010;12(3):224–34.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Greenblatt MB, Shim J-H, Zou W, Sitara D, Schweitzer M, Hu D, et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest. 2010;120(7):2457–73.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci. 2013;110(23):9469–74.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Gilbert L, He X, Farmer P, Rubin J, Drissi H, Van Wijnen AJ, et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-α. J Biol Chem. 2002;277(4):2695–701.PubMedCrossRefGoogle Scholar
  83. 83.
    Tarapore RS, Lim J, Tian C, Pacios S, Xiao W, Reid D, et al. NF-κB has a direct role in inhibiting Bmp-and Wnt-induced matrix protein expression. J Bone Miner Res. 2016;31(1):52–64.PubMedCrossRefGoogle Scholar
  84. 84.
    Hie M, Tsukamoto I. Increased expression of the receptor for activation of NF-κB and decreased runt-related transcription factor 2 expression in bone of rats with streptozotocin-induced diabetes. Int J Mol Med. 2010;26(4):611–8.PubMedGoogle Scholar
  85. 85.
    Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Adv Dent Res. 1999;13(1):21–6.PubMedCrossRefGoogle Scholar
  86. 86.
    •• Hwang J-H, Lee D-H, Byun MR, Kim AR, Kim KM, Park JI, et al. Nanotopological plate stimulates osteogenic differentiation through TAZ activation. Sci Rep. 2017;7(1):3632. Pathway through which topology influences osteogenesis. PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials. 1996;17(2):137–46.PubMedCrossRefGoogle Scholar
  88. 88.
    Gittens RA, Olivares-Navarrete R, McLachlan T, Cai Y, Hyzy SL, Schneider JM, et al. Differential responses of osteoblast lineage cells to nanotopographically-modified, microroughened titanium–aluminum–vanadium alloy surfaces. Biomaterials. 2012;33(35):8986–94.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials. 2005;26(9):971–7.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheng A, Cohen DJ, Boyan BD, Schwartz Z. Laser-sintered constructs with bio-inspired porosity and surface micro/nano-roughness enhance mesenchymal stem cell differentiation and matrix mineralization in vitro. Calcif Tissue Int. 2016;99(6):625–37.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen W, Tian B, Lei Y, Ke Q-F, Zhu Z-A, Guo Y-P. Hydroxyapatite coatings with oriented nanoplate and nanorod arrays: fabrication, morphology, cytocompatibility and osteogenic differentiation. Mater Sci Eng C. 2016;67:395–408.CrossRefGoogle Scholar
  92. 92.
    Olivares-Navarrete R, Raines AL, Hyzy SL, Park JH, Hutton DL, Cochran DL, et al. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J Bone Miner Res. 2012;27(8):1773–83.PubMedCrossRefGoogle Scholar
  93. 93.
    Olivares-Navarrete R, Hyzy SL, Park JH, Dunn GR, Haithcock DA, Wasilewski CE, et al. Mediation of osteogenic differentiation of human mesenchymal stem cells on titanium surfaces by a Wnt-integrin feedback loop. Biomaterials. 2011;32(27):6399–411.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gomes ME, Holtorf HL, Reis RL, Mikos AG. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng. 2006;12(4):801–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Faghihi F, Eslaminejad MB, Nekookar A, Najar M, Salekdeh G. The effect of purmorphamine and sirolimus on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Biomed Pharmacother. 2013;67(1):31–8.PubMedCrossRefGoogle Scholar
  96. 96.
    Park KW, Waki H, Kim W-K, Davies BS, Young SG, Parhami F, et al. The small molecule phenamil induces osteoblast differentiation and mineralization. Mol Cell Biol. 2009;29(14):3905–14.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Yu W-L, Sun T-W, Qi C, Zhao H-K, Ding Z-Y, Zhang Z-W, et al. Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep. 2017;7:srep44129.CrossRefGoogle Scholar
  98. 98.
    Park S-J, Lee KW, Lim D-S, Lee S. The sulfated polysaccharide fucoidan stimulates osteogenic differentiation of human adipose-derived stem cells. Stem Cells Dev. 2011;21(12):2204–11.PubMedCrossRefGoogle Scholar
  99. 99.
    • Du K, Li Z, Fang X, Cao T, Xu Y. Ferulic acid promotes osteogenesis of bone marrow-derived mesenchymal stem cells by inhibiting microRNA-340 to induce β-catenin expression through hypoxia. Eur J Cell Biol. 2017;96(6):496–503. Targeted osteogenesis using ferulic acid and its signaling pathway. PubMedCrossRefGoogle Scholar
  100. 100.
    Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, et al. Human mesenchymal stem cells differentiation regulated by hydroxyapatite content within chitosan-based scaffolds under perfusion conditions. Polymers. 2017;9(9):387.CrossRefGoogle Scholar
  101. 101.
    Huan Z, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009;5(4):1253–64.PubMedCrossRefGoogle Scholar
  102. 102.
    Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater. 2010;20(1):3–10.Google Scholar
  103. 103.
    Shelton R, Liu Y, Cooper P, Gbureck U, German M, Barralet J. Bone marrow cell gene expression and tissue construct assembly using octacalcium phosphate microscaffolds. Biomaterials. 2006;27(14):2874–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Harris C, Cooper L. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res A. 2004;68(4):747–55.PubMedCrossRefGoogle Scholar
  105. 105.
    Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49(3):328–37.PubMedCrossRefGoogle Scholar
  106. 106.
    Kasten P, Luginbühl R, Van Griensven M, Barkhausen T, Krettek C, Bohner M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix. Biomaterials. 2003;24(15):2593–603.PubMedCrossRefGoogle Scholar
  107. 107.
    Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, et al. Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res. 2013;1(3):216–48.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    • Dong L, Wang S-J, Zhao X-R, Zhu Y-F, Yu J-K. 3D-printed poly (ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412. Novel cell-based hydrogel scaffolds. PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, et al. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots. Mol Med Rep. 2017;16(4):5078–84.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Murphy C, Kolan K, Li W, Semon J, Day D, Leu M. 3D bioprinting of stem cells and polymer/bioactive glass composite scaffolds for bone tissue engineering. International Journal of Bioprinting. 2017;3(1):1–11.CrossRefGoogle Scholar
  111. 111.
    Qi X, Pei P, Zhu M, Du X, Xin C, Zhao S, et al. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. Sci Rep. 2017;7:42556.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, et al. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components—guidance of the inflammatory response as basis for osteochondral regeneration. Bioactive Mater. 2017;2:208–23.CrossRefGoogle Scholar
  113. 113.
    Kanthan S, Kavitha G, Addi S, Choon D, Kamarul T. Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury. 2011;42(8):782–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Latalski M, Elbatrawy YA, Thabet AM, Gregosiewicz A, Raganowicz T, Fatyga M. Enhancing bone healing during distraction osteogenesis with platelet-rich plasma. Injury. 2011;42(8):821–4.PubMedCrossRefGoogle Scholar
  115. 115.
    • Mcgoldrick R, Chattopadhyay A, Crowe C, Chiou G, Hui K, Farnebo S et al. The tissue engineered tendon bone Interface: in vitro and in vivo synergistic effects of adipo-derived stem cells, platelet rich plasma and extracellular matrix hydrogel. Plast Reconstr Surg. 2017. PRP and extracellular matrix hydrogel promote bone repair. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VITVelloreIndia

Personalised recommendations