Imaging the Autonomic Nervous System in Parkinson’s Disease

  • Karoline Knudsen
  • Per BorghammerEmail author
Neuroimaging (N Pavese, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuroimaging


Purpose of Review

Patients with Parkinson’s disease (PD) often display gastrointestinal and genitourinary autonomic symptoms years or even decades prior to diagnosis. These symptoms are thought to be caused in part by pathological α-synuclein inclusions in the peripheral autonomic and enteric nervous systems. It has been proposed that the initial α-synuclein aggregation may in some PD patients originate in peripheral nerve terminals and then spread centripetally to the spinal cord and brainstem. In vivo imaging methods can directly quantify the degeneration of the autonomic nervous system as well as the functional consequences such as perturbed motility. Here, we review the methodological principles of these imaging techniques and the major findings in patients with PD and atypical parkinsonism.

Recent Findings

Loss of sympathetic and parasympathetic nerve terminals in PD can be visualized using radiotracer imaging, including 123I-MIBG scintigraphy, and 18F-dopamine and 11C-donepezil PET. Recently, ultrasonographical studies disclosed reduced diameter of the vagal nerves in PD patients. Radiological and radioisotope techniques have demonstrated dysmotility and prolonged transit time throughout all subdivisions of the gastrointestinal tract in PD. The prevalence of objective dysfunction as measured with these imaging methods is often considerably higher compared to the prevalence of subjective symptoms experienced by the patients.


Degeneration of the autonomic nervous system may play a key role in the pathogenesis of PD. In vivo imaging techniques provide powerful and noninvasive tools to quantify the degree and extent of this degeneration and its functional consequences.


PET SPECT Parkinson Autonomic nervous system 


Authors’ Contributions

Both authors participated in writing the first draft and edited and approved the final version.


The work was financially supported by a grant from the Lundbeck Foundation.

Compliance with Ethical Standards

Conflict of Interest

Dr. Borghammer has received consultancies from F. Hoffmann – La Roche and grant support from the Lundbeck and Jascha Foundations. Dr. Knudsen has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    •• Orimo S, Ghebremedhin E, Gelpi E. Peripheral and central autonomic nervous system: does the sympathetic or parasympathetic nervous system bear the brunt of the pathology during the course of sporadic PD? Cell Tissue Res. 2018;373(1):267–86 Excellent recent review on the degree of autonomic nervous system damage in PD. PubMedGoogle Scholar
  2. 2.
    Abbott RD, Petrovitch H, White LR, Masaki KH, Tanner CM, Curb JD, et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology. 2001;57:456–62.PubMedGoogle Scholar
  3. 3.
    Adams-Carr KL, Bestwick JP, Shribman S, Lees A, Schrag A, Noyce AJ. Constipation preceding Parkinson’s disease: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2015;86:e4.193–e4.Google Scholar
  4. 4.
    Noyce AJ, Lees AJ, Schrag AE. The prediagnostic phase of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2016;87:871–8.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White III CL, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Gelpi E, Navarro-Otano J, Tolosa E, Gaig C, Compta Y, Rey MJ, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord. 2014;29:1010–8.PubMedGoogle Scholar
  7. 7.
    Hilton D, Stephens M, Kirk L, Edwards P, Potter R, Zajicek J, et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 2014;127:235–41.PubMedGoogle Scholar
  8. 8.
    Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, Kordower JH. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord. 2012;27:716–9.PubMedGoogle Scholar
  9. 9.
    Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P. Pathological alpha-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol. 2016;79:940–9.PubMedGoogle Scholar
  10. 10.
    Uchihara T, Giasson BI. Propagation of alpha-synuclein pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol. 2016;131:49–73.PubMedGoogle Scholar
  11. 11.
    Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003;110:517–36.Google Scholar
  12. 12.
    Krassioukov AV, Bygrave MA, Puckett WR, Bunge RP, Rogers KA. Human sympathetic preganglionic neurons and motoneurons retrogradely labelled with DiI. J Auton Nerv Syst. 1998;70:123–8.PubMedGoogle Scholar
  13. 13.
    Hasler WL. Approach to the patient with gas and bloating. In: Yamada T, editor. Gastroenterology. Philadelphia: Lippincott Williams & Wilkins; 2003. p. 195–219.Google Scholar
  14. 14.
    Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology. 2008;134:1842–60.PubMedGoogle Scholar
  15. 15.
    Sumikura H, Takao M, Hatsuta H, Ito S, Nakano Y, Uchino A, et al. Distribution of alpha-synuclein in the spinal cord and dorsal root ganglia in an autopsy cohort of elderly persons. Acta Neuropathol Commun. 2015;3:57.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Braak H, Sastre M, Bohl JR, de Vos RA, Del Tredici K. Parkinson’s disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 2007;113:421–9.PubMedGoogle Scholar
  17. 17.
    Wakabayashi K, Takahashi H. The intermediolateral nucleus and Clarke’s column in Parkinson’s disease. Acta Neuropathol. 1997;94:287–9.PubMedGoogle Scholar
  18. 18.
    Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64.PubMedGoogle Scholar
  19. 19.
    Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, et al. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain. 2008;131:642–50.PubMedGoogle Scholar
  20. 20.
    Gray F, Vincent D, Hauw JJ. Quantitative study of lateral horn cells in 15 cases of multiple system atrophy. Acta Neuropathol. 1988;75:513–8.PubMedGoogle Scholar
  21. 21.
    Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord. 1997;12:133–47.PubMedGoogle Scholar
  22. 22.
    Nishie M, Mori F, Fujiwara H, Hasegawa M, Yoshimoto M, Iwatsubo T, et al. Accumulation of phosphorylated alpha-synuclein in the brain and peripheral ganglia of patients with multiple system atrophy. Acta Neuropathol. 2004;107:292–8.PubMedGoogle Scholar
  23. 23.
    Sone M, Yoshida M, Hashizume Y, Hishikawa N, Sobue G. alpha-Synuclein-immunoreactive structure formation is enhanced in sympathetic ganglia of patients with multiple system atrophy. Acta Neuropathol. 2005;110:19–26.PubMedGoogle Scholar
  24. 24.
    Orimo S, Kanazawa T, Nakamura A, Uchihara T, Mori F, Kakita A, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007;113:81–6.PubMedGoogle Scholar
  25. 25.
    Iwasaki Y, Yoshida M, Hashizume Y, Hattori M, Aiba I, Sobue G. Widespread spinal cord involvement in progressive supranuclear palsy. Neuropathology. 2007;27:331–40.PubMedGoogle Scholar
  26. 26.
    Kikuchi H, Doh-ura K, Kira J, Iwaki T. Preferential neurodegeneration in the cervical spinal cord of progressive supranuclear palsy. Acta Neuropathol. 1999;97:577–84.PubMedGoogle Scholar
  27. 27.
    Wakabayashi K, Hayashi S, Morita T, Shibasaki Y, Watanabe Y, Takahashi H. Neurofibrillary tangles in the peripheral sympathetic ganglia of non-Alzheimer elderly individuals. Clin Neuropathol. 1999;18:171–5.PubMedGoogle Scholar
  28. 28.
    Orimo S, Amino T, Itoh Y, Takahashi A, Kojo T, Uchihara T, et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 2005;109:583–8.PubMedGoogle Scholar
  29. 29.
    Goldstein DS, Chang PC, Eisenhofer G, Miletich R, Finn R, Bacher J, et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation. 1990;81:1606–21.PubMedGoogle Scholar
  30. 30.
    Wong KK, Raffel DM, Bohnen NI, Altinok G, Gilman S, Frey KA. 2-Year natural decline of cardiac sympathetic innervation in idiopathic Parkinson disease studied with 11C-hydroxyephedrine (HED) PET. J Nucl Med. 2016.Google Scholar
  31. 31.
    Orimo S, Yogo M, Nakamura T, Suzuki M, Watanabe H. Brain imaging in Aging Special Issue of Ageing Research Reviews I—meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in alpha-synucleinopathies. Ageing Res Rev. 2016;30:122–33.PubMedGoogle Scholar
  32. 32.
    Sakakibara R, Tateno F, Kishi M, Tsuyusaki Y, Terada H, Inaoka T. MIBG myocardial scintigraphy in pre-motor Parkinson’s disease: a review. Parkinsonism Relat Disord. 2014;20:267–73.PubMedGoogle Scholar
  33. 33.
    Chung EJ, Kim SJ. (123)I-metaiodobenzylguanidine myocardial scintigraphy in lewy body-related disorders: a literature review. J Mov Disord. 2015;8:55–66. Scholar
  34. 34.
    Goldstein DS, Holmes C, Kopin IJ, Sharabi Y. Intra-neuronal vesicular uptake of catecholamines is decreased in patients with Lewy body diseases. J Clin Invest. 2011;121:3320–30.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. (123)I-metaiodobenzylguanidine myocardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67:189–94.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yoshita M, Hayashi M, Hirai S. Decreased myocardial accumulation of 123I-meta-iodobenzyl guanidine in Parkinson’s disease. Nucl Med Commun. 1998;19:137–42.PubMedGoogle Scholar
  37. 37.
    Slaets S, Van Acker F, Versijpt J, Hauth L, Goeman J, Martin JJ, et al. Diagnostic value of MIBG cardiac scintigraphy for differential dementia diagnosis. Int J Geriatr Psychiatry. 2015;30:864–9.PubMedGoogle Scholar
  38. 38.
    Tateno F, Sakakibara R, Kishi M, Ogawa E, Terada H, Ogata T, et al. Sensitivity and specificity of metaiodobenzylguanidine (MIBG) myocardial accumulation in the diagnosis of Lewy body diseases in a movement disorder clinic. Parkinsonism Relat Disord. 2011;17:395–7.PubMedGoogle Scholar
  39. 39.
    Nagayama H, Hamamoto M, Ueda M, Nagashima J, Katayama Y. Reliability of MIBG myocardial scintigraphy in the diagnosis of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2005;76:249–51.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kashihara K, Imamura T, Shinya T. Cardiac 123I-MIBG uptake is reduced more markedly in patients with REM sleep behavior disorder than in those with early stage Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:252–5.PubMedGoogle Scholar
  41. 41.
    Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology. 2002;58:1247–55.PubMedGoogle Scholar
  42. 42.
    Kashihara K, Ohno M, Kawada S, Okumura Y. Reduced cardiac uptake and enhanced washout of 123I-MIBG in pure autonomic failure occurs conjointly with Parkinson’s disease and dementia with Lewy bodies. J Nucl Med. 2006;47:1099–101.PubMedGoogle Scholar
  43. 43.
    Goldstein DS, Holmes C, Sullivan P, Mash DC, Sidransky E, Stefani A, et al. Deficient vesicular storage: a common theme in catecholaminergic neurodegeneration. Parkinsonism Relat Disord. 2015;21:1013–22.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kwon SH, Yoon JK, Yoon JH, Lee SJ, Jo KS, Lee DH, et al. The utility of segmental analysis in cardiac I-123 MIBG SPECT in Parkinson’s disease. Nucl Med Mol Imaging. 2015;49:298–302.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Oh JK, Choi EK, Song IU, Kim JS, Chung YA. Comparison of I-123 MIBG planar imaging and SPECT for the detection of decreased heart uptake in Parkinson disease. J Neural Transm (Vienna). 2015;122:1421–7.Google Scholar
  46. 46.
    Odagiri H, Baba T, Nishio Y, Iizuka O, Matsuda M, Inoue K, et al. On the utility of MIBG SPECT/CT in evaluating cardiac sympathetic dysfunction in Lewy body diseases. PLoS One. 2016;11:e0152746.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Saiki S, Hirose G, Sakai K, Kataoka S, Hori A, Saiki M, et al. Cardiac 123I-MIBG scintigraphy can assess the disease severity and phenotype of PD. J Neurol Sci. 2004;220:105–11.PubMedGoogle Scholar
  48. 48.
    Nomura T, Inoue Y, Hogl B, Uemura Y, Kitayama M, Abe T, et al. Relationship between (123)I-MIBG scintigrams and REM sleep behavior disorder in Parkinson’s disease. Parkinsonism Relat Disord. 2010;16:683–5.PubMedGoogle Scholar
  49. 49.
    Kim JS, Park HE, Park IS, Oh YS, Ryu DW, Song IU, et al. Normal ‘heart’ in Parkinson’s disease: is this a distinct clinical phenotype? Eur J Neurol. 2017;24:349–56.PubMedGoogle Scholar
  50. 50.
