Advertisement

Novel Imaging in Detection of Metastatic Prostate Cancer

  • Clayton P. Smith
  • Anna Laucis
  • Stephanie Harmon
  • Esther Mena
  • Liza Lindenberg
  • Peter L. Choyke
  • Baris TurkbeyEmail author
Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Genitourinary Cancers

Abstract

Purpose of Review

This review aims to highlight the limitations of current standard-of-care prostate cancer (PCa) imaging and discuss novel clinical imaging in advanced disease.

Recent Findings

PCa staging through imaging is important for proper selections in clinical treatment. Traditional imaging techniques for metastatic disease (i.e., computed tomography [CT], magnetic resonance imaging [MRI], and radionuclide bone scan) have suboptimal performance in early recurrent or metastatic disease. Novel positron emission tomography agents including radiolabeled prostate specific membrane antigen (PSMA), choline, and anti-18F-fluorocyclobutane-1-carboxylic acid (18F-FACBC) have demonstrated improved sensitivity and specificity in initial staging and early biochemical recurrence (BCR).

Summary

Conventional imaging modalities for PCa incompletely characterize disease burden. The development of new PET tracers in combination with CT and MRI offers superior anatomic localization and biologic correlation of tumor sites, which enhance providers’ abilities to make appropriate decisions regarding treatment.

Keywords

Prostate cancer Novel prostate cancer imaging PET agents PSMA Choline Fluciclovine 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    SEER cancer stat facts: prostate cancer. National Cancer Institute, Bethesda, MD. 2018. https://seer.cancer/gov/statfacts/html/prost.html. Accessed 10/21/2018 2018.
  2. 2.
    Network NCC. Prostate cancer (version 4.2018). 2018. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed 10/19/2018.
  3. 3.
    Orme NM, Fletcher JG, Siddiki HA, Harmsen WS, O’Byrne MM, Port JD, et al. Incidental findings in imaging research: evaluating incidence, benefit, and burden. Arch Intern Med. 2010;170(17):1525–32.  https://doi.org/10.1001/archinternmed.2010.317.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Risko R, Merdan S, Womble PR, Barnett C, Ye Z, Linsell SM, et al. Clinical predictors and recommendations for staging computed tomography scan among men with prostate cancer. Urology. 2014;84(6):1329–34.  https://doi.org/10.1016/j.urology.2014.07.051.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bader P, Burkhard FC, Markwalder R, Studer UE. Disease progression and survival of patients with positive lymph nodes after radical prostatectomy. Is there a chance of cure? J Urol. 2003;169(3):849–54.  https://doi.org/10.1097/01.ju.0000049032.38743.c7.CrossRefPubMedGoogle Scholar
  6. 6.
    Abuzallouf S, Dayes I, Lukka H. Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol. 2004;171(6 Pt 1):2122–7.CrossRefGoogle Scholar
  7. 7.
    Pesapane F, Czarniecki M, Suter MB, Turkbey B, Villeirs G. Imaging of distant metastases of prostate cancer. Med Oncol. 2018;35(11):148.  https://doi.org/10.1007/s12032-018-1208-2.CrossRefPubMedGoogle Scholar
  8. 8.
    Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, et al. Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol. 2012;62(1):68–75.  https://doi.org/10.1016/j.eururo.2012.02.020.CrossRefPubMedGoogle Scholar
  9. 9.
    Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177(1):229–36.  https://doi.org/10.2214/ajr.177.1.1770229.CrossRefPubMedGoogle Scholar
  10. 10.
    Shen G, Deng H, Hu S, Jia Z. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta-analysis. Skelet Radiol. 2014;43(11):1503–13.  https://doi.org/10.1007/s00256-014-1903-9.CrossRefGoogle Scholar
  11. 11.
    Love C, Din AS, Tomas MB, Kalapparambath TP, Palestro CJ. Radionuclide bone imaging: an illustrative review. Radiographics. 2003;23(2):341–58.  https://doi.org/10.1148/rg.232025103.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53.  https://doi.org/10.1200/JCO.2004.08.181.CrossRefPubMedGoogle Scholar
  13. 13.
    Eustace S, Tello R, DeCarvalho V, Carey J, Wroblicka JT, Melhem ER, et al. A comparison of whole-body turboSTIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR Am J Roentgenol. 1997;169(6):1655–61.  https://doi.org/10.2214/ajr.169.6.9393186.CrossRefPubMedGoogle Scholar
  14. 14.
    Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med. 2001;45(1):53–64.PubMedGoogle Scholar
  15. 15.
    Bjurlin MA, Turkbey B, Rosenkrantz AB, Gaur S, Choyke PL, Taneja SS. Imaging the high-risk prostate cancer patient: current and future approaches to staging. Urology. 2018;116:3–12.  https://doi.org/10.1016/j.urology.2017.12.001.CrossRefPubMedGoogle Scholar
  16. 16.
    Schirrmeister H, Glatting G, Hetzel J, Nüssle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42(12):1800–4.PubMedGoogle Scholar
  17. 17.
    Palmedo H, Marx C, Ebert A, Kreft B, Ko Y, Türler A, et al. Whole-body SPECT/CT for bone scintigraphy: diagnostic value and effect on patient management in oncological patients. Eur J Nucl Med Mol Imaging. 2014;41(1):59–67.  https://doi.org/10.1007/s00259-013-2532-6.CrossRefPubMedGoogle Scholar
  18. 18.
    Helyar V, Mohan HK, Barwick T, Livieratos L, Gnanasegaran G, Clarke SE, et al. The added value of multislice SPECT/CT in patients with equivocal bony metastasis from carcinoma of the prostate. Eur J Nucl Med Mol Imaging. 2010;37(4):706–13.  https://doi.org/10.1007/s00259-009-1334-3.CrossRefPubMedGoogle Scholar
  19. 19.
    Radiology ACo. ACR appropriateness criteria. https://acsearch.acr.org/list. Accessed 10/19/2018.
  20. 20.
    Shreve PD, Grossman HB, Gross MD, Wahl RL. Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology. 1996;199(3):751–6.  https://doi.org/10.1148/radiology.199.3.8638000.CrossRefPubMedGoogle Scholar
  21. 21.
    Ghanem N, Uhl M, Brink I, Schäfer O, Kelly T, Moser E, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol. 2005;55(1):41–55.  https://doi.org/10.1016/j.ejrad.2005.01.016.CrossRefPubMedGoogle Scholar
  22. 22.
    Brown AM, Lindenberg ML, Sankineni S, Shih JH, Johnson LM, Pruthy S, et al. Does focal incidental 18F-FDG PET/CT uptake in the prostate have significance? Abdom Imaging. 2015;40(8):3222–9.  https://doi.org/10.1007/s00261-015-0520-y.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Harisinghani MG, Barentsz J, Hahn PF, Deserno WM, Tabatabaei S, van de Kaa CH, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med. 2003;348(25):2491–9.  https://doi.org/10.1056/NEJMoa022749.CrossRefPubMedGoogle Scholar
  24. 24.
    Vasanawala SS, Nguyen KL, Hope MD, Bridges MD, Hope TA, Reeder SB, et al. Safety and technique of ferumoxytol administration for MRI. Magn Reson Med. 2016;75(5):2107–11.  https://doi.org/10.1002/mrm.26151.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sankineni S, Smedley J, Bernardo M, Brown AM, Johnson L, Muller B, et al. Ferumoxytol as an intraprostatic MR contrast agent for lymph node mapping of the prostate: a feasibility study in non-human primates. Acta Radiol. 2016;57(11):1396–401.  https://doi.org/10.1177/0284185115586023.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cher ML, Bianco FJ, Lam JS, Davis LP, Grignon DJ, Sakr WA, et al. Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol. 1998;160(4):1387–91.CrossRefGoogle Scholar
  27. 27.
    Hricak H, Schöder H, Pucar D, Lis E, Eberhardt SC, Onyebuchi CN, et al. Advances in imaging in the postoperative patient with a rising prostate-specific antigen level. Semin Oncol. 2003;30(5):616–34.CrossRefGoogle Scholar
  28. 28.
    Wu LM, Xu JR, Gu HY, Hua J, Zhu J, Chen J, et al. Role of magnetic resonance imaging in the detection of local prostate cancer recurrence after external beam radiotherapy and radical prostatectomy. Clin Oncol (R Coll Radiol). 2013;25(4):252–64.  https://doi.org/10.1016/j.clon.2012.11.010.CrossRefGoogle Scholar
  29. 29.
    Thoeny HC, Barbieri S, Froehlich JM, Turkbey B, Choyke PL. Functional and targeted lymph node imaging in prostate cancer: current status and future challenges. Radiology. 2017;285(3):728–43.  https://doi.org/10.1148/radiol.2017161517.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beauregard JM, Blouin AC, Fradet V, Caron A, Fradet Y, Lemay C, et al. FDG-PET/CT for pre-operative staging and prognostic stratification of patients with high-grade prostate cancer at biopsy. Cancer Imaging. 2015;15:2.  https://doi.org/10.1186/s40644-015-0038-0.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Roberts MJ, Schirra HJ, Lavin MF, Gardiner RA. Metabolomics: a novel approach to early and noninvasive prostate cancer detection. Korean J Urol. 2011;52(2):79–89.  https://doi.org/10.4111/kju.2011.52.2.79.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ackerstaff E, Pflug BR, Nelson JB, Bhujwalla ZM. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res. 2001;61(9):3599–603.PubMedGoogle Scholar
  33. 33.
    Fanti S, Minozzi S, Castellucci P, Balduzzi S, Herrmann K, Krause BJ, et al. PET/CT with (11)C-choline for evaluation of prostate cancer patients with biochemical recurrence: meta-analysis and critical review of available data. Eur J Nucl Med Mol Imaging. 2016;43(1):55–69.  https://doi.org/10.1007/s00259-015-3202-7.CrossRefPubMedGoogle Scholar
  34. 34.
    Evangelista L, Guttilla A, Zattoni F, Muzzio PC. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol. 2013;63(6):1040–8.  https://doi.org/10.1016/j.eururo.2012.09.039.CrossRefPubMedGoogle Scholar
  35. 35.
    Haseebuddin M, Dehdashti F, Siegel BA, Liu J, Roth EB, Nepple KG, et al. 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nucl Med. 2013;54(5):699–706.  https://doi.org/10.2967/jnumed.112.111153.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Oka S, Hattori R, Kurosaki F, Toyama M, Williams LA, Yu W, et al. A preliminary study of anti-1-amino-3-18F-fluorocyclobutyl-1-carboxylic acid for the detection of prostate cancer. J Nucl Med. 2007;48(1):46–55.PubMedGoogle Scholar
  37. 37.
    Nakanishi T, Tamai I. Solute carrier transporters as targets for drug delivery and pharmacological intervention for chemotherapy. J Pharm Sci. 2011;100(9):3731–50.  https://doi.org/10.1002/jps.22576.CrossRefPubMedGoogle Scholar
  38. 38.
    Asano Y, Inoue Y, Ikeda Y, Kikuchi K, Hara T, Taguchi C, et al. Phase I clinical study of NMK36: a new PET tracer with the synthetic amino acid analogue anti-[18F]FACBC. Ann Nucl Med. 2011;25(6):414–8.  https://doi.org/10.1007/s12149-011-0477-z.CrossRefPubMedGoogle Scholar
  39. 39.
    Nanni C, Schiavina R, Rubello D, Ambrosini V, Brunocilla E, Martorana G, et al. The detection of disease relapse after radical treatment for prostate cancer: is anti-3-18F-FACBC PET/CT a promising option? Nucl Med Commun. 2013;34(9):831–3.  https://doi.org/10.1097/MNM.0b013e3283636eaf.CrossRefPubMedGoogle Scholar
  40. 40.
    Ren J, Yuan L, Wen G, Yang J. The value of anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid PET/CT in the diagnosis of recurrent prostate carcinoma: a meta-analysis. Acta Radiol. 2016;57(4):487–93.  https://doi.org/10.1177/0284185115581541.CrossRefPubMedGoogle Scholar
  41. 41.
    Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol. 2014;191(5):1446–53.  https://doi.org/10.1016/j.juro.2013.10.065.CrossRefPubMedGoogle Scholar
  42. 42.
    Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, et al. Recurrent prostate cancer detection with anti-3-[(18)F]FACBC PET/CT: comparison with CT. Eur J Nucl Med Mol Imaging. 2016;43(10):1773–83.  https://doi.org/10.1007/s00259-016-3383-8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Leek J, Lench N, Maraj B, Bailey A, Carr IM, Andersen S, et al. Prostate-specific membrane antigen: evidence for the existence of a second related human gene. Br J Cancer. 1995;72(3):583–8.CrossRefGoogle Scholar
  44. 44.
    Birtle AJ, Freeman A, Masters JR, Payne HA, Harland SJ. Registry BSoOC. Tumour markers for managing men who present with metastatic prostate cancer and serum prostate-specific antigen levels of <10 ng/mL. BJU Int. 2005;96(3):303–7.  https://doi.org/10.1111/j.1464-410X.2005.05619.x.CrossRefPubMedGoogle Scholar
  45. 45.
    Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH, et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci U S A. 2011;108(23):9578–82.  https://doi.org/10.1073/pnas.1106383108.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Maurer T, Eiber M, Schwaiger M, Gschwend JE. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol. 2016;13(4):226–35.  https://doi.org/10.1038/nrurol.2016.26.CrossRefPubMedGoogle Scholar
  47. 47.
    • Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M, et al. The diagnostic value of PET/CT imaging with the (68)Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2015;42(2):197–209.  https://doi.org/10.1007/s00259-014-2949-6 A large series of prostate cancer patients who experienced biochemical recurrence after definitive therapy, evaluated with PSMA targeting PET. This paper shows the relationship of BCR foci detection with PSA and androgen deprivation therapy status. CrossRefPubMedGoogle Scholar
  48. 48.
    Hijazi S, Meller B, Leitsmann C, Strauss A, Meller J, Ritter CO, et al. Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by 68Ga-PSMA-positron emission tomography/computerized tomography. Prostate. 2015;75(16):1934–40.  https://doi.org/10.1002/pros.23091.CrossRefPubMedGoogle Scholar
  49. 49.
    Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive. Eur Urol. 2016;70(6):926–37.  https://doi.org/10.1016/j.eururo.2016.06.021.CrossRefPubMedGoogle Scholar
  50. 50.
    Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A, et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med. 2012;53(12):1883–91.  https://doi.org/10.2967/jnumed.112.104661.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA, et al. Initial evaluation of [(18)F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17(4):565–74.  https://doi.org/10.1007/s11307-015-0850-8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rowe SP, Macura KJ, Ciarallo A, Mena E, Blackford A, Nadal R, et al. Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med. 2016;57(1):46–53.  https://doi.org/10.2967/jnumed.115.163782.CrossRefPubMedGoogle Scholar
  53. 53.
    Mena E, Turkbey I, Lindenberg ML, Harmon S, Czarniecki M, Adler S et al. Evaluation of PSMA-based 18 F-DCFPyL PET/CT imaging in patients with biochemical recurrence prostate cancer after primary local therapy. J Nucl Med. 2018;59(59). http://jnm.snmjournals.org/content/59/supplement_1/451?related-urls=yes&legid=jnumed;59/supplement_1/451.
  54. 54.
    Kelly J, Amor-Coarasa A, Nikolopoulou A, Kim D, Williams C, Ponnala S, et al. Synthesis and pre-clinical evaluation of a new class of high-affinity. Eur J Nucl Med Mol Imaging. 2017;44(4):647–61.  https://doi.org/10.1007/s00259-016-3556-5.CrossRefPubMedGoogle Scholar
  55. 55.
    Cardinale J, Schäfer M, Benešová M, Bauder-Wüst U, Leotta K, Eder M, et al. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J Nucl Med. 2017;58(3):425–31.  https://doi.org/10.2967/jnumed.116.181768.
  56. 56.
    Harada N, Kimura H, Onoe S, Watanabe H, Matsuoka D, Arimitsu K, et al. Synthesis and biologic evaluation of novel 18F-labeled probes targeting prostate-specific membrane antigen for PET of prostate cancer. J Nucl Med. 2016;57(12):1978–84.  https://doi.org/10.2967/jnumed.116.175810.CrossRefPubMedGoogle Scholar
  57. 57.
    Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 2011;12(2):181–91.  https://doi.org/10.1016/S1470-2045(10)70103-0.CrossRefPubMedGoogle Scholar
  58. 58.
    Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, et al. Prostate cancer-specific PET radiotracers: a review on the clinical utility in recurrent disease. Pract Radiat Oncol. 2018;8(1):28–39.  https://doi.org/10.1016/j.prro.2017.07.011.CrossRefPubMedGoogle Scholar
  59. 59.
    Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q, et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med. 2015;56(8):1185–90.  https://doi.org/10.2967/jnumed.115.160382.CrossRefPubMedGoogle Scholar
  60. 60.
    Lodi A, Ronen SM. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS One. 2011;6(10):e26155.  https://doi.org/10.1371/journal.pone.0026155.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Fankhauser CD, Poyet C, Kroeze SGC, Kranzbühler B, Schüler HIG, Guckenberger M, et al. Current and potential future role of PSMA-PET in patients with castration-resistant prostate cancer. World J Urol. 2018.  https://doi.org/10.1007/s00345-018-2408-2.
  62. 62.
    Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):81–5.PubMedGoogle Scholar
  63. 63.
    • Afshar-Oromieh A, Debus N, Uhrig M, Hope TA, Evans MJ, Holland-Letz T, et al. Impact of long-term androgen deprivation therapy on PSMA ligand PET/CT in patients with castration-sensitive prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(12):2045–54.  https://doi.org/10.1007/s00259-018-4079-z Largest retrospective series of metastatic prostate cancer patients who underwent androgen deprivation therapy. This paper documents decreased visibility of castrate sensitive cancer foci at PSMA targeting PET scans. CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Shakespeare TP. Effect of prostate-specific membrane antigen positron emission tomography on the decision-making of radiation oncologists. Radiat Oncol. 2015;10:233.  https://doi.org/10.1186/s13014-015-0548-8.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Dewes S, Schiller K, Sauter K, Eiber M, Maurer T, Schwaiger M, et al. Integration of (68)Ga-PSMA-PET imaging in planning of primary definitive radiotherapy in prostate cancer: a retrospective study. Radiat Oncol. 2016;11:73.  https://doi.org/10.1186/s13014-016-0646-2.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bluemel C, Linke F, Herrmann K, Simunovic I, Eiber M, Kestler C, et al. Impact of 68Ga-PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy. EJNMMI Res. 2016;6(1):78.  https://doi.org/10.1186/s13550-016-0233-4.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Roach PJ, Francis R, Emmett L, Hsiao E, Kneebone A, Hruby G, et al. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: results of an Australian prospective multicenter study. J Nucl Med. 2018;59(1):82–8.  https://doi.org/10.2967/jnumed.117.197160.CrossRefPubMedGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • Clayton P. Smith
    • 1
    • 2
  • Anna Laucis
    • 3
  • Stephanie Harmon
    • 1
  • Esther Mena
    • 1
  • Liza Lindenberg
    • 1
  • Peter L. Choyke
    • 1
  • Baris Turkbey
    • 1
    Email author
  1. 1.Molecular Imaging ProgramNational Cancer Institute, NIHBethesdaUSA
  2. 2.Georgetown University School of MedicineWashingtonUSA
  3. 3.Department of Radiation OncologyUniversity of MichiganAnn ArborUSA

Personalised recommendations