Atypical Pediatric Demyelinating Diseases of the Central Nervous System

  • Regina M. Troxell
  • Alison ChristyEmail author
Demyelinating Disorders (J. Bernard & M. Cameron, Section Editors)


Purpose of Review

Pediatric central nervous system demyelinating diseases include multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and acute disseminated encephalomyelitis (ADEM). As diagnostic criteria become more inclusive, the risk of misdiagnosis of atypical demyelinating diseases of rheumatologic, infectious, and autoimmune etiology increases.

Recent Findings

We review mimics of multiple sclerosis, neuromyelitis optica spectrum disorder, and acute disseminated encephalomyelitis, including rheumatologic diseases: systemic lupus erythematosus and neuro-Behçet disease; infectious diseases: human immunodeficiency virus, progressive multifocal leukoencephalopathy, and subacute sclerosis panencephalitis; and autoimmune diseases including X-linked Charcot-Marie-Tooth disease, chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) and autoimmune glial fibrillary acidic protein (GFAP) encephalopathy.


Atypical demyelinating disease may mimic classic neuroinflammatory diseases of the central nervous system. Imaging may meet criteria for a diagnosis of multiple sclerosis, or patients may present with optic neuritis and transverse myelitis consistent with neuromyelitis optica spectrum or myelin oligodendrocyte glycoprotein (MOG) antibody disorders. Through careful history-taking and review of atypical MRI findings, we may avoid misdiagnosis and mistreatment.


Pediatric Demyelination Multiple sclerosis Neuromyelitis optica ADEM MOG 


Compliance with ethical standards

Conflict of Interest

Regina M. Troxell and Alison Christy each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    Langer-Gould A, Zhang JL, Chung J, Yeung Y, Waubant E, Yao J. Incidence of acquired CNS demyelinating syndromes in a multiethnic cohort of children. Neurology. 2011;77:1143–8.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Belman AL, Krupp LB, Olsen CS, Rose JW, Aaen G, Benson L, et al. Network of Pediatric MS Centers. Characteristics of Children and Adolescents With Multiple Sclerosis. 2016 Pediatrics Jul;138(1). pii: e20160120. Scholar
  3. 3.
    Barkhof F, et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain. 1997;120(Pt 11):2059–69.PubMedGoogle Scholar
  4. 4.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.PubMedGoogle Scholar
  5. 5.
    •• Wong YYM, et al. Real-world validation of the 2017 McDonald criteria for pediatric MS. Neurol Neuroimmunol. Neuroinflamm. 2019;6:e528 This study evaluates the specificity and sensitivity of the 2017 McDonald criteria for MS in children, particularly those under 12.PubMedGoogle Scholar
  6. 6.
    Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Chitnis T, Ness J, Krupp L, Waubant E, Hunt T, Olsen CS, et al. Clinical features of neuromyelitis optica in children: US Network of Pediatric MS Centers report. Neurology. 2016;86:245–52.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Krupp LB, Banwell B, Tenembaum S. Consensus definitions proposed for pediatric multiple sclerosis and related disorders. Neurology. 2007;68:S7 LP–S12.Google Scholar
  9. 9.
    •• Hacohen Y, Banwell B. Treatment approaches for MOG-Ab-associated demyelination in children. Curr Treat Options Neurol. 2019;21:2 This review summarizes key publications reporting clinical presentation, antibody-detection, neuroimaging, and treatment of MOG-antibody associated demyelinating disease in children. PubMedPubMedCentralGoogle Scholar
  10. 10.
    Reindl M, Waters P. Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nat Rev Neurol. 2019;15:89–102.PubMedGoogle Scholar
  11. 11.
    Thulasirajah S, Pohl D, Davila-Acosta J, Venkateswaran S. Myelin oligodendrocyte glycoprotein-associated pediatric central nervous system demyelination: clinical course, Neuroimaging Findings, and Response to Therapy. Neuropediatrics. 2016;47:245–52.PubMedGoogle Scholar
  12. 12.
    Fernandez-Carbonell C, Vargas-Lowy D, Musallam A, Healy B, McLaughlin K, Wucherpfennig KW, et al. Clinical and MRI phenotype of children with MOG antibodies. Mult Scler. 2016;22:174–84.PubMedGoogle Scholar
  13. 13.
    Ahn GY, Kim D, Won S, Song ST, Jeong HJ, Sohn IW, et al. Prevalence, risk factors, and impact on mortality of neuropsychiatric lupus: a prospective, single-center study. Lupus. 2018;27:1338–47.PubMedGoogle Scholar
  14. 14.
    Li X, Xiang X, Sun J, Liu S, Liu Y, Feng L, et al. Prevalence, outcome and prognostic factors of neuropsychiatric systemic lupus erythematosus: a real world single center study. Mod Rheumatol. 2019:1–6.
  15. 15.
    Lin Y-C, Wang A-G, Yen M-Y. Systemic lupus erythematosus-associated optic neuritis: clinical experience and literature review. Acta Ophthalmol. 2009;87:204–10.PubMedGoogle Scholar
  16. 16.
    Hryb JP, et al. Myelitis in systemic lupus erythematosus: clinical features, immunological profile and magnetic resonance imaging of five cases. Spinal Cord Ser Cases. 2016;2:16005.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Saison J, Costedoat-Chalumeau N, Maucort-Boulch D, Iwaz J, Marignier R, Cacoub P, et al. Systemic lupus erythematosus-associated acute transverse myelitis: manifestations, treatments, outcomes, and prognostic factors in 20 patients. Lupus. 2015;24:74–81.PubMedGoogle Scholar
  18. 18.
    Magro Checa C, Cohen D, Bollen EL, van Buchem M, Huizinga TW, Steup-Beekman GM. Demyelinating disease in SLE: is it multiple sclerosis or lupus? Best Pract Res Clin Rheumatol. 2013;27:405–24.PubMedGoogle Scholar
  19. 19.
    Dore-Duffy P, Donaldson JO, Rothman BL, Zurier RB. Antinuclear antibodies in multiple sclerosis. JAMA Neurol. 1982;39:504–6.Google Scholar
  20. 20.
    Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, Gruszka E, Korman L, Podemski R, et al. Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus. 2012;21:412–20.PubMedGoogle Scholar
  21. 21.
    Merashli M, Alves JD, Gentile F, Ames PRJ. Relevance of antiphospholipid antibodies in multiple sclerosis: a systematic review and meta analysis. Semin Arthritis Rheum. 2017;46:810–8.PubMedGoogle Scholar
  22. 22.
    Probstel A-K, et al. Association of antibodies against myelin and neuronal antigens with neuroinflammation in systemic lupus erythematosus. Rheumatology (Oxford). 2019;58:908–13.PubMedGoogle Scholar
  23. 23.
    Ozen S. Pediatric onset Behcet disease. Curr Opin Rheumatol. 2010;22:585–9.PubMedGoogle Scholar
  24. 24.
    Koné-Paut I. Behçet’s disease in children, an overview. Pediatr Rheumatol. 2016;14:10.Google Scholar
  25. 25.
    Akman-Demir G, Mutlu M, Kiyat-Atamer A, Shugaiv E, Kurtuncu M, Tugal-Tutkun I, et al. Behcet’s disease patients with multiple sclerosis-like features: discriminative value of Barkhof criteria. Clin Exp Rheumatol. 2015;33:S80–4.PubMedGoogle Scholar
  26. 26.
    Borhani Haghighi A, Sarhadi S, Farahangiz S. MRI findings of neuro-Behcet’s disease. Clin Rheumatol. 2011;30:765–70.PubMedGoogle Scholar
  27. 27.
    Farahangiz S, Sarhadi S, Safari A, Borhani-Haghighi A. Magnetic resonance imaging findings and outcome of neuro-Behcet’s disease: the predictive factors. Int J Rheum Dis. 2012;15:e142–9.PubMedGoogle Scholar
  28. 28.
    Fujimori J, et al. Two Japanese cases of anti-MOG antibody-associated encephalitis that mimicked neuro-Behcet’s disease. J Neuroimmunol. 2019;334:577002.PubMedGoogle Scholar
  29. 29.
    Perzynska-Mazan J, Maslinska M, Gasik R. Neurological manifestations of primary Sjogren’s syndrome. Reumatologia. 2018;56:99–105.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Birnbaum J, Atri NM, Baer AN, Cimbro R, Montagne J, Casciola-Rosen L. Relationship between neuromyelitis optica spectrum disorder and Sjogren’s syndrome: central nervous system extraglandular disease or unrelated, co-occurring autoimmunity? Arthritis Care Res (Hoboken). 2017;69:1069–75.Google Scholar
  31. 31.
    Jobling K, Ledingham D, Ng W-F, Guadagno J. Positive anti-MOG antibodies in a patient with Sjogren’s syndrome and transverse myelitis. Eur J Rheumatol. 2018;6:102–4.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Uriel A, et al. Tumefactive demyelination-an unusual neurological presentation of HIV. Clin Infect Dis. 2010;51:1217–20.PubMedGoogle Scholar
  33. 33.
    van Toorn R, Kritzinger F, Rabie H. Acute demyelinating encephalomyelitis (ADEM), cryptococcal reactivation and disseminated herpes simplex in an HIV infected child following HAART. Eur J Paediatr Neurol. 2005;9:355–9.PubMedGoogle Scholar
  34. 34.
    Tullu MS, Patil DP, Muranjan MN, Kher AS, Lahiri KR. Human immunodeficiency virus (HIV) infection in a child presenting as acute disseminated encephalomyelitis. J Child Neurol. 2011;26:99–102.PubMedGoogle Scholar
  35. 35.
    Patra KC, Shirolkar MS, Ghane VR. Acute disseminated encephalomyelitis: extremely rare presentation of pediatric human immunodeficiency virus infection. J Pediatr Neurosci. 2014;9:150–3.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ferenczy MW, et al. Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev. 2012;25:471 LP–506.Google Scholar
  37. 37.
    Hennes EM, Kornek B, Huppke P, Reindl M, Rostasy K, Berger T. Age-dependent seroprevalence of JCV antibody in children. Neuropediatrics. 2016;47:112–4.PubMedGoogle Scholar
  38. 38.
    Huppke P, Hummel H, Ellenberger D, Pfeifenbring S, Stark W, Huppke B, et al. JC virus antibody status in a pediatric multiple sclerosis cohort: prevalence, conversion rate and influence on disease severity. Mult Scler. 2015;21:382–7.PubMedGoogle Scholar
  39. 39.
    Berger JR, Aksamit AJ, Clifford DB, Davis L, Koralnik IJ, Sejvar JJ, et al. PML diagnostic criteria: consensus statement from the AAN neuroinfectious disease section. Neurology. 2013;80:1430–8.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Centers for Disease Control and Prevention. Measles cases and outbreaks. 2019. Available at: Accessed 17th June 2019.
  41. 41.
    Mekki M, Eley B, Hardie D, Wilmshurst JM. Subacute sclerosing panencephalitis: clinical phenotype, epidemiology, and preventive interventions. Dev Med Child Neurol. 2019. Scholar
  42. 42.
    Garg RK. Subacute sclerosing panencephalitis. Postgrad Med J. 2002;78:63–70.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Jafri SK, Kumar R, Ibrahim SH. Subacute sclerosing panencephalitis - current perspectives. Pediatr Heal Med Ther. 2018;9:67–71.Google Scholar
  44. 44.
    Dhawan SR, Kesavan S, Saini L, Singh P, Sahu JK, Sankhyan N. Diffuse white matter involvement in subacute sclerosing panencephalitis. Neuropediatrics. 2019;50:68–70.PubMedGoogle Scholar
  45. 45.
    Das B, Goyal MK, Modi M, Mehta S, Chakravarthi S, Lal V, et al. Atypical magnetic resonance imaging features in subacute sclerosing panencephalitis. Ann Indian Acad Neurol. 2016;19:275–6.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tandra HV, Roy PS, Sharma R, Bhatia V, Saini AG. Subacute sclerosing panencephalitis presenting as choreoathetosis and basal ganglia hyperintensities. Neurohospitalist. 2019;9:26–9.PubMedGoogle Scholar
  47. 47.
    Raut TP, Singh MK, Garg RK, Naphade PU. Subacute sclerosing panencephalitis presenting as neuromyelitis optica. BMJ Case Rep. 2012 Dec 14;2012. pii: bcr2012006764. Scholar
  48. 48.
    Yilmaz C, Caksen H, Yilmaz N, Guven AS, Bayram I. Two cases of subacute sclerosing panencephalitis associated with brainstem involvement. J Trop Pediatr. 2007;53:280–3.PubMedGoogle Scholar
  49. 49.
    Markand ON, Panszi JG. The electroencephalogram in subacute sclerosing panencephalitis. Arch Neurol. 1975;32:719–26.PubMedGoogle Scholar
  50. 50.
    Dogulu CF, Ciger A, Saygi S, Renda Y, Yalaz K. Atypical EEG findings in subacute sclerosing panencephalitis. Clin Electroencephalogr. 1995;26:193–9.PubMedGoogle Scholar
  51. 51.
    Kwak M, Yeh HR, Yum MS, Kim HJ, You SJ, Ko TS. A long-term subacute sclerosing panencephalitis survivor treated with intraventricular interferon-alpha for 13 years. Korean J Pediatr. 2019;62:108–12.PubMedGoogle Scholar
  52. 52.
    Tomoda A, Shiraishi S, Hosoya M, Hamada A, Miike T. Combined treatment with interferon-alpha and ribavirin for subacute sclerosing panencephalitis. Pediatr Neurol. 2001;24:54–9.PubMedGoogle Scholar
  53. 53.
    Hara S, Kimura H, Hoshino Y, Hayashi N, Negoro T, Okumura A, et al. Combination therapy with intraventricular interferon-alpha and ribavirin for subacute sclerosing panencephalitis and monitoring measles virus RNA by quantitative PCR assay. Brain Dev. 2003;25:367–9.PubMedGoogle Scholar
  54. 54.
    Tatli B, Ekici B, Ozmen M. Current therapies and future perspectives in subacute sclerosing panencephalitis. Expert Rev Neurother. 2012;12:485–92.PubMedGoogle Scholar
  55. 55.
    Campbell H, Andrews N, Brown KE, Miller E. Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol. 2007;36:1334–48.PubMedGoogle Scholar
  56. 56.
    Hanemann CO, Bergmann C, Senderek J, Zerres K, Sperfeld A-D. Transient, recurrent, white matter lesions in X-linked Charcot-Marie-Tooth disease with novel connexin 32 mutation. Arch Neurol. 2003;60:605–9.PubMedGoogle Scholar
  57. 57.
    Kim JK, Han S-A, Kim SJ. X-linked Charcot-Marie-Tooth disease with GJB1 mutation presenting as acute disseminated encephalomyelitis-like illness: a case report. Medicine (Baltimore). 2017;96:e9176.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Xie C, et al. CNS involvement in CMTX1 caused by a novel connexin 32 mutation: a 6-year follow-up in neuroimaging and nerve conduction. Neuro Sci. 2016;37:1063–70.Google Scholar
  59. 59.
    Zhao Y, et al. Transient, recurrent, white matter lesions in x-linked Charcot-Marie-tooth disease with novel mutation of gap junction protein beta 1 gene in China: a case report. BMC Neurol. 2014;14:156.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Koros C, Evangelopoulos M-E, Kilidireas C, Andreadou E. Central nervous system demyelination in a Charcot-Marie-Tooth type 1A patient. Case Rep Neurol Med. 2013;2013:243652.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Lee M, Park CH, Chung HK, Kim HJ, Choi Y, Yoo JH, et al. Cerebral white matter abnormalities in patients with charcot-marie-tooth disease. Ann Neurol. 2017;81:147–51.PubMedGoogle Scholar
  62. 62.
    Taieb G, Duflos C, Renard D, Audoin B, Kaphan E, Pelletier J, et al. Long-term outcomes of CLIPPERS (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) in a consecutive series of 12 patients. Arch Neurol. 2012;69:847–55.PubMedGoogle Scholar
  63. 63.
    Tobin WO, Guo Y, Krecke KN, Parisi JE, Lucchinetti CF, Pittock SJ, et al. Diagnostic criteria for chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain. 2017;140:2415–25.PubMedGoogle Scholar
  64. 64.
    Nemani T, Udwadia-Hegde A, Keni Karnavat P, Kashikar R, Epari S. CLIPPERS spectrum disorder: a rare pediatric neuroinflammatory condition. Child Neurol Open. 2019;6:2329048X19831096.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Veerapandiyan A, Chaudhari A, Deo P, Ming X. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS): a pediatric case report with six year follow-up. Mult Scler Relat Disord. 2017;17:95–8.PubMedGoogle Scholar
  66. 66.
    Berzero G, Taieb G, Marignier R, Younan N, Savatovsky J, Leclercq D, et al. CLIPPERS mimickers: relapsing brainstem encephalitis associated with anti-MOG antibodies. Eur J Neurol. 2018;25:e16–7.PubMedGoogle Scholar
  67. 67.
    Symmonds M, Waters PJ, Küker W, Leite MI, Schulz UG. Anti-MOG antibodies with longitudinally extensive transverse myelitis preceded by CLIPPERS. Neurology. 2015;84:1177–9.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Rempe T, et al. A case of CLIPPERS syndrome responsive to tocilizumab. Neurol Neuroimmunol. Neuroinflamm. 2019;6:e545.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Cipriani VP, Arndt N, Pytel P, Reder AT, Javed A. Effective treatment of CLIPPERS with long-term use of rituximab. Neurol Neuroimmunol Neuroinflamm. 2018;5:e448.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Shan F, Long Y, Qiu W. Autoimmune glial fibrillary acidic protein astrocytopathy: a review of the literature. Front Immunol. 2018;9:2802.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Dubey D, Hinson SR, Jolliffe EA, Zekeridou A, Flanagan EP, Pittock SJ, et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J Neuroimmunol. 2018;321:157–63.PubMedGoogle Scholar
  72. 72.
    Francisco C, Meddles K, Waubant E. Pediatric glial fibrillary acidic protein meningoencephalomyelitis: a case report and review of the literature. Mult Scler Relat Disord. 2019;29:148–52.PubMedGoogle Scholar
  73. 73.
    •• Fang B, McKeon A, Hinson SR, Kryzer TJ, Pittock SJ, Aksamit AJ, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol. 2016;73:1297–307 This is the first characterization of the clinical presentation, response to corticosteroids, and associated neoplasms in patients with seropositivity for GFAP immunoglobulin. PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Rady Children’s HospitalSan DiegoUSA
  2. 2.Providence Health & ServicesPortlandUSA

Personalised recommendations