Advertisement

Current Status of Immunotherapies for Treating Pancreatic Cancer

  • Annie A. Wu
  • Elizabeth Jaffee
  • Valerie LeeEmail author
Gastrointestinal Cancers (J Meyer, Section Editor)
  • 85 Downloads
Part of the following topical collections:
  1. Topical Collection on Gastrointestinal Cancers

Abstract

Purpose of Review

Despite all efforts, pancreatic ductal adenocarcinoma (PDAC) remains a disease that causes substantial morbidity and mortality, with a 5-year survival rate of 7%. Innovative paradigms for treating PDAC are urgently needed.

Recent Findings

We discuss the advances and difficulties in using immunotherapy and developing immunotherapeutic vaccines for PDAC. Current excitement about antigen-specific immunotherapy has been propelled by advances in multiple areas, such as next-generation sequencing to identify neoantigens and manufacturing to produce immunotherapeutic vaccines. Antigen-specific immunotherapy is being actively explored in clinical trials.

Summary

As the field of immunotherapy matures and as our understanding of the complex interactions between tumor and host develops, we hope to identify new methods for treating and managing PDAC.

Keywords

Pancreatic adenocarcinoma Immunotherapy Cancer vaccines 

Notes

Compliance with Ethical Standards

Conflict of Interest

Annie A. Wu declares that she has no conflict of interest.

Elizabeth Jaffee has received research funding from Adaptive Biotech, IM Core (Genentech), Lustgarten Foundation, Bristol-Myers Squibb, Breast Cancer Research Foundation, Amgen, and Aduro BioTech; has received travel reimbursement and an honorarium from Adaptive Biotech; has received travel reimbursement and honoraria for participating on scientific advisory boards from Dragonfly Therapeutics, CStone Pharmaceuticals, Genocea Biosciences, Parker Institute, and Lustgarten Foundation; and GVAX and Listeria monocytogenes—Mesothelin are both licensed to Aduro BioTech with the potential to receive royalties.

Valerie Lee declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–21.CrossRefGoogle Scholar
  2. 2.
    Society, A.C., Cancer Facts & Figures 2019. Google Scholar
  3. 3.
    Laheru D, Jaffee EM. Immunotherapy for pancreatic cancer - science driving clinical progress. Nat Rev Cancer. 2005;5(6):459–67.CrossRefPubMedGoogle Scholar
  4. 4.
    Zheng L, Xue J, Jaffee EM, Habtezion A. Role of immune cells and immune-based therapies in pancreatitis and pancreatic ductal adenocarcinoma. Gastroenterology. 2013;144(6):1230–40.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bond-Smith G, Banga N, Hammond TM, Imber CJ. Pancreatic adenocarcinoma. BMJ. 2012;344:e2476.CrossRefPubMedGoogle Scholar
  6. 6.
    Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet. 2011;378(9791):607–20.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. JAMA. 2013;310(14):1473–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. Lancet. 2017;389(10073):1011–24.CrossRefPubMedGoogle Scholar
  9. 9.
    •• Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med. 2018;379(25):2395–406 A randomized clinical trial of adjuvant therapy for patients with resected pancreas cancer. DFS at 3 years was 39.7% in FOLFIRINOX group versus 21.4% in gemcitabine group, and median OS was 54.4 months in FOLFIRINOX group versus 35.0 months in gemcitabine group. This shows significant improvement in survival for patients with pancreas cancer who were previously advised a median 28-month survival even with surgical intervention. CrossRefPubMedGoogle Scholar
  10. 10.
    Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364(19):1817–25.CrossRefPubMedGoogle Scholar
  11. 11.
    Von Hoff DD, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.CrossRefGoogle Scholar
  12. 12.
    Yuen A, Diaz B. The impact of hypoxia in pancreatic cancer invasion and metastasis. Hypoxia (Auckl). 2014;2:91–106.Google Scholar
  13. 13.
    Feig C, et al. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–76.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kleeff J, Korc M, Apte M, la Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:16022.CrossRefPubMedGoogle Scholar
  15. 15.
    Wood LD, Hruban RH. Pathology and molecular genetics of pancreatic neoplasms. Cancer J. 2012;18(6):492–501.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Binnewies M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ren B, et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018;17(1):108.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Costa-Silva B, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Houg DS, Bijlsma MF. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma. Mol Cancer. 2018;17(1):95.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med. 2017;377(25):2500–1.CrossRefPubMedGoogle Scholar
  22. 22.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRefGoogle Scholar
  23. 23.
    Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Andre T, Lonardi S, Wong KYM, Morse M, McDermott RS, Hill AG, et al. Combination of nivolumab (nivo) + ipilimumab (ipi) in the treatment of patients (pts) with deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC): CheckMate 142 study. J Clin Oncol. 2017;35:3531.CrossRefGoogle Scholar
  25. 25.
    Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):1182–91.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chalmers ZR, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    • Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu; and N. Cancer Genome Atlas Research, Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017. 32(2): p. 185–203 e13. The TCGA molecular characterizations of cancers have led to better understanding of the different classifications of tumors, and their heterogeneity. This allows for better targeted therapies for patients over time. Google Scholar
  28. 28.
    Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, et al. A new member of the immunoglobulin superfamily--CTLA-4. Nature. 1987;328(6127):267–70.CrossRefPubMedGoogle Scholar
  29. 29.
    Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11(11):3887–95.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.CrossRefPubMedGoogle Scholar
  31. 31.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hodi FS, O’Day SJ, McDermott D, Weber RW, Sosman JA, Haanen JB, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, et al. Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med. 2014;6(238):238ra70.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brahmer J, Reckamp KL, Baas P, Crinò L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Motzer RJ, Escudier B, McDermott D, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–13.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Royal RE, Levy C, Turner K, Mathur A, Hughes M, Kammula US, et al. Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother. 2010;33(8):828–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Patnaik A, et al. Phase I study of pembrolizumab (MK-3475; anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin Cancer Res. 2015;21(19):4286–93.CrossRefPubMedGoogle Scholar
  42. 42.
    O'Reilly EM, Oh D-Y, Dhani N, Renouf DJ, Lee MA, Sun W, et al. A randomized phase 2 study of durvalumab monotherapy and in combination with tremelimumab in patients with metastatic pancreatic ductal adenocarcinoma (mPDAC): ALPS study. J Clin Oncol. 2018;26(4_suppl):217.CrossRefGoogle Scholar
  43. 43.
    •• Le DT, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13 In this landmark study, patients with refractory, metastatic cancers with mismatch repair deficiency were treated with PD-1 blockade with pembrolizumab. Fifty-three percent of patients had an objective response. This study led to the first FDA approval of tumor-agnostic therapy for pembrolizumab for these patients. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    NCCN Guidelines for Patients: Pancreatic Cancer, Version 1. National Comprehensive Cancer Network, 2017.Google Scholar
  45. 45.
    Marin-Acevedo JA, et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018;11(1):39.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545(7652):60–5.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15(8):486–99.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015;36(4):265–76.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, et al. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res. 2014;2(7):616–31.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol. 2016;130:25–74.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Johnson BA 3rd, et al. Strategies for increasing pancreatic tumor immunogenicity. Clin Cancer Res. 2017;23(7):1656–69.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013;21(4):904–12.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bryant KL, Mancias JD, Kimmelman AC, der CJ. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39(2):91–100.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Keenan BP, Saenger Y, Kafrouni MI, Leubner A, Lauer P, Maitra A, et al. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology. 2014;146(7):1784–94 e6.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tran E, Robbins PF, Lu YC, Prickett TD, Gartner JJ, Jia L, et al. T-cell transfer therapy targeting mutant KRAS in Cancer. N Engl J Med. 2016;375(23):2255–62.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tran E, et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science. 2015;350(6266):1387–90.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang QJ, Yu Z, Griffith K, Hanada K, Restifo NP, Yang JC. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res. 2016;4(3):204–14.CrossRefPubMedGoogle Scholar
  59. 59.
    Pandha H, Rigg A, John J, Lemoine N. Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines. Clin Exp Immunol. 2007;148(1):127–35.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Jaffee EM, Hruban RH, Biedrzycki B, Laheru D, Schepers K, Sauter PR, et al. Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol. 2001;19(1):145–56.CrossRefPubMedGoogle Scholar
  61. 61.
    Le DT, et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother. 2013;36(7):382–9.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Macher BA, Galili U. The Galalpha1,3Galbeta1,4GlcNAc-R (alpha-gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta. 2008;1780(2):75–88.CrossRefPubMedGoogle Scholar
  63. 63.
    Corporation NG, NewLink genetics announces results from phase 3 IMPRESS trial of algenpantucel-L for patients with resected pancreatic cancer. Acquire Media, 2016.Google Scholar
  64. 64.
    Lauer P, Chow MYN, Loessner MJ, Portnoy DA, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. 2002;184(15):4177–86.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A. 2004;101(38):13832–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Le DT, Ko AH, Wainberg ZA, Picozzi VJ, Kindler HL, Wang-Gillam A, et al. Results from a phase 2b, randomized, multicenter study of GVAX pancreas and CRS-207 compared to chemotherapy in adults with previously-treated metastatic pancreatic adenocarcinoma (ECLIPSE Study). J Clin Oncol. 2017;35(4_suppl):345.CrossRefGoogle Scholar
  67. 67.
    Muscarella P, Wilfong LS, Ross SB, Richards DA, Raynov J, Fisher WE, et al. A randomized, placebo-controlled, double blind, multicenter phase II adjuvant trial of the efficacy, immunogenicity, and safety of GI-4000 plus gem versus gem alone in patients with resected pancreas cancer with activating RAS mutations/survival and immunology analysis of the R1 subgroup. J Clin Oncol. 2012;30:e14501.Google Scholar
  68. 68.
    Finke LH, et al. Lessons from randomized phase III studies with active cancer immunotherapies--outcomes from the 2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine. 2007;25(Suppl 2):B97–B109.CrossRefPubMedGoogle Scholar
  69. 69.
    Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer. 2016;4:56.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lynn GM, et al. In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol. 2015;33(11):1201–10.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother. 2005;54(3):254–64.CrossRefPubMedGoogle Scholar
  72. 72.
    Palmer D, Dueland S, Juan V, Aksnes A-K. A phase I/II trial of TG01/GM-CSF and gemcitabine as adjuvant therapy for treating patients with resected RAS-mutant adenocarcinoma of the pancreas. J Clin Oncol. 2017;35(15 supplement):4119.CrossRefGoogle Scholar
  73. 73.
    Nishida S, et al. Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer. J Immunother. 2014;37(2):105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Yamamoto K, et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res. 2005;25(5):3575–9.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Suzuki N, Hazama S, Iguchi H, Uesugi K, Tanaka H, Hirakawa K, et al. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Sci. 2017;108(1):73–80.CrossRefPubMedGoogle Scholar
  76. 76.
    • Ott PA, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21 A main barrier to development of personalized vaccines has been due to cost and timeliness of sequencing and development. This trial demonstrated the feasibility of developing an immunogenic vaccine in a reasonable time period to administer to high-risk melanoma patients in the adjuvant setting. CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Carreno BM, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–8.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10(436):eaao5931.CrossRefPubMedGoogle Scholar
  79. 79.
    Kondo H, Hazama S, Kawaoka T, Yoshino S, Yoshida S, Tokuno K, et al. adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res. 2008;28(1B):379–87.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Shindo Y, Hazama S, Maeda Y, Matsui H, Iida M, Suzuki N, et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J Transl Med. 2014;12:175.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, et al. Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas. 2012;41(2):195–205.CrossRefPubMedGoogle Scholar
  82. 82.
    Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis J, et al. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 2008;6(B):955–64.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Rosenberg SA, Tran E, Robbins PF. T-cell transfer therapy targeting mutant KRAS. N Engl J Med. 2017;376(7):e11.CrossRefPubMedGoogle Scholar
  85. 85.
    June CH, et al. CAR T cell immunotherapy for human cancer. Science. 2018;359(6382):1361–5.CrossRefPubMedGoogle Scholar
  86. 86.
    Iacobuzio-Donahue CA. Genetic evolution of pancreatic cancer: lessons learnt from the pancreatic cancer genome sequencing project. Gut. 2012;61(7):1085–94.CrossRefPubMedGoogle Scholar
  87. 87.
    Makohon-Moore AP, Zhang M, Reiter JG, Bozic I, Allen B, Kundu D, et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat Genet. 2017;49(3):358–66.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Jones S, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Morris JPT, Wang SC, Hebrok M. KRAS, hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 2010;10(10):683–95.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Haugk B. Pancreatic intraepithelial neoplasia-can we detect early pancreatic cancer? Histopathology. 2010;57(4):503–14.CrossRefPubMedGoogle Scholar
  91. 91.
    Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12(18):5423–34.CrossRefPubMedGoogle Scholar
  92. 92.
    Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, et al. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 2008;206(5):849–54 discussion 854-6.CrossRefPubMedGoogle Scholar
  93. 93.
    Munn DH, Mellor AL. IDO in the tumor microenvironment: inflammation, counter-regulation, and tolerance. Trends Immunol. 2016;37(3):193–207.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Sanford DE, et al. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis. Clin Cancer Res. 2013;19(13):3404–15.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74(18):5057–69.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Jones SF, Bendell JC, Infante JR, Spigel DR, Thompson DS, Yardley DA, et al. A phase I study of panobinostat in combination with gemcitabine in the treatment of solid tumors. Clin Adv Hematol Oncol. 2011;9(3):225–30.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Jones SF, Infante JR, Spigel DR, Peacock NW, Thompson DS, Greco FA, et al. Phase 1 results from a study of romidepsin in combination with gemcitabine in patients with advanced solid tumors. Cancer Investig. 2012;30(6):481–6.CrossRefGoogle Scholar
  98. 98.
    Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci U S A. 2014;111(32):11774–9.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, et al. Entinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCs. Cancer Immunol Res. 2018;6(12):1561–77.CrossRefPubMedGoogle Scholar
  100. 100.
    Kinkead HL, Hopkins A, Lutz E, Wu AA, Yarchoan M, Cruz K, et al. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight. 2018;3(20):122857.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations