Current Osteoporosis Reports

, Volume 15, Issue 4, pp 303–310 | Cite as

Recent Discoveries in Monogenic Disorders of Childhood Bone Fragility

  • Riikka E. Mäkitie
  • Anders J. Kämpe
  • Fulya Taylan
  • Outi MäkitieEmail author
Pediatrics (L Ward and E Imel, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pediatrics


Purpose of Review

This review summarizes our current knowledge on primary osteoporosis in children with focus on recent genetic findings.

Recent Findings

Advances in genetic research, particularly next-generation sequencing, have found several genetic loci that associate with monogenic forms of inherited osteoporosis, widening the scope of primary osteoporosis beyond classical osteogenesis imperfecta. New forms of primary osteoporosis, such as those related to WNT1, PLS3, and XYLT2, have identified defects outside the extracellular matrix components and collagen-related pathways, in intracellular cascades directly affecting bone cell function.


Primary osteoporosis can lead to severe skeletal morbidity, including abnormal longitudinal growth, compromised bone mass gain, and noticeable fracture tendency beginning at childhood. Early diagnosis and timely care are warranted to ensure the best achievable bone health. Future research will most likely broaden the spectrum of primary osteoporosis, hopefully provide more insight into the genetics governing bone health, and offer new targets for treatment.


Primary osteoporosis WNT1 PLS3 XYLT2 Osteogenesis imperfect 



Our research is financially supported by the Academy of Finland, the Sigrid Jusélius Foundation, the Folkhälsan Research Foundation, the Novo Nordisk Foundation, the Swedish Research Council, the Swedish Childhood Cancer Foundation, the Helsinki University Hospital research funds, and through the regional agreement on medical training and clinical research (ALF) between the Stockholm County Council and the Karolinska Institutet.

Compliance with Ethical Standards

Conflict of Interest

Outi Mäkitie reports payment for lecture and advisory board membership from Alexion and KyoawKirin.

Anders Kämpe, Riikka Mäkitie, and Fulya Taylan declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mäkitie O. Causes, mechanisms and management of paediatric osteoporosis. Nat Rev Rheumatol. 2013;9:465–75.CrossRefGoogle Scholar
  2. 2.
    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285:785–95.CrossRefGoogle Scholar
  3. 3.
    Mäkitie O, Doria AS, Henriques F, et al. Radiographic vertebral morphology: a diagnostic tool in pediatric osteoporosis. J Pediatr. 2005;146:395–401.CrossRefGoogle Scholar
  4. 4.
    Bishop N, Arundel P, Clark E, International Society of Clinical Densitometry, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom. 2014;17:275–80.CrossRefGoogle Scholar
  5. 5.
    Ralston SH. Genetics of osteoporosis. Ann N Y Acad Sci. 2010;1192:181–9.CrossRefGoogle Scholar
  6. 6.
    Zheng HF, Forgetta V, Hsu YH, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526:112–7.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Guéguen R, Jouanny P, Guillemin F, Kuntz C, Pourel J, Siest G. Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res. 1995;10:2017–22.CrossRefGoogle Scholar
  8. 8.
    Stewart TL, Ralston SH. Role of genetic factors in the pathogenesis of osteoporosis. J Endocrinol. 2000;166:235–45. Review. CrossRefGoogle Scholar
  9. 9.
    • Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A:2869–92. This review provides the newly refined classification for different types of osteogenesis imperfecta and other genetic forms of skeletal disorders. CrossRefGoogle Scholar
  10. 10.
    Marini JC, Blissett AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98:3095–103.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents—new developments in diagnosis and treatment. Osteoporos Int. 2016;27:3427–37.CrossRefGoogle Scholar
  12. 12.
    Lindert U, Cabral WA, Ausavarat S, et al. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nat Commun. 2016;7:11920.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lindahl K, Åström E, Rubin CJ, et al. Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet. 2015;23:1042–50.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ben Amor IM, Glorieux FH, Rauch F. Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos. 2011;2011:540178.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.CrossRefGoogle Scholar
  16. 16.
    Saarinen A, Saukkonen T, Kivelä T, et al. Low density lipoprotein receptor-related protein 5 (LRP5) mutations and osteoporosis, impaired glucose metabolism and hypercholesterolaemia. Clin Endocrinol. 2010;72:481–8.CrossRefGoogle Scholar
  17. 17.
    Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10:537–43.CrossRefGoogle Scholar
  18. 18.
    Loots GG, Kneissel M, Keller H, et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 2005;15:928–35.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Marini JC, Reich A, Smith SM. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr. 2014;26:500–7.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    •• Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92. This article gives a good review of the importance of WNT signaling to bone health. CrossRefGoogle Scholar
  21. 21.
    Korvala J, Jüppner H, Mäkitie O, et al. Mutations in LRP5 cause primary osteoporosis without features of OI by reducing Wnt signaling activity. BMC Med Genet. 2012;13:26.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Brunkow ME, Gardner JC, Van Ness J, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cysteine knot-containing protein. Am J Hum Genet. 2001;68:577–89.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Balemans W, Patel N, Ebeling M, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Laine CM, Joeng KS, Campeau PM, et al. WNT1 mutations in early-onset osteoporosis and osteogenesis imperfecta. N Engl J Med. 2013;368:1809–16.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Keupp K, Beleggia F, Kayserili H, et al. Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet. 2013;92:565–74.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Pyott SM, Tran TT, Leistritz DF, et al. WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet. 2013;92:590–7.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fahiminiya S, Majewski J, Mort J, Moffatt P, Glorieux FH, Rauch F. Mutations in WNT1 are a cause of osteogenesis imperfecta. J Med Genet. 2013;50:345–8.CrossRefGoogle Scholar
  28. 28.
    Faqeih E, Shaheen R, Alkuraya FS. WNT1 mutation with recessive osteogenesis imperfecta and profound neurological phenotype. J Med Genet. 2013;50:491–2.CrossRefGoogle Scholar
  29. 29.
    Liu Y, Song L, Ma D, et al. Genotype-phenotype analysis of a rare type of osteogenesis imperfecta in four Chinese families with WNT1 mutations. Clin Chim Acta. 2016;461:172–80.CrossRefGoogle Scholar
  30. 30.
    Stephen J, Girisha KM, Dalal A, et al. Mutations in patients with osteogenesis imperfecta from consanguineous Indian families. Eur J Med Genet. 2015;58:21–7.CrossRefGoogle Scholar
  31. 31.
    Laine CM, Wessman M, Toiviainen-Salo S, et al. A novel splice mutation in PLS3 causes X-linked early onset low-turnover osteoporosis. J Bone Miner Res. 2015;30:510–8.CrossRefGoogle Scholar
  32. 32.
    van Dijk FS, Zillikens MC, Micha D, et al. PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med. 2013;369:1529–36.CrossRefGoogle Scholar
  33. 33.
    Fahiminiya S, Majewski J, Al-Jallad H, et al. Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J Bone Miner Res. 2014;29:1805–14.CrossRefGoogle Scholar
  34. 34.
    Munns CF, Fahiminiya S, Poudel N, et al. Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet. 2015;96:971–8.CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Taylan F, Costantini A, Coles N, et al. Spondyloocular syndrome: novel mutations in XYLT2 gene and expansion of the phenotypic spectrum. J Bone Miner Res. 2016;31:1577–85.CrossRefGoogle Scholar
  36. 36.
    Mäkitie RE, Haanpää M, Valta H, et al. Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res. 2016;31:1734–42.CrossRefGoogle Scholar
  37. 37.
    Välimäki VV, Mäkitie O, Pereira R, et al. Teriparatide treatment in patients with WNT1 or PLS3 mutation-related early-onset osteoporosis—a pilot study. J Clin Endocrinol Metab. 2016; doi: 10.1210/jc.2016-2423.
  38. 38.
    Volkmann N, DeRosier D, Matsudaira P, Hanein D. An atomic model of actin filaments cross-linked by fimbrin and its implications for bundle assembly and function. J Cell Biol. 2001;153:947–56.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lyon AN, Pineda RH, Hao le T, Kudryashova E, Kudryashov DS, Beattie CE. Calcium binding is essential for plastin 3 function in Smn-deficient motoneurons. Hum Mol Genet. 2014;23:1990–2004.CrossRefGoogle Scholar
  40. 40.
    Oprea GE, Krober S, McWhorter ML, et al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science. 2008;320:524–7.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    •• Heesen L, Peitz M, Torres-Benito L, et al. Plastin 3 is upregulated in iPSC-derived motoneurons from asymptomatic SMN1-deleted individuals. Cell Mol Life Sci. 2016;73:2089–104. This paper reports the first finding of an X-chromosomal form of OI and expands our knowledge on the possible inheritance patterns. CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Taylan F, Mäkitie O. Abnormal proteoglycan synthesis due to gene defects causes skeletal diseases with overlapping phenotypes. Horm Metab Res. 2016;48:745–54.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Riikka E. Mäkitie
    • 1
  • Anders J. Kämpe
    • 2
  • Fulya Taylan
    • 2
  • Outi Mäkitie
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Folkhälsan Institute of GeneticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Molecular Medicine and Surgery, Center for Molecular MedicineKarolinska InstitutetStockholmSweden
  3. 3.Department of Clinical GeneticsKarolinska University HospitalStockholmSweden
  4. 4.Children’s Hospital, University of Helsinki and Helsinki University HospitalHelsinkiFinland

Personalised recommendations