Electronic Assessment of Physical Decline in Geriatric Cancer Patients

  • Ramin Fallahzadeh
  • Hassan Ghasemzadeh
  • Armin Shahrokni
Palliative Medicine (A Jatoi, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Palliative Medicine

Abstract

Purpose of Review

The purpose of this review is to explore state-of-the-art remote monitoring and emerging new sensing technologies for in-home physical assessment and their application/potential in cancer care. In addition, we discuss the main functional and non-functional requirements and research challenges of employing such technologies in real-world settings.

Recent Findings

With rapid growth in aging population, effective and efficient patient care has become an important topic. Advances in remote monitoring and in its forefront in-home physical assessment technologies play a fundamental role in reducing the cost and improving the quality of care by complementing the traditional in-clinic healthcare. However, there is a gap in medical research community regarding the applicability and potential outcomes of such systems.

Summary

While some studies reported positive outcomes using remote assessment technologies, such as web/smart phone-based self-reports and wearable sensors, the cancer research community is still lacking far behind. Thorough investigation of more advanced technologies in cancer care is warranted.

Keywords

In-home patient monitoring Remote physical assessment Cancer management Wireless health Aging Wearable sensors Smart-home technology Self-report 

Notes

Compliance with Ethical Standards

Conflict of Interest

Ramin Fallahzadeh, Hassan Ghasemzadeh, and Armin Shahrokni declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Levit L, Balogh E, Nass S, Ganz PA. Delivering high-quality cancer care [internet]. In: Challenges of an aging population. Board on Health Care Services. Institute of Medicine (IOM). Washington, D.C.: National Academies Press; 2013. Available from: http://www.nap.edu/catalog.php?record_id=18359.Google Scholar
  2. 2.
    Hurria A. Improving the quality of cancer care in an aging population. JAMA [Internet]. 2013;310:1795. Available from:  https://doi.org/10.1001/jama.2013.280416%5Cn. http://jama.jamanetwork.com/data/Journals/JAMA/928522/jvp130139.pdf.
  3. 3.
    Hurria A, Togawa K, Mohile SG, Owusu C, Klepin HD, Gross CP, et al. Predicting chemotherapy toxicity in older adults with cancer: a prospective multicenter study. J Clin Oncol [Internet]. 2011;29(25):3457–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21810685%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3624700.  https://doi.org/10.1200/JCO.2011.34.7625.CrossRefGoogle Scholar
  4. 4.
    Hoppe S, Rainfray M, Fonck M, Hoppenreys L, Blanc J-F, Ceccaldi J, et al. Functional decline in older patients with cancer receiving first-line chemotherapy. J. Clin. Oncol. [Internet]. 2013;31:3877–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24062399 CrossRefGoogle Scholar
  5. 5.
    Soubeyran P, Fonck M, Blanc-Bisson C, Blanc J-F, Ceccaldi J, Mertens C, et al. Predictors of early death risk in older patients treated with first-line chemotherapy for cancer. J Clin Oncol. 2012;30(15):1829–34.  https://doi.org/10.1200/JCO.2011.35.7442.CrossRefPubMedGoogle Scholar
  6. 6.
    Schneider EB, Hyder O, Brooke BS, Efron J, Cameron JL, Edil BH, et al. Patient readmission and mortality after colorectal surgery for colon cancer: impact of length of stay relative to other clinical factors. J Am Coll Surg. 2012;214(4):390–8.  https://doi.org/10.1016/j.jamcollsurg.2011.12.025.CrossRefPubMedGoogle Scholar
  7. 7.
    Greenblatt DY, Weber SM, O’Connor ES, LoConte NK, Liou J-I, Smith MA. Readmission after colectomy for cancer predicts one-year mortality. Ann Surg [Internet]. 2010;251(4):659–69. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2951007&tool=pmcentrez&rendertype=abstract.  https://doi.org/10.1097/SLA.0b013e3181d3d27c.CrossRefGoogle Scholar
  8. 8.
    Spoelstra SL, Given BA, Given CW, Grant M, Sikorskii A, You M, et al. An intervention to improve adherence and management of symptoms for patients prescribed oral chemotherapy agents: an exploratory study. Cancer Nurs [Internet]. 2013;36:18–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23235499 CrossRefGoogle Scholar
  9. 9.
    Molassiotis A, Brearley S, Saunders M, Craven O, Wardley A, Farrell C, et al. Effectiveness of a home care nursing program in the symptom management of patients with colorectal and breast cancer receiving oral chemotherapy: a randomized, controlled trial. J Clin Oncol [Internet]. 2009;27:6191–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19917849 CrossRefGoogle Scholar
  10. 10.
    Baksh ANH, Shahrokni A. No news, bad news? A deeper examination of the correlation between patient functional status and level of postoperative telephone communication with the surgical team. J Clin Oncol. 2017;35:102.CrossRefGoogle Scholar
  11. 11.
    Mohan P, Marin D, Sultan S, Deen A. MediNet: personalizing the self-care process for patients with diabetes and cardiovascular disease using mobile telephony. Eng Med Biol Soc 2008. EMBS 2008. 30th Annu. Int. Conf. IEEE [Internet]. 2008;755–758. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19162765.
  12. 12.
    Nagai N, Fujii Y, Ueda H, Maru K, Kumakura S. PC-based monitoring system for efficient use of day care centers for elderly people. Procedia—Soc. Behav. Sci. [Internet]. 2010;2:204–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1877042810000376 CrossRefGoogle Scholar
  13. 13.
    Marques MR, Raymundo TM, Santana CS. Use of sensors systems to monitor the mobility of elderly. J Phys Conf Ser [Internet]. IOP Publishing; 2013 [cited 2017 Sep 11];477:12010. Available from: http://stacks.iop.org/1742-6596/477/i=1/a=012010?key=crossref.9b3bc7cc32691741ad02acbfca63ab4b.
  14. 14.
    Valdivieso M, Kujawa AM, Jones T, Baker LH. Cancer survivors in the United States: a review of the literature and a call to action. Int J Med Sci. 2012;9(2):163–73.  https://doi.org/10.7150/ijms.3827.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sikorskii A, Given CW, Given B, Jeon S, Decker V, Decker D, et al. Symptom Management for Cancer Patients: a trial comparing two multimodal interventions. J Pain Symptom Manag. 2007;34(3):253–64.  https://doi.org/10.1016/j.jpainsymman.2006.11.018.CrossRefGoogle Scholar
  16. 16.
    Majumder S, Mondal T, Deen M. Wearable sensors for remote health monitoring. Sensors [Internet]. 2017;17:130. Available from: http://www.mdpi.com/1424-8220/17/1/130 CrossRefGoogle Scholar
  17. 17.
    Seto E, Leonard KJ, Masino C, Cafazzo JA, Barnsley J, Ross HJ. Attitudes of heart failure patients and health care providers towards mobile phone-based remote monitoring. J Med Internet Res 2010;12.Google Scholar
  18. 18.
    Palaniswamy C, Mishkin A, Aronow WS, Kalra A, Frishman WH. Remote patient monitoring in chronic heart failure. Cardiol Rev. 2013;21(3):141–50.  https://doi.org/10.1097/CRD.0b013e318276198b.CrossRefPubMedGoogle Scholar
  19. 19.
    Fallahzadeh R, Pedram M, Ghasemzadeh H. SmartSock: a wearable platform for context-aware assessment of ankle edema. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2016;6302–6.Google Scholar
  20. 20.
    Agarwal S, Lau CT. Remote health monitoring using mobile phones and Web services. Telemed. J. E. Health. [Internet]. 2010;16:603–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20575728 CrossRefGoogle Scholar
  21. 21.
    Klasnja P, Hartzler A, Powell C, Pratt W, et al. Supporting cancer patients’ unanchored health information management with mobile technology. AMIA Annual Symp. Proc./AMIA Symp. Symp. [Internet]. 2011;2011:732–41. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed10&NEWS=N&AN=22195130 Google Scholar
  22. 22.
    Cheng C, Stokes TH, Wang MD. CaREMOTE: the design of a cancer reporting and monitoring telemedicine system for domestic care. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2011:3168–3171.Google Scholar
  23. 23.
    Basoglu N, Daim TU, Topacan U. Determining patient preferences for remote monitoring. J Med Syst. 2012;36(3):1389–401.  https://doi.org/10.1007/s10916-010-9601-1.CrossRefPubMedGoogle Scholar
  24. 24.
    Mooney KH, Beck SL, Wong B, Dunson W, Wujcik D, Whisenant M, et al. Automated home monitoring and management of patient-reported symptoms during chemotherapy: results of the symptom care at home RCT. Cancer Med. 2017;6(3):537–46.  https://doi.org/10.1002/cam4.1002.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stacey D, Green E, Ballantyne B, Skrutkowski M, Whynot A, Tardif L, et al. Patient and family experiences with accessing telephone cancer treatment symptom support: a descriptive study. Support Care Cancer. 2016;24(2):893–901.  https://doi.org/10.1007/s00520-015-2859-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Liptrott S, Bee P, Lovell K. Acceptability of telephone support as perceived by patients with cancer: a systematic review. Eur J Cancer Care (Engl). 2017;  https://doi.org/10.1111/ecc.12643.
  27. 27.
    Cowie J, McCann L, Maguire R, Kearney N, Connaghan J, Paterson C, et al. Real-time management of chemotherapy toxicity using the Advanced Symptom Management System (ASyMS). J. Decis. Syst. [Internet]. 2013;22:43–52. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84878253093&partnerID=40&md5=e11a527d125b782325fd7dc7af1b49f7 CrossRefGoogle Scholar
  28. 28.
    • Maguire R, Fox PA, McCann L, Miaskowski C, Kotronoulas G, Miller M, et al. The eSMART study protocol: a randomised controlled trial to evaluate electronic symptom management using the advanced symptom management system (ASyMS) remote technology for patients with cancer. BMJ Open. 2017;7:7–9. This is the largest on-going study measuring oncology patient outcomes using an electronic symptom management system through randomised controlled trials in multiple clinical sites across Europe. CrossRefGoogle Scholar
  29. 29.
    Berry DL, Hong F, Halpenny B, Partridge AH, Fann JR, Wolpin S, et al. Electronic self-report assessment for cancer and self-care support: results of a multicenter randomized trial. J Clin Oncol. 2014;32(3):199–205.  https://doi.org/10.1200/JCO.2013.48.6662.CrossRefPubMedGoogle Scholar
  30. 30.
    Derawi M, Bours P. Gait and activity recognition using commercial phones. Comput Secur [Internet]. 2013;39:137–44. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0167404813000953.  https://doi.org/10.1016/j.cose.2013.07.004.CrossRefGoogle Scholar
  31. 31.
    De D, Bharti P, Das SK, Chellappan S. Multimodal wearable sensing for fine-grained activity recognition in healthcare. IEEE Internet Comput. 2015;19(5):26–35.  https://doi.org/10.1109/MIC.2015.72.CrossRefGoogle Scholar
  32. 32.
    Bertolotti GM, Cristiani AM, Colagiorgio P, Romano F, Bassani E, Caramia N, et al. A wearable and modular inertial unit for measuring limb movements and balance control abilities. IEEE Sensors J. 2016;16(3):790–7.  https://doi.org/10.1109/JSEN.2015.2489381.CrossRefGoogle Scholar
  33. 33.
    Alshurafa N, Xu W, Liu JJ, Huang MC, Mortazavi B, Roberts CK, et al. Designing a robust activity recognition framework for health and exergaming using wearable sensors. IEEE J Biomed Heal Informatics. 2014;18(5):1636–46.  https://doi.org/10.1109/JBHI.2013.2287504.CrossRefGoogle Scholar
  34. 34.
    Cristiani AM, Bertolotti GM, Marenzi E, Ramat S. An instrumented insole for long term monitoring movement, comfort, and ergonomics. IEEE Sensors J. 2014;14(5):1564–72.  https://doi.org/10.1109/JSEN.2014.2299063.CrossRefGoogle Scholar
  35. 35.
    Tang W, Sazonov ES. Highly accurate recognition of human postures and activities through classification with rejection. IEEE J. Biomed. Heal. Informatics. 2014;18(1):309–15.  https://doi.org/10.1109/JBHI.2013.2287400.CrossRefGoogle Scholar
  36. 36.
    • Sprint G, Cook D, Fritz R, Schmitter-Edgecombe M. Detecting health and behavior change by analyzing smart home sensor data. 2016 I.E. Int. Conf. Smart Comput. IEEE. 2016. p. 1–3. This paper is the first feasibility study on using smarthome technology for health monitoring in oncology patients. Google Scholar
  37. 37.