    Iranzo A, Tolosa E, Gelpi E, Molinuevo JL, Valldeoriola F, Serradell M, et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol. 2013;12:443–53.PubMedGoogle Scholar
  51. 51.
    Miyamoto T, Miyamoto M, Inoue Y, Usui Y, Suzuki K, Hirata K. Reduced cardiac 123I-MIBG scintigraphy in idiopathic REM sleep behavior disorder. Neurology. 2006;67:2236–8.PubMedGoogle Scholar
  52. 52.
    Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 2018;17:618–28. Scholar
  53. 53.
    Braune S, Reinhardt M, Schnitzer R, Riedel A, Lucking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology. 1999;53:1020–5.PubMedGoogle Scholar
  54. 54.
    Reinhardt MJ, Jungling FD, Krause TM, Braune S. Scintigraphic differentiation between two forms of primary dysautonomia early after onset of autonomic dysfunction: value of cardiac and pulmonary iodine-123 MIBG uptake. Eur J Nucl Med. 2000;27:595–600.PubMedGoogle Scholar
  55. 55.
    Berganzo K, Tijero B, Somme JH, Llorens V, Sanchez-Manso JC, Low D, et al. SCOPA-AUT scale in different parkinsonisms and its correlation with (123) I-MIBG cardiac scintigraphy. Parkinsonism Relat Disord. 2012;18:45–8.PubMedGoogle Scholar
  56. 56.
    Yoshita M. Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy using iodine-123 meta-iodobenzylguanidine myocardial scintigraphy. J Neurol Sci. 1998;155:60–7.PubMedGoogle Scholar
  57. 57.
    Treglia G, Cason E, Stefanelli A, Cocciolillo F, Di Giuda D, Fagioli G, et al. MIBG scintigraphy in differential diagnosis of parkinsonism: a meta-analysis. Clin Auton Res. 2012;22:43–55.PubMedGoogle Scholar
  58. 58.
    Orimo S, Suzuki M, Inaba A, Mizusawa H. 123I-MIBG myocardial scintigraphy for differentiating Parkinson’s disease from other neurodegenerative parkinsonism: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2012;18:494–500.PubMedGoogle Scholar
  59. 59.
    Jang W, Kim JS, Cho JW, Ahn JY, Choi YY, Kim HT. Thyroid MIBG uptake in Parkinson’s disease with diabetes mellitus. Clin Auton Res. 2013;23:221–4.PubMedGoogle Scholar
  60. 60.
    Merlet P, Pouillart F, Dubois-Rande JL, Delahaye N, Fumey R, Castaigne A, et al. Sympathetic nerve alterations assessed with 123I-MIBG in the failing human heart. J Nucl Med. 1999;40:224–31.PubMedGoogle Scholar
  61. 61.
    Jacobson AF, Travin MI. Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol. 2015;22:980–93.PubMedGoogle Scholar
  62. 62.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.PubMedGoogle Scholar
  63. 63.
    Gai WP, Blumbergs PC, Geffen LB, Blessing WW. Age-related loss of dorsal vagal neurons in Parkinson’s disease. Neurology. 1992;42:2106–11.PubMedGoogle Scholar
  64. 64.
    Eadie MJ. The pathology of certain medullary nuclei in parkinsonism. Brain. 1963;86:781–92.PubMedGoogle Scholar
  65. 65.
    Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72.PubMedGoogle Scholar
  66. 66.
    Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson’s disease. Antioxid Redox Signal. 2014;21:649–67.PubMedGoogle Scholar
  67. 67.
    Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 1988;76:217–21.PubMedGoogle Scholar
  68. 68.
    Lebouvier T, Neunlist M, Bruley des Varannes S, Coron E, Drouard A, N'Guyen JM, et al. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One. 2010;5:e12728.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Pouclet H, Lebouvier T, Coron E, Des Varannes SB, Neunlist M, Derkinderen P. A comparison between colonic submucosa and mucosa to detect Lewy pathology in Parkinson’s disease. Neurogastroenterol Motil. 2012;24:e202–5.PubMedGoogle Scholar
  70. 70.
    Del Tredici K, Braak H. Spinal cord lesions in sporadic Parkinson’s disease. Acta Neuropathol. 2012;124:643–64.PubMedGoogle Scholar
  71. 71.
    Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White III CL, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119:689–702.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Hopkins DA, Bieger D, de Vente J, Steinbusch WM. Vagal efferent projections: viscerotopy, neurochemistry and effects of vagotomy. Prog Brain Res. 1996;107:79–96.PubMedGoogle Scholar
  73. 73.
    Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33:599–614.PubMedGoogle Scholar
  74. 74.
    Borghammer P. How does Parkinson’s disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov Disord. 2018;33:48–57.PubMedGoogle Scholar
  75. 75.
    Svensson E, Horvath-Puho E, Thomsen RW, Djurhuus JC, Pedersen L, Borghammer P, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78:522–9.PubMedGoogle Scholar
  76. 76.
    Liu B, Fang F, Pedersen NL, Tillander A, Ludvigsson JF, Ekbom A, et al. Vagotomy and Parkinson’s disease risk: a Swedish register-based matched cohort study. Mov Disord. 2016;31:154.Google Scholar
  77. 77.
    Ito S, Takao M, Hatsuta H, Kanemaru K, Arai T, Saito Y, et al. Alpha-synuclein immunohistochemistry of gastrointestinal and biliary surgical specimens for diagnosis of Lewy body disease. Int J Clin Exp Pathol. 2014;7:1714–23.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Anlauf M, Schafer MK, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system: cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol. 2003;459:90–111.PubMedGoogle Scholar
  79. 79.
    Giacobini E. Cholinesterases and cholinesterase inhibitors. London: Martin Dunitz Ltd; 2000.Google Scholar
  80. 80.
    Schmid W, van der Zypen E, Keller H. Die Wirkung einer subtotalen Vagotomie auf den Plexus myentericus (Auerbach) verschiedener Darmabschnitte. Acta Anat (Basel). 1979;104:36–51.Google Scholar
  81. 81.
    Pauza DH, Saburkina I, Rysevaite K, Inokaitis H, Jokubauskas M, Jalife J, et al. Neuroanatomy of the murine cardiac conduction system: a combined stereomicroscopic and fluorescence immunohistochemical study. Auton Neurosci. 2013;176:32–47.PubMedGoogle Scholar
  82. 82.
    Gjerloff T, Jakobsen S, Nahimi A, Munk OL, Bender D, Alstrup AK, et al. In vivo imaging of human acetylcholinesterase density in peripheral organs using 11C-donepezil: dosimetry, biodistribution, and kinetic analyses. J Nucl Med. 2014;55:1818–24.PubMedGoogle Scholar
  83. 83.
    Gjerloff T, Fedorova T, Knudsen K, Munk OL, Nahimi A, Jacobsen S, et al. Imaging acetylcholinesterase density in peripheral organs in Parkinson’s disease with 11C-donepezil PET. Brain. 2015;138:653–63.PubMedGoogle Scholar
  84. 84.
    Fedorova T, Seidelin LB, Knudsen K, Schacht AC, Geday J, Pavese N, et al. Decreased intestinal acetylcholinesterase in early Parkinson’s disease: an 11C-donepezil PET study. Neurology. 2017;88(8):775–81.PubMedGoogle Scholar
  85. 85.
    •• Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 2018;17:618–28 Comprehensive multi-modality imaging study which demonstrated fully developed pathology in the autonomic nervous system but relatively intact nigrostriatal dopaminergic innervation in patients with idiopathic RBD. PubMedGoogle Scholar
  86. 86.
    Sharrad DF, de Vries E, Brookes SJ. Selective expression of alpha-synuclein-immunoreactivity in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig rectum and human colon. J Comp Neurol. 2013;521:657–76.PubMedGoogle Scholar
  87. 87.
    Sharrad DF, Gai WP, Brookes SJ. Selective coexpression of synaptic proteins, alpha-synuclein, cysteine string protein-alpha, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol. 2013;521:2523–37.PubMedGoogle Scholar
  88. 88.
    • Tsukita K, Taguchi T, Sakamaki-Tsukita H, Tanaka K, Suenaga T. The vagus nerve becomes smaller in patients with Parkinson’s disease: a preliminary cross-sectional study using ultrasonography. Parkinsonism Relat Disord. 2018. The first study to demonstrate reduced vagal nerve diameter in PD patients using ultrasonography.
  89. 89.
    Keren NI, Taheri S, Vazey EM, Morgan PS, Granholm AC, Aston-Jones GS, et al. Histologic validation of locus coeruleus MRI contrast in post-mortem tissue. NeuroImage. 2015;113:235–45.PubMedPubMedCentralGoogle Scholar
  90. 90.
    • Leclair-Visonneau L, Clairembault T, Coron E, Le Dily S, Vavasseur F, Dalichampt M, et al. REM sleep behavior disorder is related to enteric neuropathology in Parkinson disease. Neurology. 2017;89:1612–8 This study showed that RBD-positive PD patients exhibit significantly more pathological alpha-synuclein pathology in the intestine compared to RBD-negative cases. PubMedGoogle Scholar
  91. 91.
    Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, et al. Altered pharyngeal muscles in Parkinson disease. J Neuropathol Exp Neurol. 2012;71:520–30.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Cannon WB. Oesophageal peristalsis after bilateral vagotomy. Am J Phys. 1907;19:436–44.Google Scholar
  93. 93.
    Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 2015;14:625–39.PubMedGoogle Scholar
  94. 94.
    Miller N, Allcock L, Hildreth AJ, Jones D, Noble E, Burn DJ. Swallowing problems in Parkinson disease: frequency and clinical correlates. J Neurol Neurosurg Psychiatry. 2009;80:1047–9.PubMedGoogle Scholar
  95. 95.
    Kalf JG, de Swart BJ, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18:311–5.PubMedGoogle Scholar
  96. 96.
    Lin CW, Chang YC, Chen WS, Chang K, Chang HY, Wang TG. Prolonged swallowing time in dysphagic parkinsonism patients with aspiration pneumonia. Arch Phys Med Rehabil. 2012;93:2080–4.PubMedGoogle Scholar
  97. 97.
    Logemann J. Measurements of swallow from videofluoroscopic studies, 2 edn. Texas Pro-ed. 1993.Google Scholar
  98. 98.
    Leopold NA, Kagel MC. Pharyngo-esophageal dysphagia in Parkinson’s disease. Dysphagia. 1997;12:11–8 discussion 9-20.PubMedGoogle Scholar
  99. 99.
    Bushmann M, Dobmeyer SM, Leeker L, Perlmutter JS. Swallowing abnormalities and their response to treatment in Parkinson’s disease. Neurology. 1989;39:1309–14.PubMedGoogle Scholar
  100. 100.
    Ellerston JK, Heller AC, Houtz DR, Kendall KA. Quantitative measures of swallowing deficits in patients with Parkinson’s disease. Ann Otol Rhinol Laryngol. 2016;125:385–92.PubMedGoogle Scholar
  101. 101.
    Suttrup I, Suttrup J, Suntrup-Krueger S, Siemer ML, Bauer J, Hamacher C, et al. Esophageal dysfunction in different stages of Parkinson’s disease. Neurogastroenterol Motil. 2016:1–7.Google Scholar
  102. 102.
    Sung HY, Kim JS, Lee KS, Kim YI, Song IU, Chung SW, et al. The prevalence and patterns of pharyngoesophageal dysmotility in patients with early stage Parkinson’s disease. Mov Disord. 2010;25:2361–8.PubMedGoogle Scholar
  103. 103.
    Johnston BT, Castell JA, Stumacher S, Colcher A, Gideon RM, Li Q, et al. Comparison of swallowing function in Parkinson’s disease and progressive supranuclear palsy. Mov Disord. 1997;12:322–7.PubMedGoogle Scholar
  104. 104.
    Tomita S, Oeda T, Umemura A, Kohsaka M, Park K, Yamamoto K, et al. Video-fluoroscopic swallowing study scale for predicting aspiration pneumonia in Parkinson’s disease. PLoS One. 2018;13:e0197608.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Potulska A, Friedman A, Krolicki L, Spychala A. Swallowing disorders in Parkinson’s disease. Parkinsonism Relat Disord. 2003;9:349–53.PubMedGoogle Scholar
  106. 106.
    Grunho M, Sonies B, Frattali CM, Litvan I. Swallowing disturbances in the corticobasal syndrome. Parkinsonism Relat Disord. 2015;21:1342–8.PubMedGoogle Scholar
  107. 107.
    Lee HH, Seo HG, Kim KD, Lee SH, Lee WH, Oh BM, et al. Characteristics of early oropharyngeal dysphagia in patients with multiple system atrophy. Neurodegener Dis. 2018;18:84–90.PubMedGoogle Scholar
  108. 108.
    Litvan I, Sastry N, Sonies BC. Characterizing swallowing abnormalities in progressive supranuclear palsy. Neurology. 1997;48:1654–62.PubMedGoogle Scholar
  109. 109.
    Taniguchi H, Nakayama H, Hori K, Nishizawa M, Inoue M, Shimohata T. Esophageal involvement in multiple system atrophy. Dysphagia. 2015;30:669–73.PubMedGoogle Scholar
  110. 110.
    Marrinan S, Emmanuel AV, Burn DJ. Delayed gastric emptying in Parkinson’s disease. Mov Disord. 2014;29:23–32.PubMedGoogle Scholar
  111. 111.
    Sanders KM, Koh SD, Ward SM. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–43.PubMedGoogle Scholar
  112. 112.
    Verbaan D, Marinus J, Visser M, van Rooden SM, Stiggelbout AM, van Hilten JJ. Patient-reported autonomic symptoms in Parkinson disease. Neurology. 2007;69:333–41.PubMedGoogle Scholar
  113. 113.
    Donohoe KJ, Maurer AH, Ziessman HA, Urbain JL, Royal HD, Martin-Comin J, et al. Procedure guideline for adult solid-meal gastric-emptying study 3.0. J Nucl Med Technol. 2009;37:196–200.PubMedGoogle Scholar
  114. 114.
    Knudsen K, Szwebs M, Hansen AK, Borghammer P. Gastric emptying in Parkinson’s disease—a mini-review. Parkinsonism Relat Disord. 2018.
  115. 115.
    Evans MA, Broe GA, Triggs EJ, Cheung M, Creasey H, Paull PD. Gastric emptying rate and the systemic availability of levodopa in the elderly parkinsonian patient. Neurology. 1981;31:1288–94.PubMedGoogle Scholar
  116. 116.
    Djaldetti R, Baron J, Ziv I, Melamed E. Gastric emptying in Parkinson’s disease: patients with and without response fluctuations. Neurology. 1996;46:1051–4.PubMedGoogle Scholar
  117. 117.
    Hardoff R, Sula M, Tamir A, Soil A, Front A, Badarna S, et al. Gastric emptying time and gastric motility in patients with Parkinson’s disease. Mov Disord. 2001;16:1041–7.PubMedGoogle Scholar
  118. 118.
    Krygowska-Wajs A, Cheshire WP Jr, Wszolek ZK, Hubalewska-Dydejczyk A, Jasinska-Myga B, Farrer MJ, et al. Evaluation of gastric emptying in familial and sporadic Parkinson disease. Parkinsonism Relat Disord. 2009;15:692–6.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Tanaka Y, Kato T, Nishida H, Yamada M, Koumura A, Sakurai T, et al. Is there a delayed gastric emptying of patients with early-stage, untreated Parkinson’s disease? An analysis using the 13C-acetate breath test. J Neurol. 2011;258:421–6.PubMedGoogle Scholar
  120. 120.
    Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One. 2011;6:e28032.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Davies KN, King D, Billington D, Barrett JA. Intestinal permeability and orocaecal transit time in elderly patients with Parkinson’s disease. Postgrad Med J. 1996;72:164–7.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Knudsen K, Haase AM, Fedorova TD, Bekker AC, Ostergaard K, Krogh K, et al. Gastrointestinal transit time in Parkinson’s disease using a magnetic tracking system. J Parkinsons Dis. 2017;7:471–9.PubMedGoogle Scholar
  123. 123.
    Unger MM, Hattemer K, Moller JC, Schmittinger K, Mankel K, Eggert K, et al. Real-time visualization of altered gastric motility by magnetic resonance imaging in patients with Parkinson’s disease. Mov Disord. 2010;25:623–8.PubMedGoogle Scholar
  124. 124.
    Tanaka Y, Kato T, Nishida H, Yamada M, Koumura A, Sakurai T, et al. Is there delayed gastric emptying in patients with multiple system atrophy? An analysis using the (13)C-acetate breath test. J Neurol. 2012;259:1448–52.PubMedGoogle Scholar
  125. 125.
    Thomaides T, Karapanayiotides T, Zoukos Y, Haeropoulos C, Kerezoudi E, Demacopoulos N, et al. Gastric emptying after semi-solid food in multiple system atrophy and Parkinson disease. J Neurol. 2005;252:1055–9.PubMedGoogle Scholar
  126. 126.
    • Knudsen K, Fedorova TD, Bekker AC, Iversen P, Ostergaard K, Krogh K, et al. Objective colonic dysfunction is far more prevalent than subjective constipation in Parkinson’s disease: a colon transit and volume study. J Parkinsons Dis. 2017;7:359–67 This study demonstrated that objective, imaging-based markers of colonic dysfunction is considerably more prevalent than the subjective constipation symptoms experienced by the patients. PubMedGoogle Scholar
  127. 127.
    Dutkiewicz J, Szlufik S, Nieciecki M, Charzynska I, Krolicki L, Smektala P, et al. Small intestine dysfunction in Parkinson’s disease. J Neural Transm (Vienna). 2015;122:1659–61.Google Scholar
  128. 128.
    Kimura Y, Kamada Y, Kimura S. A patient with numerous tablets remaining in the stomach even 5 hours after ingestion. Am J Emerg Med. 2008;26:118.e1–2.Google Scholar
  129. 129.
    Svensson E, Henderson VW, Borghammer P, Horvath-Puho E, Sorensen HT. Constipation and risk of Parkinson’s disease: a Danish population-based cohort study. Parkinsonism Relat Disord. 2016;28:18–22.PubMedGoogle Scholar
  130. 130.
    Iranzo A, Stefani A, Serradell M, Marti MJ, Lomena F, Mahlknecht P, et al. Characterization of patients with longstanding idiopathic REM sleep behavior disorder. Neurology. 2017;89:242–8.PubMedGoogle Scholar
  131. 131.
    Del Tredici K, Braak H. Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord. 2012;27:597–607.PubMedGoogle Scholar
  132. 132.
    • Schwiertz A, Spiegel J, Dillmann U, Grundmann D, Burmann J, Fassbender K, et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat Disord. 2018;50:104–7 This recent study analyzed blood and stool samples and demonstrated increased intestinal inflammation and permeability in PD. PubMedGoogle Scholar
  133. 133.
    Mertsalmi TH, Aho VTE, Pereira PAB, Paulin L, Pekkonen E, Auvinen P, et al. More than constipation—bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol. 2017;24:1375–83.PubMedGoogle Scholar
  134. 134.
    Knudsen K, Krogh K, Ostergaard K, Borghammer P. Constipation in Parkinson’s disease: subjective symptoms, objective markers, and new perspectives. Mov Disord. 2017;32:94–105.PubMedGoogle Scholar
  135. 135.
    Abrahamsson H, Antov S, Bosaeus I. Gastrointestinal and colonic segmental transit time evaluated by a single abdominal X-ray in healthy subjects and constipated patients. Scand J Gastroenterol Suppl. 1988;152:72–80.PubMedGoogle Scholar
  136. 136.
    Jost WH, Schimrigk K. Cisapride treatment of constipation in Parkinson’s disease. Mov Disord. 1993;8:339–43.PubMedGoogle Scholar
  137. 137.
    Jost WH, Schrank B. Defecatory disorders in de novo parkinsonians—colonic transit and electromyogram of the external anal sphincter. Wien Klin Wochenschr. 1998;110:535–7.PubMedGoogle Scholar
  138. 138.
    Tateno F, Sakakibara R, Yokoi Y, Kishi M, Ogawa E, Uchiyama T, et al. Levodopa ameliorated anorectal constipation in de novo Parkinson’s disease: the QL-GAT study. Parkinsonism Relat Disord. 2011;17:662–6.PubMedGoogle Scholar
  139. 139.
    Ashraf W, Pfeiffer RF, Park F, Lof J, Quigley EM. Constipation in Parkinson’s disease: objective assessment and response to psyllium. Mov Disord. 1997;12:946–51.PubMedGoogle Scholar
  140. 140.
    Steele SR, Mellgren A. Constipation and obstructed defecation. Clin Colon Rectal Surg. 2007;20:110–7.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Damian A, