Current Osteoporosis Reports

, Volume 15, Issue 4, pp 283–292 | Cite as

Denosumab: an Emerging Therapy in Pediatric Bone Disorders

  • Alison M. BoyceEmail author
Pediatrics (L Ward and E Imel, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Pediatrics


Purpose of Review

Denosumab is an inhibitor of receptor activator of nuclear factor kappa-B ligand (RANKL), and has emerged as an important novel therapy for skeletal disorders. This article examines the use of denosumab in children.

Recent Findings

Considerable safety and efficacy data exists for denosumab treatment of adults with osteoporosis, bone metastases, and giant cell tumors. Pediatric data is limited; however, evidence suggests denosumab may be beneficial in decreasing bone turnover, increasing bone density, and preventing growth of certain skeletal neoplasms in children. Denosumab’s effect on bone turnover is rapidly reversible after drug discontinuation, representing a key difference from bisphosphonates. Rebound increased bone turnover has led to severe hypercalcemia in several pediatric patients.


Denosumab is a promising therapy for pediatric skeletal disorders. At present, safety concerns related to rebounding bone turnover and mineral homeostasis impact use of denosumab in children. Research is needed to determine if and how these effects can be mitigated.


RANKL OPG Osteoporosis Giant cell tumors Osteogenesis imperfecta Bone turnover rebound Hypercalcemia 


Compliance with Ethical Standards

Conflict of Interest

Alison Boyce declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


This research was supported by the Intramural Research Program of the National Institute of Dental and Craniofacial Research.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Seeman E. Bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19(3):219–33.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gosman JH, Stout SD, Larsen CS. Skeletal biology over the life span: a view from the surfaces. Am J Phys Anthropol. 2011;146(Suppl 53):86–98. doi: 10.1002/ajpa.21612.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hogler W, Ward L. Osteoporosis in children with chronic disease. Endocr Dev. 2015;28:176–95. doi: 10.1159/000381045.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kovacic N, Croucher PI, McDonald MM. Signaling between tumor cells and the host bone marrow microenvironment. Calcif Tissue Int. 2014;94(1):125–39. doi: 10.1007/s00223-013-9794-7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A. 1999;96(7):3540–5.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89(2):309–19.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292(4):490–5. doi: 10.1001/jama.292.4.490.CrossRefPubMedGoogle Scholar
  9. 9.
    Sutjandra L, Rodriguez RD, Doshi S, et al. Population pharmacokinetic meta-analysis of denosumab in healthy subjects and postmenopausal women with osteopenia or osteoporosis. Clin Pharmacokinet. 2011;50(12):793–807. doi: 10.2165/11594240-000000000-00000.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gibiansky L, Sutjandra L, Doshi S, et al. Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacokinet. 2012;51(4):247–60. doi: 10.2165/11598090-000000000-00000.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zheng S, Gaitonde P, Andrew MA, Gibbs MA, Lesko LJ, Schmidt S. Model-based assessment of dosing strategies in children for monoclonal antibodies exhibiting target-mediated drug disposition. CPT Pharm Systems Pharmacol. 2014;3:e138. doi: 10.1038/psp.2014.38.CrossRefGoogle Scholar
  12. 12.
    •• Cummings SR, San Martin J, MR MC, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65. doi: 10.1056/NEJMoa0809493. The pivotal FREEDOM study was the first randomized, placebo-controlled trial of denosumab to demonstrate a decrease in vertebral and non-vertebral fractures in adults with osteoporosis.CrossRefGoogle Scholar
  13. 13.
    Nakamura T, Matsumoto T, Sugimoto T, et al. Clinical Trials Express: fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). J Clin Endocrinol Metab. 2014;99(7):2599–607. doi: 10.1210/jc.2013-4175.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab. 2008;93(6):2149–57. doi: 10.1210/jc.2007-2814.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brown JP, Prince RL, Deal C, et al. Comparison of the effect of denosumab and alendronate on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res Off J Am Soc Bone Miner Res. 2009;1–34. doi: 10.1359/jbmr.080910.
  16. 16.
    Kendler DL, Roux C, Benhamou CL, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25(1):72–81. doi: 10.1359/jbmr.090716.CrossRefGoogle Scholar
  17. 17.
    Freemantle N, Satram-Hoang S, Tang ET, et al. Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2012;23(1):317–26. doi: 10.1007/s00198-011-1780-1.CrossRefGoogle Scholar
  18. 18.
    Papapoulos S, Lippuner K, Roux C, et al. The effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2015;26(12):2773–83. doi: 10.1007/s00198-015-3234-7.CrossRefGoogle Scholar
  19. 19.
    Smith MR, Egerdie B, Hernandez Toriz N, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55. doi: 10.1056/NEJMoa0809003.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ellis GK, Bone HG, Chlebowski R, et al. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(30):4875–82. doi: 10.1200/jco.2008.16.3832.CrossRefGoogle Scholar
  21. 21.
    Prolia [package insert]. Thousand Oaks, CA. 2016;Amgen, Inc.Google Scholar
  22. 22.
    Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(35):5132–9. doi: 10.1200/jco.2010.29.7101.CrossRefGoogle Scholar
  23. 23.
    Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22. doi: 10.1016/s0140-6736(10)62344-6.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(9):1125–32. doi: 10.1200/jco.2010.31.3304.CrossRefGoogle Scholar
  25. 25.
    Xgeva [package insert]. Thousand Oaks, CA. 2016;Amgen, Inc.Google Scholar
  26. 26.
    Body JJ, Bone HG, de Boer RH, et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer (Oxford, England: 1990). 2015;51(13):1812–21. doi: 10.1016/j.ejca.2015.05.016.CrossRefGoogle Scholar
  27. 27.
    Hu MI, Glezerman IG, Leboulleux S, et al. Denosumab for treatment of hypercalcemia of malignancy. J Clin Endocrinol Metab. 2014;99(9):3144–52. doi: 10.1210/jc.2014-1001.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Diel IJ, Body JJ, Stopeck AT, et al. The role of denosumab in the prevention of hypercalcaemia of malignancy in cancer patients with metastatic bone disease. Eur J Cancer (Oxford, England: 1990). 2015;51(11):1467–75. doi: 10.1016/j.ejca.2015.04.017.CrossRefGoogle Scholar
  29. 29.
    Shroff R, Beringer O, Rao K, Hofbauer LC, Schulz A. Denosumab for post-transplantation hypercalcemia in osteopetrosis. N Engl J Med. 2012;367(18):1766–7. doi: 10.1056/NEJMc1206193.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wu PF, Tang JY, Li KH. RANK pathway in giant cell tumor of bone: pathogenesis and therapeutic aspects. Tumour Biol J Int Soc Oncodev Biol Med. 2015;36(2):495–501. doi: 10.1007/s13277-015-3094-y.CrossRefGoogle Scholar
  31. 31.
    van der Heijden L, Dijkstra PD, van de Sande MA, et al. The clinical approach toward giant cell tumor of bone. Oncologist. 2014;19(5):550–61. doi: 10.1634/theoncologist.2013-0432.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    •• Chawla S, Henshaw R, Seeger L, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14(9):901–8. doi: 10.1016/s1470-2045(13)70277-8. This open-label study in giant cell tumors included adults and ten skeletally mature adolescents, and demonstrated improvement in tumor progression and skeletal morbidity.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Martin-Broto J, Cleeland CS, Glare PA, et al. Effects of denosumab on pain and analgesic use in giant cell tumor of bone: interim results from a phase II study. Acta Oncol (Stockholm, Sweden). 2014;53(9):1173–9. doi: 10.3109/0284186x.2014.910313.CrossRefGoogle Scholar
  34. 34.
    Karras NA, Polgreen LE, Ogilvie C, Manivel JC, Skubitz KM, Lipsitz E. Denosumab treatment of metastatic giant-cell tumor of bone in a 10-year-old girl. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(12):e200–2. doi: 10.1200/jco.2012.46.4255.CrossRefGoogle Scholar
  35. 35.
    Gossai N, Hilgers MV, Polgreen LE, Greengard EG. Critical hypercalcemia following discontinuation of denosumab therapy for metastatic giant cell tumor of bone. Pediatr Blood Cancer. 2015;62(6):1078–80. doi: 10.1002/pbc.25393.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Setsu N, Kobayashi E, Asano N, et al. Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab. 2016;34(1):118–22. doi: 10.1007/s00774-015-0677-z.CrossRefGoogle Scholar
  37. 37.
    Kobayashi E, Setsu N. Osteosclerosis induced by denosumab. Lancet (London, England). 2015;385(9967):539. doi: 10.1016/s0140-6736(14)61338-6.CrossRefGoogle Scholar
  38. 38.
    Forlino A, Marini JC. Osteogenesis imperfecta. Lancet (London, England). 2016;387(10028):1657–71. doi: 10.1016/s0140-6736(15)00728-x.CrossRefGoogle Scholar
  39. 39.
    Marom R, Lee YC, Grafe I, Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am J med Genet C: Semin Med Genet. 2016;172(4):367–83. doi: 10.1002/ajmg.c.31532.CrossRefGoogle Scholar
  40. 40.
    Glorieux FH, Ward LM, Rauch F, Lalic L, Roughley PJ, Travers R. Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J Bone Miner Res Off J Am Soc Bone Miner Res. 2002;17(1):30–8. doi: 10.1359/jbmr.2002.17.1.30.CrossRefGoogle Scholar
  41. 41.
    Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145. doi: 10.1186/s13023-014-0145-1.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ward L, Bardai G, Moffatt P, et al. Osteogenesis imperfecta type VI in individuals from Northern Canada. Calcif Tissue Int. 2016;98(6):566–72. doi: 10.1007/s00223-016-0110-1.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hoyer-Kuhn H, Franklin J, Allo G, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect—a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16(1):24–32.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Ralston SH. Juvenile Paget’s disease, familial expansile osteolysis and other genetic osteolytic disorders. Best Pract Res Clin Rheumatol. 2008;22(1):101–11. doi: 10.1016/j.berh.2007.11.005.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Grasemann C, Schundeln MM, Hovel M, et al. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98(8):3121–6. doi: 10.1210/jc.2013-1143.CrossRefGoogle Scholar
  47. 47.
    Boyce AM, Chong WH, Yao J, et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(7):1462–70. doi: 10.1002/jbmr.1603.CrossRefGoogle Scholar
  48. 48.
    • Wang HD, Boyce AM, Tsai JY, et al. Effects of denosumab treatment and discontinuation on human growth plates. J Clin Endocrinol Metab. 2014;99(3):891–7. doi: 10.1210/jc.2013-3081. This study provided histopathologic evidence that denosumab treatment did not appear to adversely affect growth plates in a growing child.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Naidu A, Malmquist MP, Denham CA, Schow SR. Management of central giant cell granuloma with subcutaneous denosumab therapy. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2014;72(12):2469–84. doi: 10.1016/j.joms.2014.06.456.CrossRefGoogle Scholar
  50. 50.
    Lange T, Stehling C, Frohlich B, et al. Denosumab: a potential new and innovative treatment option for aneurysmal bone cysts. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deformity Soc Eur Sect Cervical Spine Res Soc. 2013;22(6):1417–22. doi: 10.1007/s00586-013-2715-7.CrossRefGoogle Scholar
  51. 51.
    Pelle DW, Ringler JW, Peacock JD, et al. Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: verification of target and therapeutic response. Transl Res J Lab Clin Med. 2014;164(2):139–48. doi: 10.1016/j.trsl.2014.03.005.CrossRefGoogle Scholar
  52. 52.
    Zeitlin L, Rauch F, Plotkin H, Glorieux FH. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics. 2003;111(5 Pt 1):1030–6.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Unal E, Abaci A, Bober E, Buyukgebiz A. Efficacy and safety of oral alendronate treatment in children and adolescents with osteoporosis. J Pediatr Endocrinol Metab: JPEM. 2006;19(4):523–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Palomo T, Fassier F, Ouellet J, et al. Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30(12):2150–7. doi: 10.1002/jbmr.2567.CrossRefGoogle Scholar
  55. 55.
    Rauch F, Cornibert S, Cheung M, Glorieux FH. Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone. 2007;40(4):821–7. doi: 10.1016/j.bone.2006.11.020.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397(6717):315–23. doi: 10.1038/16852.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hoyer-Kuhn H, Semler O, Schoenau E. Effect of denosumab on the growing skeleton in osteogenesis imperfecta. J Clin Endocrinol Metab. 2014;99(11):3954–5. doi: 10.1210/jc.2014-3072.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Qi WX, Tang LN, He AN, Yao Y, Shen Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol. 2014;19(2):403–10. doi: 10.1007/s10147-013-0561-6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30(1):3–23. doi: 10.1002/jbmr.2405.CrossRefGoogle Scholar
  60. 60.
    Selga J, Nunez JH, Minguell J, Lalanza M, Garrido M. Simultaneous bilateral atypical femoral fracture in a patient receiving denosumab: case report and literature review. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2016;27(2):827–32. doi: 10.1007/s00198-015-3355-z.CrossRefGoogle Scholar
  61. 61.
    Gerstenfeld LC, Sacks DJ, Pelis M, et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res Off J Am Soc Bone Miner Res. 2009;24(2):196–208. doi: 10.1359/jbmr.081113.CrossRefGoogle Scholar
  62. 62.
    Bone HG, Bolognese MA, Yuen CK, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96(4):972–80. doi: 10.1210/jc.2010-1502.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Koldkjaer Solling AS, Harslof T, Kaal A, Rejnmark L, Langdahl B. Hypercalcemia after discontinuation of long-term denosumab treatment. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2016;27(7):2383–6. doi: 10.1007/s00198-016-3535-5.CrossRefGoogle Scholar
  64. 64.
    Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110(9):1293–9. doi: 10.1172/jci15952.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    van Persijn van Meerten EL, Kroon HM, Papapoulos SE. Epi- and metaphyseal changes in children caused by administration of bisphosphonates. Radiology. 1992;184(1):249–54.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rauch F, Travers R, Munns C, Glorieux FH. Sclerotic metaphyseal lines in a child treated with pamidronate: histomorphometric analysis. J Bone Miner Res Off J Am Soc Bone Miner Res. 2004;19(7):1191–3. doi: 10.1359/jbmr.040303.CrossRefGoogle Scholar
  67. 67.
    Brown JP, Roux C, Torring O, et al. Discontinuation of denosumab and associated fracture incidence: analysis from the Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) trial. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28(4):746–52. doi: 10.1002/jbmr.1808.CrossRefGoogle Scholar
  68. 68.
    Aubry-Rozier B, Gonzalez-Rodriguez E, Stoll D, Lamy O. Severe spontaneous vertebral fractures after denosumab discontinuation: three case reports. Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2016;27(5):1923–5. doi: 10.1007/s00198-015-3380-y.CrossRefGoogle Scholar
  69. 69.
    Lamy O, Gonzalez-Rodriguez E, Stoll D, Hans D, Aubry-Rozier B. Severe rebound-associated vertebral fractures after denosumab discontinuation: nine clinical cases report. J Clin Endocrinol Metab. 2016:jc20163170. doi: 10.1210/jc.2016-3170.CrossRefGoogle Scholar
  70. 70.
    Polyzos SA, Terpos E. Clinical vertebral fractures following denosumab discontinuation. Endocrine. 2016;54(1):271–2. doi: 10.1007/s12020-016-1030-6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Popp AW, Zysset PK, Lippuner K. Rebound-associated vertebral fractures after discontinuation of denosumab-from clinic and biomechanics. Osteoporos Int: J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2016;27(5):1917–21. doi: 10.1007/s00198-015-3458-6.CrossRefGoogle Scholar
  72. 72.
    Scheinberg MA, Golmia RP, Sallum AM, Pippa MG, Cortada AP, Silva TG. Bone health in cerebral palsy and introduction of a novel therapy. Einstein (Sao Paulo, Brazil). 2015;13(4):555–9. doi: 10.1590/s1679-45082015ao3321.CrossRefGoogle Scholar
  73. 73.
    Matcuk GR Jr, Patel DB, Schein AJ, White EA, Menendez LR. Giant cell tumor: rapid recurrence after cessation of long-term denosumab therapy. Skelet Radiol. 2015;44(7):1027–31. doi: 10.1007/s00256-015-2117-5.CrossRefGoogle Scholar
  74. 74.
    Block GA, Bone HG, Fang L, Lee E, Padhi D. A single-dose study of denosumab in patients with various degrees of renal impairment. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(7):1471–9. doi: 10.1002/jbmr.1613.CrossRefGoogle Scholar
  75. 75.
    Watts NB, Roux C, Modlin JF, et al. Infections in postmenopausal women with osteoporosis treated with denosumab or placebo: coincidence or causal association? Osteoporos Int J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found U S A. 2012;23(1):327–37. doi: 10.1007/s00198-011-1755-2.CrossRefGoogle Scholar
  76. 76.
    Fata JE, Kong YY, Li J, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103(1):41–50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  1. 1.Section on Skeletal Disorders and Mineral Homeostasis, Craniofacial and Skeletal Diseases BranchNational Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaUSA

Personalised recommendations