    van Kasteren Y, Bradford D, Zhang Q, Karunanithi M, Ding H. Understanding smart home sensor data for ageing in place through everyday household routines: a mixed method case study. JMIR mHealth uHealth [Internet]. 2017;5:e52. Available from: http://mhealth.jmir.org/2017/6/e52/ CrossRefGoogle Scholar
  38. 38.
    • Phillips SM, Dodd KW, Steeves J, McClain J, Alfano CM, McAuley E. Physical activity and sedentary behavior in breast cancer survivors: new insight into activity patterns and potential intervention targets. Gynecol. Oncol. 2015;138:398–404. This is an intensive study on activity patterns in breast cancer survivors using wearable tracking devices. It highlights the importance of emphasizing on monitoring less-intensive activities in oncology patients. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Skipworth RJE, Stene GB, Dahele M, Hendry PO, Small AC, Blum D, et al. Patient-focused endpoints in advanced cancer: criterion-based validation of accelerometer-based activity monitoring. Clin Nutr. 2011;30(6):812–21.  https://doi.org/10.1016/j.clnu.2011.05.010.CrossRefPubMedGoogle Scholar
  40. 40.
    Maddocks M, Wilcock A. Exploring physical activity level in patients with thoracic cancer: implications for use as an outcome measure. Support Care Cancer. 2012;20(5):1113–6.  https://doi.org/10.1007/s00520-012-1393-z.CrossRefPubMedGoogle Scholar
  41. 41.
    Maddocks M, Byrne A, Johnson CD, Wilson RH, Fearon KCH, Wilcock A. Physical activity level as an outcome measure for use in cancer cachexia trials: a feasibility study. Support Care Cancer [Internet]. 2010;18:1539–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19956982 CrossRefGoogle Scholar
  42. 42.
    Smith, WA, Nolan VG, Robison LL, Hudson MM, Ness KK. Physical activity among cancer survivors and those with no history of cancer—a report from the National Health and Nutrition Examination Survey 2003-2006. Am J Transl Res. 2011;3(4):345-50.Google Scholar
  43. 43.
    Weiss GM, Timko JL, Gallagher CM, Yoneda K, Schreiber AJ. Smartwatch-based activity recognition: a machine learning approach. 2016 IEEE-EMBS Int Conf Biomed Heal Informatics [Internet]. 2016:426–429. Available from: http://ieeexplore.ieee.org/document/7455925/.
  44. 44.
    Johnston AH, Weiss GM. Smartwatch-based biometric gait recognition. 2015 I.E. 7th Int Conf Biometrics Theory, Appl Syst. BTAS. 2015.Google Scholar
  45. 45.
    Su X, Tong H, Ji P. Activity recognition with smartphone sensors. Tsinghua Sci Technol. 2014;19:235–49.CrossRefGoogle Scholar
  46. 46.
    Shoaib M, Scholten H, Havinga PJM. Towards physical activity recognition using smartphone sensors. 2013 I.E. 10th Int. Conf. Ubiquitous Intell. Comput. 2013 I.E. 10th Int. Conf. Auton. Trust. Comput. [Internet]. 2013. p. 80–87. Available from: http://ieeexplore.ieee.org/document/6726194/.
  47. 47.
    Lara OD, Labrador MA. A survey on human activity recognition using wearable sensors. IEEE Commun Surv Tutorials [Internet]. 2012:1–18. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6365160.
  48. 48.
    Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. [Internet]. 2012;9:21. Available from: http://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-21 CrossRefGoogle Scholar
  49. 49.
    • Seneviratne S, Hu Y, Nguyen T, Lan G, Khalifa S, Thilakarathna K, et al. A survey of wearable devices and challenges. IEEE Commun Survecognition using wearable sensors Tutorials [Internet]. 2017 [cited 2017 Sep 11];1–1. Available from: http://ieeexplore.ieee.org/document/7993011. This paper is one of the two largest recent survey reports of state-of-the-art wearable technologies being developed, its potentials and limitations in various applications.
  50. 50.
    • Lara OD, Labrador MA. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials [Internet]. 2013;15:1192–1209. Available from: http://ieeexplore.ieee.org/document/6365160. This paper is one of the two largest recent survey reports of emerging wearable and e-textile technologies being proposed, its potential advantages, existing challenges, and limitations in different domains.
  51. 51.
    Looney D, Goverdovsky V, Rosenzweig I, Morrell MJ, Mandic DP. Wearable in-ear encephalography sensor for monitoring sleep preliminary observations from nap studies. Ann Am Thorac Soc. 2016;13(12):2229–33.  https://doi.org/10.1513/AnnalsATS.201605-342BC.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tadano S, Takeda R, Miyagawa H. Three dimensional gait analysis using wearable acceleration and gyro sensors based on quaternion calculations. Sensors (Basel). 2013;13:9321–43.CrossRefGoogle Scholar
  53. 53.
    Sazonov ES, Fulk G, Hill J, Schutz Y, Browning R. Monitoring of posture allocations and activities by a shoe-based wearable sensor. IEEE Trans Biomed Eng. 2011;58(4):983–90.  https://doi.org/10.1109/TBME.2010.2046738.CrossRefPubMedGoogle Scholar
  54. 54.
    Wu F, Zhao H, Zhao Y, Zhong H. Development of a wearable-sensor-based fall detection system. Int J Telemed Appl 2015;2015.Google Scholar
  55. 55.
    Abbate S, Avvenuti M, Bonatesta F, Cola G, Corsini P, Vecchio A. A smartphone-based fall detection system. Pervasive Mob Comput. 2012;8(6):883–99.  https://doi.org/10.1016/j.pmcj.2012.08.003.CrossRefGoogle Scholar
  56. 56.
    Tao W, Liu T, Zheng R, Feng H. Gait analysis using wearable sensors. Sensors (Basel). [Internet]. 2012;12:2255–83. Available from: http://www.mdpi.com/1424-8220/12/2/2255/htm CrossRefGoogle Scholar
  57. 57.
    Trojaniello D, Cereatti A, Bourke A. A wearable system for the measurement of the inter-foot distance during gait. 20th IMEKO T4 Int. Symp. [Internet]. 2014. 765–769. Available from: http://www.imeko.org/publications/tc4-2014/IMEKO-TC4-2014-337.pdf.
  58. 58.
    St-Onge M, Mignault D, Allison DB, Rabasa-Lhoret R. Evaluation of a portable device to measure daily energy expenditure in free-living adults. Am. J. Clin. Nutr. [Internet]. 2007;85:742–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17344495 CrossRefGoogle Scholar
  59. 59.
    Kumahara H, Schutz Y, Ayabe M, Yoshioka M, Yoshitake Y, Shindo M, et al. The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry. Br. J. Nutr. [Internet]. 2004;91:235. Available from: http://www.journals.cambridge.org/abstract_S0007114504000327 CrossRefGoogle Scholar
  60. 60.
    Plasqui G, Joosen AMCP, Kester AD, Goris AHC, Westerterp KR. Measuring free-living energy expenditure and physical activity with triaxial accelerometry. Obes Res [Internet]. 2005;13(8):1363–9. Available from:.  https://doi.org/10.1038/oby.2005.165.CrossRefGoogle Scholar
  61. 61.
    Arcelus A, Goubran R, Jones MH, Knoefel F. Integration of smart home technologies in a health monitoring system for the elderly. Proc.–21st Int Conf Adv Inf Netw Appl Work AINAW’07. 2007. p. 820–825.Google Scholar
  62. 62.
    Rashidi P, Cook DJ, Holder LB, Schmitter-Edgecombe M. Discovering activities to recognize and track in a smart environment. IEEE Trans Knowl Data Eng. 2011;23(4):527–39.  https://doi.org/10.1109/TKDE.2010.148.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Rantz MJ, Banerjee TS, Cattoor E, Scott SD, Skubic M, Popescu M. Automated fall detection with quality improvement “rewind” to reduce falls in hospital rooms. J Gerontol Nurs. 2014;40(1):13–7.CrossRefPubMedGoogle Scholar
  64. 64.
    Wuehr M, Schniepp R, Schlick C, Huth S, Pradhan C, Dieterich M, et al. Sensory loss and walking speed related factors for gait alterations in patients with peripheral neuropathy. Gait Posture 2014;39(3):852–58.  https://doi.org/10.1016/j.gaitpost.2013.11.013.CrossRefPubMedGoogle Scholar
  65. 65.
    Xu W, Huang M-C, Amini N, He L, Sarrafzadeh M. eCushion: a textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sensors J. 2013;13(10):3926–34.  https://doi.org/10.1109/JSEN.2013.2259589.CrossRefGoogle Scholar
  66. 66.
    Samy L, Huang MC, Liu JJ, Xu W, Sarrafzadeh M. Unobtrusive sleep stage identification using a pressure-sensitive bed sheet. IEEE Sensors J. 2014;14(7):2092–101.  https://doi.org/10.1109/JSEN.2013.2293917.CrossRefGoogle Scholar
  67. 67.
    Rus S, Braun A, Kuijper A. E-textile couch: towards smart garments integrated furniture. Lect Notes Comput Sci (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2017. p. 214–224.Google Scholar
  68. 68.
    Heneghan C, Redmond S. Sleep monitoring system [Internet]. US Pat. 8,784,324. 2014 [cited 2017 Sep 11]. Available from: https://www.google.com/patents/US8784324.
  69. 69.
    Han C, Wu K, Wang Y, Ni LM. WiFall: device-free fall detection by wireless networks. IEEE INFOCOM 2014—IEEE Conf Comput Commun [Internet]. 2014;16:271–279. Available from: http://ieeexplore.ieee.org/document/6847948/.
  70. 70.
    Fortino G, Giannantonio R, Gravina R, Kuryloski P, Jafari R. Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans Human-Machine Syst. 2013;43(1):115–33.  https://doi.org/10.1109/TSMCC.2012.2215852.CrossRefGoogle Scholar
  71. 71.
    Kumar S, Nilsen WJ, Abernethy A, Atienza A, Patrick K, Pavel M, et al. Mobile health technology evaluation: the mHealth evidence workshop. Am J Prev Med. 2013:228–236.Google Scholar
  72. 72.
    Zakim D, Schwab M. Data collection as a barrier to personalized medicine. Trends Pharmacol Sci. 2015;36(2):68–71.  https://doi.org/10.1016/j.tips.2014.11.002.CrossRefPubMedGoogle Scholar
  73. 73.
    Fallahzadeh R, Ghasemzadeh H. Personalization without user interruption. In: Proc. 8th Int. Conf. Cyber-Physical Syst.—ICCPS ’17 [Internet]. New York: ACM Press; 2017. p. 293–302. Available from: http://dl.acm.org/citation.cfm?doid=3055004.3055015.Google Scholar
  74. 74.
    Stisen A, Blunck H, Bhattacharya S, Prentow TS, Kjærgaard MB, Dey A, et al. Smart devices are different: assessing and mitigating mobile sensing heterogeneities for activity recognition. Proc. 13th ACM Conf. Embed. Networked Sens. Syst.—SenSys ’15 [Internet]. 2015;127–140. Available from: http://dl.acm.org/citation.cfm?doid=2809695.2809718.
  75. 75.
    Rokni SA, Ghasemzadeh H. Plug-n-learn: automatic learning of computational algorithms in human-centered internet-of-things applications. Proc. 53rd Annu. Des. Autom. Conf. [Internet]. 2016;139:1–6. Available from:  https://doi.org/10.1145/2897937.2898066.
  76. 76.
    National Expenditure for Cancer Sites. Cancer prevalence and cost of care projections [Internet]. [cited 2017 Sep 11]. Available from: https://costprojections.cancer.gov/expenditures.html.
  77. 77.
    Yüksel B, Küpçü A, Özkasap Ö. Research issues for privacy and security of electronic health services. Futur Gener Comput Syst. 2017;68:1–13.  https://doi.org/10.1016/j.future.2016.08.011.CrossRefGoogle Scholar
  78. 78.
    Kleiboer A, Gowing K, Hansen CH, Hibberd C, Hodges L, Walker J, et al. Monitoring symptoms at home: what methods would cancer patients be comfortable using? Qual Life Res. 2010;19(7):965–8.  https://doi.org/10.1007/s11136-010-9662-0.CrossRefPubMedGoogle Scholar
  79. 79.
    Faust L, Purta R, Hachen D, Striegel A, Poellabauer C, Lizardo O, et al. Exploring compliance: observations from a large scale fitbit study. Proc. 2nd Int. Work. Soc. Sens.—Soc. [Internet]. 2017. p. 55–60. Available from: http://dl.acm.org/citation.cfm?doid=3055601.3055608.
  80. 80.
    • Sun V, Dumitra S, Ruel N, Lee B, Melstrom L, Melstrom K, et al. Wireless monitoring program of patient-centered outcomes and recovery before and after major abdominal cancer surgery. JAMA Surg. [Internet]. 2017;81:1061–1066. Available from: http://archsurg.jamanetwork.com/article.aspx?  https://doi.org/10.1001/jamasurg.2017.1519. This paper is among the first studies that investigates the outcome of using wireless monitoring and self-reported surveys with preoperative and postoperative patients. It shows the potential of using such systems in identifying high-risk populations who may need additional interventions.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ramin Fallahzadeh
    • 1
  • Hassan Ghasemzadeh
    • 2
  • Armin Shahrokni
    • 3
  1. 1.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA
  2. 2.School of Electrical Engineering and Computer ScienceWashington State UniversityPullmanUSA
  3. 3.Geriatric Service, Department of MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations