Neurological Complications of Cardiological Interventions

  • Amir ShabanEmail author
  • Enrique C. Leira
Neurology of Systemic Diseases (J Biller, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neurology of Systemic Disease


Purpose of Review

Neurological complications are common during cardiac procedures. The type of procedure influences the profile of neurological complications and their management. In this article, we review the different neurological complications encountered following cardiac procedures, and treatment strategies for managing those complications.

Recent Findings

Recent clinical trials have expanded the time window of eligibility for mechanical thrombectomy and intravenous thrombolysis. As a result, more options are now available for the treatment of periprocedural strokes.


Early recognition of neurological complications, particularly stroke, will allow more patients to be treated effectively. The expanded window for intravenous thrombolysis and mechanical thrombectomy using advanced neuroimaging for selection provides more opportunities for treatment of periprocedural stroke. There is a paucity of data on the management of cerebrovascular complications, such as ischemic and hemorrhagic strokes, in the setting of left ventricular assist device or mechanical valve.


Cardiac procedure Acute ischemic stroke Intracranial hemorrhage Nerve injury Contrast neurotoxicity Valve replacement Coronary artery bypass grafting Percutaneous coronary intervention Left ventricular assist device 


Compliance with Ethical Standards

Conflict of Interest

Amir Shaban and Enrique Leira each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Gottesman RF, McKhann GM, Hogue CW. Neurological complications of cardiac surgery. Semin Neurol. 2008;28(5):703–15.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Shah R, Morsy MS, Weiman DS, Vetrovec GW. Meta-analysis comparing coronary artery bypass grafting to drug-eluting stents and to medical therapy alone for left main coronary artery disease. Am J Cardiol. 2017;120(1):63–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Devgun JK, Gul S, Mohananey D, Jones BM, Hussain MS, Jobanputra Y, et al. Cerebrovascular events after cardiovascular procedures: risk factors, recognition, and prevention strategies. J Am Coll Cardiol. 2018;71(17):1910–20.PubMedCrossRefGoogle Scholar
  4. 4.
    Stone GW, Sabik JF, Serruys PW, Kappetein AP. Everolimus-eluting stents or bypass surgery for left main coronary disease. N Engl J Med. 2017;376(11):1089.PubMedGoogle Scholar
  5. 5.
    • Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72 SYNTAX trial was one of the major trials to compare the adverse events following coronary artery bypass grafting and percutaneous coronary intervention. CrossRefGoogle Scholar
  6. 6.
    Kowalewski M, Pawliszak W, Malvindi PG, Bokszanski MP, Perlinski D, Raffa GM, et al. Off-pump coronary artery bypass grafting improves short-term outcomes in high-risk patients compared with on-pump coronary artery bypass grafting: meta-analysis. J Thorac Cardiovasc Surg. 2016;151(1):60–77 e1–58.PubMedCrossRefGoogle Scholar
  7. 7.
    Kenaan M, Seth M, Aronow HD, Wohns D, Share D, Gurm HS, et al. The clinical outcomes of percutaneous coronary intervention performed without pre-procedural aspirin. J Am Coll Cardiol. 2013;62(22):2083–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Aradi D, Komocsi A, Vorobcsuk A, Serebruany VL. Impact of clopidogrel and potent P2Y 12 -inhibitors on mortality and stroke in patients with acute coronary syndrome or undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Thromb Haemost. 2013;109(1):93–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Kahlert P, Knipp SC, Schlamann M, Thielmann M, Al-Rashid F, Weber M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation. 2010;121(7):870–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Eggebrecht H, Schmermund A, Voigtlander T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38.PubMedCrossRefGoogle Scholar
  11. 11.
    Hahn RT, Pibarot P, Webb J, Rodes-Cabau J, Herrmann HC, Williams M, et al. Outcomes with post-dilation following transcatheter aortic valve replacement: the PARTNER I trial (placement of aortic transcatheter valve). JACC Cardiovasc Interv. 2014;7(7):781–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Athappan G, Gajulapalli RD, Sengodan P, Bhardwaj A, Ellis SG, Svensson L, et al. Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement: a meta-analysis and systematic review of literature. J Am Coll Cardiol. 2014;63(20):2101–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Jones BM, Tuzcu EM, Krishnaswamy A, Kapadia SR. Neurologic events after transcatheter aortic valve replacement. Interv Cardiol Clin. 2015;4(1):83–93.PubMedGoogle Scholar
  14. 14.
    Nombela-Franco L, Webb JG, de Jaegere PP, Toggweiler S, Nuis RJ, Dager AE, et al. Timing, predictive factors, and prognostic value of cerebrovascular events in a large cohort of patients undergoing transcatheter aortic valve implantation. Circulation. 2012;126(25):3041–53.PubMedCrossRefGoogle Scholar
  15. 15.
    Bagur R, Solo K, Alghofaili S, Nombela-Franco L, Kwok CS, Hayman S, et al. Cerebral embolic protection devices during transcatheter aortic valve implantation: systematic review and meta-analysis. Stroke. 2017;48(5):1306–15.PubMedCrossRefGoogle Scholar
  16. 16.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):2438–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Aryal MR, Karmacharya P, Pandit A, Hakim F, Pathak R, Mainali NR, et al. Dual versus single antiplatelet therapy in patients undergoinHeart Lung Circg transcatheter aortic valve replacement: a systematic review and meta-analysis. 2015;24(2):185–92.Google Scholar
  18. 18.
    Messe SR, Acker MA, Kasner SE, Fanning M, Giovannetti T, Ratcliffe SJ, et al. Stroke after aortic valve surgery: results from a prospective cohort. Circulation. 2014;129(22):2253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hauville C, Ben-Dor I, Lindsay J, Pichard AD, Waksman R. Clinical and silent stroke following aortic valve surgery and transcatheter aortic valve implantation. Cardiovasc Revasc Med. 2012;13(2):133–40.PubMedCrossRefGoogle Scholar
  20. 20.
    Baber U, van der Zee S, Fuster V. Anticoagulation for mechanical heart valves in patients with and without atrial fibrillation. Curr Cardiol Rep. 2010;12(2):133–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Arnold AZ, Mick MJ, Mazurek RP, Loop FD, Trohman RG. Role of prophylactic anticoagulation for direct current cardioversion in patients with atrial fibrillation or atrial flutter. J Am Coll Cardiol. 1992;19(4):851–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Hellman T, Kiviniemi T, Vasankari T, Nuotio I, Biancari F, Bah A, et al. Prediction of ineffective elective cardioversion of atrial fibrillation: a retrospective multi-center patient cohort study. BMC Cardiovasc Disord. 2017;17(1):33.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Jaakkola S, Kiviniemi TO, Airaksinen KEJ. Cardioversion for atrial fibrillation—how to prevent thromboembolic complications? Ann Med. 2018:1–7.Google Scholar
  24. 24.
    Cote G, Denault A. Transesophageal echocardiography-related complications. Can J Anaesth. 2008;55(9):622–47.PubMedCrossRefGoogle Scholar
  25. 25.
    Kislitsina ON, Anderson AS, Rich JD, Vorovich EE, Pham DT, Cox JL, et al. Strokes associated with left ventricular assist devices. J Card Surg. 2018;33(9):578–83.PubMedCrossRefGoogle Scholar
  26. 26.
    Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate II and HeartWare left ventricular assist devices: a systematic review. Neurocrit Care. 2017;27(1):17–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Blitz A. Pump thrombosis—a riddle wrapped in a mystery inside an enigma. Ann Cardiothorac Surg. 2014;3(5):450–71.PubMedPubMedCentralGoogle Scholar
  28. 28.
    •• Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22 WAKE-UP trial investigated the use of IV-tPA guided by a mismatch between diffusion weighted imaging and FLAIR in the region of ischemia and showed a significantly better functional outcome compared to placebo. PubMedCrossRefGoogle Scholar
  29. 29.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.PubMedCrossRefGoogle Scholar
  30. 30.
    •• Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21 DAWN trial showed a significant benefit for using of mechanical thrombectomy for patients who met specific criteria up to 24 hours. PubMedCrossRefGoogle Scholar
  31. 31.
    •• Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18 DEFUSE trial showed a significant benefit for using of mechanical thrombectomy for patients who met specific criteria up to 16 hours. PubMedCrossRefGoogle Scholar
  32. 32.
    Holzmann MJ, Ahlback E, Jeppsson A, Sartipy U. Renal dysfunction and long-term risk of ischemic and hemorrhagic stroke following coronary artery bypass grafting. Int J Cardiol. 2013;168(2):1137–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Stewart RA. Clinical trials in heart valve disease. Curr Opin Cardiol. 2009;24(4):279–87.PubMedCrossRefGoogle Scholar
  34. 34.
    Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4(6):779–84.PubMedCrossRefGoogle Scholar
  35. 35.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Kuramatsu JB, Gerner ST, Schellinger PD, Glahn J, Endres M, Sobesky J, et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA. 2015;313(8):824–36.PubMedCrossRefGoogle Scholar
  38. 38.
    Majeed A, Kim YK, Roberts RS, Holmstrom M, Schulman S. Optimal timing of resumption of warfarin after intracranial hemorrhage. Stroke. 2010;41(12):2860–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuramatsu JB, Sembill JA, Gerner ST, Sprugel MI, Hagen M, Roeder SS, et al. Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves. Eur Heart J. 2018;39(19):1709–23.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Halvorsen S, Storey RF, Rocca B, Sibbing D, Ten Berg J, Grove EL, et al. Management of antithrombotic therapy after bleeding in patients with coronary artery disease and/or atrial fibrillation: expert consensus paper of the European Society of Cardiology Working Group on thrombosis. Eur Heart J. 2017;38(19):1455–62.PubMedGoogle Scholar
  41. 41.
    Tahir RA, Rotman LE, Davis MC, Dupepe EB, Kole MK, Rahman M, et al. Intracranial hemorrhage in patients with a left ventricular assist device. World Neurosurg. 2018;113:e714–e21.PubMedCrossRefGoogle Scholar
  42. 42.
    Wong JK, Chen PC, Falvey J, Melvin AL, Lidder AK, Lowenstein LM, et al. Anticoagulation reversal strategies for left ventricular assist device patients presenting with acute intracranial hemorrhage. ASAIO J. 2016;62(5):552–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Wilson TJ, Stetler WR Jr, Al-Holou WN, Sullivan SE, Fletcher JJ. Management of intracranial hemorrhage in patients with left ventricular assist devices. J Neurosurg. 2013;118(5):1063–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Moulakakis KG, Alexiou VG, Karaolanis G, Sfyroeras GS, Theocharopoulos GN, Lazaris AM, et al. Spinal cord ischemia following elective endovascular repair of Infrarenal aortic aneurysms: a systematic review. Ann Vasc Surg. 2018;52:280–91.PubMedCrossRefGoogle Scholar
  45. 45.
    Miyamoto K, Ueno A, Wada T, Kimoto S. A new and simple method of preventing spinal cord damage following temporary occlusion of the thoracic aorta by draining the cerebrospinal fluid. J Cardiovasc Surg. 1960;1:188–97.Google Scholar
  46. 46.
    Cunningham JN Jr, Laschinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, et al. Measurement of spinal cord ischemia during operations upon the thoracic aorta: initial clinical experience. Ann Surg. 1982;196(3):285–96.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344(6):395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Selnes OA, Gottesman RF, Grega MA, Baumgartner WA, Zeger SL, McKhann GM. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med. 2012;366(3):250–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Stroobant N, van Nooten G, De Bacquer D, Van Belleghem Y, Vingerhoets G. Neuropsychological functioning 3-5 years after coronary artery bypass grafting: does the pump make a difference? Eur J Cardiothorac Surg. 2008;34(2):396–401.PubMedCrossRefGoogle Scholar
  50. 50.
    Kennedy ED, Choy KC, Alston RP, Chen S, Farhan-Alanie MM, Anderson J, et al. Cognitive outcome after on- and off-pump coronary artery bypass grafting surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2013;27(2):253–65.PubMedCrossRefGoogle Scholar
  51. 51.
    Goto T, Baba T, Honma K, Shibata Y, Arai Y, Uozumi H, et al. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72(1):137–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Boodhwani M, Rubens F, Wozny D, Rodriguez R, Nathan HJ. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study. J Thorac Cardiovasc Surg. 2007;134(6):1443–50 discussion 51-2.PubMedCrossRefGoogle Scholar
  53. 53.
    Nathan HJ, Rodriguez R, Wozny D, Dupuis JY, Rubens FD, Bryson GL, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg. 2007;133(5):1206–11.PubMedCrossRefGoogle Scholar
  54. 54.
    Lai KS, Herrmann N, Saleem M, Lanctot KL. Cognitive outcomes following transcatheter aortic valve implantation: a systematic review. Cardiovasc Psychiatry Neurol. 2015;2015:209569.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liimatainen J, Perakyla J, Jarvela K, Sisto T, Yli-Hankala A, Hartikainen KM. Improved cognitive flexibility after aortic valve replacement surgery. Interact Cardiovasc Thorac Surg. 2016;23(4):630–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Kocabay G, Karabay CY, Kalayci A, Akgun T, Guler A, Oduncu V, et al. Contrast-induced neurotoxicity after coronary angiography. Herz. 2014;39(4):522–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Leong S, Fanning NF. Persistent neurological deficit from iodinated contrast encephalopathy following intracranial aneurysm coiling. A case report and review of the literature. Interv Neuroradiol. 2012;18(1):33–41.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Guimaraens L, Vivas E, Fonnegra A, Sola T, Soler L, Balaguer E, et al. Transient encephalopathy from angiographic contrast: a rare complication in neurointerventional procedures. Cardiovasc Intervent Radiol. 2010;33(2):383–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Tong X, Hu P, Hong T, Li M, Zhang P, Li G, et al. Transient cortical blindness associated with endovascular procedures for intracranial aneurysms. World Neurosurg. 2018;119:123–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Zwicker JC, Sila CA. MRI findings in a case of transient cortical blindness after cardiac catheterization. Catheter Cardiovasc Interv. 2002;57(1):47–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Lantos G. Cortical blindness due to osmotic disruption of the blood-brain barrier by angiographic contrast material: CT and MRI studies. Neurology. 1989;39(4):567–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Sila C. Neurologic complications of cardiac tests and procedures. Handb Clin Neurol. 2014;119:41–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Wallach SG. Cannulation injury of the radial artery: diagnosis and treatment algorithm. Am J Crit Care. 2004;13(4):315–9.PubMedGoogle Scholar
  64. 64.
    Martin SD, Sharrock NE, Mineo R, Sobel M, Weiland AJ. Acute exacerbation of carpal tunnel syndrome after radial artery cannulation. J Hand Surg [Am]. 1993;18(3):455–8.CrossRefGoogle Scholar
  65. 65.
    El-Ghanem M, Malik AA, Azzam A, Yacoub HA, Qureshi AI, Souayah N. Occurrence of femoral nerve injury among patients undergoing Transfemoral percutaneous catheterization procedures in the United States. J Vasc Interv Neurol. 2017;9(4):54–8.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kent KC, Moscucci M, Gallagher SG, DiMattia ST, Skillman JJ. Neuropathy after cardiac catheterization: incidence, clinical patterns, and long-term outcome. J Vasc Surg. 1994;19(6):1008–13 discussion 13-4.PubMedCrossRefGoogle Scholar
  67. 67.
    Kent KC, Moscucci M, Mansour KA, DiMattia S, Gallagher S, Kuntz R, et al. Retroperitoneal hematoma after cardiac catheterization: prevalence, risk factors, and optimal management. J Vasc Surg. 1994;20(6):905–10 discussion 10-3.PubMedCrossRefGoogle Scholar
  68. 68.
    Dimarakis I, Protopapas AD. Vocal cord palsy as a complication of adult cardiac surgery: surgical correlations and analysis. Eur J Cardiothorac Surg. 2004;26(4):773–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Department of Neurosurgery, Carver College of MedicineUniversity of IowaIowa CityUSA
  3. 3.Department of Epidemiology, College of Public HealthUniversity of IowaIowa CityUSA

Personalised recommendations