Advertisement

Cardiovascular Disease and Cancer: Is There Increasing Overlap?

  • Logan Vincent
  • Douglas Leedy
  • Sofia Carolina Masri
  • Richard K. ChengEmail author
Cardio-oncology (EH Yang, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Cardio-oncology

Abstract

Purpose of Review

Cancer and cardiovascular disease are the leading causes of mortality in the USA. In this review, we highlight these shared disease pathways and provide a framework for a systems-based approach to reduce overall risk burden.

Recent Findings

From traditional risk factors such as age and tobacco use to more recently recognized entities including clonal hematopoiesis, we are gaining insights into shared mechanisms. Because of these overlapping risks, providers on each level of patient care (primary care providers, cardiologists, oncologists) need to recognize and reduce these underlying risk factors.

Summary

There is significant overlap in the epidemiology and risk factors for the development of cardiovascular disease and cancer, providing opportunities for joint risk factor modification.

Keywords

Cardio-oncology Cardiotoxicity Cancer 

Notes

Compliance with Ethical Standards

Conflict of Interest

Logan Vincent declares that she has no conflict of interest.

Douglas Leedy declares that he has no conflict of interest.

Sofia Carolina Masri declares that she has no conflict of interest.

Richard K. Cheng has served as a consultant and participated on advisory boards for Alnylam Pharmaceuticals (modest) and Ionis/Akcea Pharmaceuticals (modest).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Xu J, Murphy SL, Kochanek KD, Bastian BA. Deaths: final data for 2013. Natl Vital Stat Rep. 2016;64(2):1–119.Google Scholar
  2. 2.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380:2095–128.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Lerner DJ, Kannel WB. Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am Heart J. 1986;111:383–90.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011 Mar 1;123(8):933–44.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Centers for Disease Control and Prevention. Prevalence and most common causes of disability among adults--United States, 2005. MMWR: Morbidity and Mortality weekly report. 2009;58(16):421–6.Google Scholar
  7. 7.
    Navi BB, Reiner AS, Kamel H, Iadecola C, Okin PM, Elkind MSV, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70:926–38.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Navi BB, Reiner AS, Kamel H, Iadecola C, Elkind MSV, Panageas KS, et al. Association between incident cancer and subsequent stroke. Ann Neurol. 2015;77:291–300.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Zöller B, Ji J, Sundquist J, Sundquist K. Risk of coronary heart disease in patients with cancer: a nationwide follow-up study from Sweden. Eur J Cancer. 2012;48:121–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation. 2002;106:3068–72.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013; HHF. 0b013e318291329a.Google Scholar
  12. 12.
    MacIntyre K, Capewell S, Stewart S, Chalmers JWT, Boyd J, Finlayson A, et al. Evidence of improving prognosis in heart failure: trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. Circulation. 2000;102:1126–31.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Hasin T, Gerber Y, McNallan SM, et al. Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62:881–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hasin T, Gerber Y, Weston SA, Jiang R, Killian JM, Manemann SM, et al. Heart failure after myocardial infarction is associated with increased risk of cancer. J Am Coll Cardiol. 2016;68:265–71.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Banke A, Schou M, Videbaek L, Møller JE, Torp-Pedersen C, Gustafsson F, et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail. 2016;18:260–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sakamoto M, Hasegawa T, Asakura M, Kanzaki H, Takahama H, Amaki M, et al. Does the pathophysiology of heart failure prime the incidence of cancer? Hypertens Res. 2017;40:831–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Selvaraj S, Bhatt DL, Claggett B, Djoussé L, Shah SJ, Chen J, et al. Lack of association between heart failure and incident cancer. J Am Coll Cardiol. 2018;71:1501–10.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Society AC. Cancer facts & figures 2018. American Cancer Society: Atlanta; 2018.Google Scholar
  19. 19.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Savji N, Rockman CB, Skolnick AH, Guo Y, Adelman MA, Riles T, et al. Association between advanced age and vascular disease in different arterial territories: a population database of over 3.6 million subjects. J Am Coll Cardiol. 2013;61:1736–43.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Garcia M, Jemal A, Ward E, et al. Global cancer facts & figures 2007, vol. 1. Atlanta: American cancer society; 2007. p. 52.Google Scholar
  23. 23.
    Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Piercy KL, Troiano RP, Ballard RM, et al. The physical activity guidelines for Americans. JAMA. 2018.  https://doi.org/10.1001/jama.2018.14854.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Thune I, Furberg A-S. Physical activity and cancer risk: dose-response and cancer, all sites and site-specific. Med Sci Sports Exerc. 2001;33:S530–50 discussion S609-10.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    McTiernan A. Mechanisms linking physical activity with cancer. Nat Rev Cancer. 2008;8:205–11.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Prevention CfDCa. Consumption of cigarettes and combustible tobacco--United States, 2000–2011. MMWR Morb Mortal Wkly Rep. 2012;61:565.Google Scholar
  28. 28.
    Services UDoHaH. The health consequences of smoking—50 years of progress: a report of the Surgeon General, vol. 17. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014.Google Scholar
  29. 29.
    Gilmour S, Moffiet T, d’Espaignet ET, et al. Global trends and projections for tobacco use, 1990–2025: an analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control. Lancet. 2015;385:966–76.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hecht SS. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer. 2003;3:733–44.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Walser T, Cui X, Yanagawa J, Lee JM, Heinrich E, Lee G, et al. Smoking and lung cancer: the role of inflammation. Proc Am Thorac Soc. 2008;5:811–5.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Burns DM. Epidemiology of smoking-induced cardiovascular disease. Prog Cardiovasc Dis. 2003;46:11–29.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Morris PB, Ference BA, Jahangir E, Feldman DN, Ryan JJ, Bahrami H, et al. Cardiovascular effects of exposure to cigarette smoke and electronic cigarettes: clinical perspectives from the Prevention of Cardiovascular Disease Section Leadership Council and Early Career Councils of the American College of Cardiology. J Am Coll Cardiol. 2015;66:1378–91.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Johnson HM, Gossett LK, Piper ME, Aeschlimann SE, Korcarz CE, Baker TB, et al. Effects of smoking and smoking cessation on endothelial function: 1-year outcomes from a randomized clinical trial. J Am Coll Cardiol. 2010;55:1988–95.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Doll R. Uncovering the effects of smoking: historical perspective. Stat Methods Med Res. 1998;7:87–117.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ronksley PE, Brien SE, Turner BJ, Mukamal KJ, Ghali WA. Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. Bmj. 2011;342:d671.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Di Castelnuovo A, Costanzo S, Bagnardi V, Donati MB, Iacoviello L, De Gaetano G. Alcohol dosing and total mortality in men and women: an updated meta-analysis of 34 prospective studies. Arch Intern Med. 2006;166:2437–45.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Beulens JW, Rimm EB, Ascherio A, Spiegelman D, Hendriks HF, Mukamal KJ. Alcohol consumption and risk for coronary heart disease among men with hypertension. Ann Intern Med. 2007;146:10–9.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Mukamal KJ, Chiuve SE, Rimm EB. Alcohol consumption and risk for coronary heart disease in men with healthy lifestyles. Arch Intern Med. 2006;166:2145–50.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zairis M, Ambrose J, Lyras A, Thoma MA, Psarogianni PK, Psaltiras PG, et al. C Reactive protein, moderate alcohol consumption, and long term prognosis after successful coronary stenting: four year results from the GENERATION study. Heart. 2004;90:419–24.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lucas DL, Brown RA, Wassef M, Giles TD. Alcohol and the cardiovascular system: research challenges and opportunities. J Am Coll Cardiol. 2005;45:1916–24.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose–response meta-analysis. Br J Cancer. 2015;112:580–93.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Baan R, Straif K, Grosse Y, Secretan B, el Ghissassi F, Bouvard V, et al. Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007;8:292–3.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cao Y, Willett WC, Rimm EB, Stampfer MJ, Giovannucci EL. Light to moderate intake of alcohol, drinking patterns, and risk of cancer: results from two prospective US cohort studies. BMJ. 2015;351:h4238.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xi B, Veeranki SP, Zhao M, Ma C, Yan Y, Mi J. Relationship of alcohol consumption to all-cause, cardiovascular, and cancer-related mortality in US adults. J Am Coll Cardiol. 2017;70:913–22.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Seitz HK, Stickel F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer. 2007;7:599–612.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Watson R, Nixon P, Seitz H, Maclennan R. Alcohol and cancer. Alcohol Alcohol Suppl. 1994;2:453–5.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. Jama. 2010;303:235–41.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Wilson PW, D’agostino RB, Sullivan L, Parise H, Kannel WB. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch Intern Med. 2002;162:1867–72.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Grundy SM. Obesity, metabolic syndrome, and coronary atherosclerosis. Circulation. 2002;105:2696–2698.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Litwin SE. Cardiac Remodeling in Obesity. Time for a New Paradigm. JACC Cardiovasc Imaging. 2010;3:275–277.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Vasan RS. Cardiac function and obesity. Heart 2003;89:1127–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 2003;348:1625–38.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3:565–74.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of US adults. N Engl J Med. 1999;341:1097–105.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Tee MC, Cao Y, Warnock GL, Hu FB, Chavarro JE. Effect of bariatric surgery on oncologic outcomes: a systematic review and meta-analysis. Surg Endosc. 2013;27:4449–56.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med. 2007;357:741–52.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Gallagher EJ, LeRoith D. Epidemiology and molecular mechanisms tying obesity, diabetes, and the metabolic syndrome with cancer. Diabetes Care. 2013;36:S233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7:e330–41.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Scheid MP, Sweeney G. The role of adiponectin signaling in metabolic syndrome and cancer. Rev Endocr Metab Disord. 2014;15:157–67.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Alexander RW. Hypertension and the pathogenesis of atherosclerosis: oxidative stress and the mediation of arterial inflammatory response: a new perspective. Hypertension. 1995;25:155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sipahi I, Debanne SM, Rowland DY, Simon DI, Fang JC. Angiotensin-receptor blockade and risk of cancer: meta-analysis of randomised controlled trials. Lancet Oncol. 2010;11:627–36.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Collaboration AT. Effects of telmisartan, irbesartan, valsartan, candesartan, and losartan on cancers in 15 trials enrolling 138 769 individuals. J Hypertens. 2011;29:623–35.CrossRefGoogle Scholar
  66. 66.
    Bangalore S, Kumar S, Kjeldsen SE, Makani H, Grossman E, Wetterslev J, et al. Antihypertensive drugs and risk of cancer: network meta-analyses and trial sequential analyses of 324 168 participants from randomised trials. Lancet Oncol. 2011;12:65–82.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    FDA Drug Safety Communication. No increase in risk of cancer with certain blood pressure drugs—Angiotensin Receptor Blockers (ARBs), 15 July 2010; www.fda.gov/Drugs/DrugSafety/ucm257516.htm.
  68. 68.
    Hicks BM, Filion KB, Yin H, Sakr L, Udell JA, Azoulay L. Angiotensin converting enzyme inhibitors and risk of lung cancer: population based cohort study. BMJ. 2018;363:k4209.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Diz PG, Gandara Rey JM, Garcia-Garcia A. Beta-adrenergic receptors in cancer: therapeutic implications. Oncol Res. 2010;19:45–54.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Coelho M, Soares-Silva C, Brandao D, Marino F, Cosentino M, Ribeiro L. beta-Adrenergic modulation of cancer cell proliferation: available evidence and clinical perspectives. J Cancer Res Clin Oncol. 2017;143:275–91.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K. Beta blockers and breast cancer mortality: a population- based study. J Clin Oncol. 2011;29:2635–44.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Childers WK, Hollenbeak CS, Cheriyath P. beta-Blockers reduce breast cancer recurrence and breast cancer death: a meta-analysis. Clin Breast Cancer. 2015;15:426–31.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Grytli HH, Fagerland MW, Fossa SD, Tasken KA. Association between use of beta-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol. 2014;65:635–41.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Wang HM, Liao ZX, Komaki R, Welsh JW, O’Reilly MS, Chang JY, et al. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Ann Oncol. 2013;24:1312–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S, Urbauer DL, et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer. 2015;121:3444–51.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Weberpals J, Jansen L, Haefeli WE, Hoffmeister M, Wolkewitz M, Herk-Sukel MPP, et al. Pre- and post-diagnostic beta-blocker use and lung cancer survival: a population-based cohort study. Sci Rep. 2017;7:2911.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Weberpals J, Jansen L, van Herk-Sukel MPP, Kuiper JG, Aarts MJ, Vissers PAJ, et al. Immortal time bias in pharmacoepidemiological studies on cancer patient survival: empirical illustration for beta-blocker use in four cancers with different prognosis. Eur J Epidemiol. 2017;32:1019–31.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Jansen L, Weberpals J, Kuiper JG, Vissers PAJ, Wolkewitz M, Hoffmeister M, et al. Pre- and post-diagnostic beta-blocker use and prognosis after colorectal cancer: results from a population-based study. Int J Cancer. 2017;141:62–71.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Na Z, Qiao X, Hao X, Fan L, Xiao Y, Shao Y, et al. The effects of beta-blocker use on cancer prognosis: a meta-analysis based on 319,006 patients. Onco Targets Ther. 2018;11:4913–44.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Livingstone E, Hollestein LM, van Herk-Sukel MP, et al. beta-Blocker use and all-cause mortality of melanoma patients: results from a population-based Dutch cohort study. Eur J Cancer. 2013;49:3863–71.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Yap A, Lopez-Olivo MA, Dubowitz J, Pratt G, Hiller J, Gottumukkala V, et al. Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Br J Anaesth. 2018;121:45–57.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Grossman E, Messerli FH, Boyko V, Goldbourt U. Is there an association between hypertension and cancer mortality? Am J Med. 2002;112:479–86.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Felmeden DC, Spencer CG, Belgore FM, Blann AD, Beevers DG, Lip GY. Endothelial damage and angiogenesis in hypertensive patients: relationship to cardiovascular risk factors and risk factor management. Am J Hypertens. 2003;16:11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.PubMedCrossRefGoogle Scholar
  85. 85.
    Robinson ES, Matulonis UA, Ivy P, Berlin ST, Tyburski K, Penson RT, Humphreys BD. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clinical Journal of the American Society of Nephrology. 2010 Mar 1;5(3):477–83.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pekkanen J, Linn S, Heiss G, Suchindran CM, Leon A, Rifkind BM, et al. Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med. 1990;322:1700–7.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. Circulation. 2002;106:388–91.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Smith SC, Allen J, Blair SN, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. J Am Coll Cardiol. 2006;47:2130–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342:1094–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Warner M, Gustafsson J-A. On estrogen, cholesterol metabolism, and breast cancer. N Engl J Med. 2014;370:572–3.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, McDonnell DP. 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol. 2008;22:65–77.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142:1–28.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab. 2014;20:172–82.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Undela K, Srikanth V, Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res Treat. 2012;135:261–9.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Carter PR, Uppal H, Chandran S, Bainey KR, Potluri R. Algorithm for Comorbidities, Length of Stay and Mortality (ACALM) Research Unit. Patients with a diagnosis of hyperlipidaemia have a reduced risk of developing breast cancer and lower mortality rates: a large retrospective longitudinal cohort study from the UK ACALM registry. European Heart Journal 2017;38:3106Google Scholar
  96. 96.
    Berglund G, Nilsson P, Eriksson KF, Nilsson JA, Hedblad B, Kristenson H, et al. Long-term outcome of the Malmö Preventive Project: mortality and cardiovascular morbidity. J Intern Med. 2000;247:19–29.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Nielsen SF, Nordestgaard BG, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med. 2012;367:1792–802.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Wang A, Aragaki AK, Tang JY, Kurian AW, Manson JAE, Chlebowski RT, et al. Statin use and all-cancer survival: prospective results from the Women’s Health Initiative. Br J Cancer. 2016;115:129–35.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mei Z, Liang M, Li L, Zhang Y, Wang Q, Yang W. Effects of statins on cancer mortality and progression: a systematic review and meta-analysis of 95 cohorts including 1,111,407 individuals. Int J Cancer. 2017;140:1068–81.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ahern TP, Pedersen L, Tarp M, Cronin-Fenton DP, Garne JP, Silliman RA, et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J Natl Cancer Inst. 2011;103:1461–8.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Preventing anthracycline cardiovascular toxicity with statins (PREVENT). https://clinicaltrials.gov/ct2/show/nct01988571. Accessed 1/22/2019.
  102. 102.
    Mellitus D. A major risk factor for cardiovascular disease: a joint editorial statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Circulation. 1999;100:1132–3.CrossRefGoogle Scholar
  103. 103.
    Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Phys Heart Circ Phys. 1992;263:H321–6.Google Scholar
  104. 104.
    Delafontaine P, Song Y-H, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol. 2004;24:435–44.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60:207–21.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tsilidis KK, Kasimis JC, Lopez DS, Ntzani EE, Ioannidis JP. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ. 2015;350:g7607.PubMedCrossRefGoogle Scholar
  107. 107.
    Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, Tsugane S. Diabetes mellitus and the risk of cancer: results from a large-scale population-based cohort study in Japan. Arch Intern Med. 2006;166:1871–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Noto H, Goto A, Tsujimoto T, Noda M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One. 2012;7:e33411.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    DeCensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B, Gandini S. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer prevention research. 2010 Nov 1;3(11):1451–61.PubMedCrossRefGoogle Scholar
  110. 110.
    Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol. 2009;27:3297–302.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    McFarland MS, Cripps R. Diabetes mellitus and increased risk of cancer: focus on metformin and the insulin analogs. Pharmacotherapy. 2010;30:1159–78.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Scafoglio CR, Villegas B, Abdelhady G, et al. Sodium-glucose transporter 2 is a diagnostic and therapeutic target for early-stage lung adenocarcinoma. Sci Transl Med. 2018;10:eaat5933.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363:1346–53.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Kaaks R, Lukanova A, Kurzer MS. Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. Cancer Epidemiol Prev Biomark. 2002;11:1531–43.Google Scholar
  115. 115.
    Spranger J, Kroke A, Möhlig M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S–60S.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Collaboration ERF. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–20.CrossRefGoogle Scholar
  119. 119.
    Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med. 2000;342:836–43.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Katsanos K, Tsianos E. The kidneys in inflammatory bowel disease. Ann Gastroenterol. 2002;15(1):41–52Google Scholar
  122. 122.
    Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Investig Dermatol. 2007;127:514–25.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Turesson C, Matteson EL. Malignancy as a comorbidity in rheumatic diseases. Rheumatology. 2012;52:5–14.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Derk CT, Rasheed M, Artlett CM, Jimenez SA. A cohort study of cancer incidence in systemic sclerosis. J Rheumatol. 2006;33:1113–6.PubMedGoogle Scholar
  125. 125.
    Ridker PM, MacFadyen JG, Thuren T, et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:1833–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Dorsheimer L, Assmus B, Rasper T, et al. Association of mutations contributing to clonal hematopoiesis with prognosis in chronic ischemic heart failure. JAMA Cardiol. 2019;4(1):25–33PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56:1149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Gurvitz M, Ionescu-Ittu R, Guo L, Eisenberg MJ, Abrahamowicz M, Pilote L, et al. Prevalence of cancer in adults with congenital heart disease compared with the general population. Am J Cardiol. 2016;118:1742–50.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Asrani SK, Warnes CA, Kamath PS. Hepatocellular carcinoma after the Fontan procedure. N Engl J Med. 2013;368:1756–7.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Cohen S, Liu A, Gurvitz M, Guo L, Therrien J, Laprise C, et al. Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease. Circulation. 2018;137:1334–45.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    •• Lancellotti P, Suter T, Lopez-Fernandez T, et al. Cardio-oncology services: rationale, organization, and implementation. A report from the ESC Cardio-Oncology council. Eur Heart J. 2018;00:1–8 A report from the European Society of Cardiology Cardio-Oncology council that provides justification for the existence of Cardio-Oncology services, provides options for how these services should be organized, and addresses their scope of practice. It emphasizes members of the Cardio-Oncology team and describes options for structuring these services across different care settings (i.e., clinic vs. community hospital vs. tertiary hospital). Google Scholar
  135. 135.
    Herrmann J, Lerman A, Sandhu N, Villarraga H, Mulvagh S, Kohli M. Evaluation and management of patients with heart disease and cancer: cardio-oncology. Mayo Clin Proc. 2014;89:1287–306.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    •• Handy C, Quispe R, Pinto X, et al. Synergistic opportunities in the interplay between cancer screening and cardiovascular disease risk assessment: together we are stronger. Circulation. 2018;138:727–34 Review article that evaluates opportunities for overlap in the prevention of cardiovascular and oncologic disease. It lays out the data for a relationship between common cancers and cardiovascular disease and possible targets for combining cardiovascular and oncologic screening. These include low-dose chest CT for coronary calcification and lung cancer, and mammography for breast cancer and breast arterial calcification. PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Zanon M, Pacini G, de Souza V, et al. Early detection of lung cancer using ultra-low-dose computed tomography in coronary CT angiography scans among patients with suspected coronary heart disease. Lung Cancer. 2017;114:1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Kemmeren JM, van Noord PA, Beijerinck D, Fracheboud J, Banga JD, van der Graaf Y. Arterial calcification found on breast cancer screening mammograms and cardiovascular mortality in women: the DOM Project. Doorlopend Onderzoek Morbiditeit en Mortaliteit. Am J Epidemiol. 1998;147:333–41.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Kemmeren JM, Beijerinck D, van Noord PA, Banga JD, Deurenberg JJ, Pameijer FA, et al. Breast arterial calcifications: association with diabetes mellitus and cardiovascular mortality. Work Prog Radiol. 1996;201:75–8.Google Scholar
  140. 140.
    Iribarren C, Go AS, Tolstykh I, Sidney S, Johnston SC, Spring DB. Breast vascular calcification and risk of coronary heart disease, stroke, and heart failure. J Women’s Health (Larchmt). 2004;13:381–9 discussion 390-2.CrossRefGoogle Scholar
  141. 141.
    Schnatz PF, Marakovits KA, O’Sullivan DM. The association of breast arterial calcification and coronary heart disease. Obstet Gynecol. 2011;117:233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Hendriks E, de Jong P, van der Graaf Y, Mali W, van der Schouw Y, Beulens J. Breast arterial calcifications: a systematic review and meta-analysis of their determinants and their association with cardiovascular events. Atherosclerosis. 2015;239:11–20.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Lotrionte M, Biondi-Zoccai G, Abbate A, et al. Review and meta-analysis of incidence and clinical predictors or anthracycline cardiotoxicity. Am J Cardiol. 2013;112:1980–4.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan D. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102:14–25.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    • Tajiri K, Aonuma K, Sekine I. Cardio-oncology: a multidisciplinary approach for detection, prevention and management of cardiac dysfunction in cancer patients. Jpn J Clin Oncol. 2017;47:678–82 A review article exploring possible means of detecting and caring for cardiovascular disease and complications of oncologic diagnoses. The review encourages immediate cardiovascular risk assessment following every cancer diagnosis, and anticipation, monitoring, and treatment for cardiotoxicity. It also emphasizes the importance of long-term monitoring for cardiovascular complications given potential significant delay in development of cardiovascular complications. PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2017;35:893–911.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    • Johnson CB, Davis MK, Law A, Sulpher J. Shared risk factors for cardiovascular disease and cancer: implications for preventive health and clinical care in oncology patients. Can J Cardiol. 2016;32:900–7 A review article summarizing the evidence for overlapping epidemiology for cardiovascular and oncologic disease and how cardiovascular disease may affect treatment of malignancies. It also addresses how cardiovascular disease may play a role in determining cancer outcomes. Finally, it touches on the potential for modeling of individually tailored cardiovascular risk in the setting of a cancer diagnosis. PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Plana J, Galderisi M, Barac A, et al. Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2014;15:1063–93.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Armenian S, Armstrong G, Aune G, et al. Cardiovascular disease in survivors of childhood cancer: insights into epidemiology, pathophysiology, and prevention. J Clin Oncol. 2018;36:2135–44.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Chow E, Chen Y, Kremer L, et al. Individual prediction of heart failure among childhood cancer survivors. J Clin Oncol. 2015;33:394–402.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    • Armenian S, Xu L, Ky B, et al. Cardiovascular disease among survivors of adult-onset cancer: A community-based retrospective cohort study. J Clin Oncol. 2016;34:1122–30 A retrospective cohort study to evaluate burden of cardiovascular disease in a large population of adult-onset cancer survivors. They found that rates of cardiovascular disease following cancer treatment were related to the number of cardiovascular risk factors and type of cancer. PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Ligibel J, Alfano C, Courneya K, et al. American Society of Clinical Oncology position statement on obesity and cancer. J Clin Oncol. 2014;32:3568–74.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Piccirillo J, Tierney R, Costas I, Grove L, Spitznagel E. Prognostic importance of comorbidity in a hospital-based cancer registry. JAMA. 2004;291:2441–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Logan Vincent
    • 1
  • Douglas Leedy
    • 2
  • Sofia Carolina Masri
    • 1
  • Richard K. Cheng
    • 1
    • 3
    Email author
  1. 1.Division of Cardiology, Department of MedicineUniversity of Washington Medical CenterSeattleUSA
  2. 2.Department of Internal MedicineUniversity of Washington Medical CenterSeattleUSA
  3. 3.Department of RadiologyUniversity of Washington Medical CenterSeattleUSA

Personalised recommendations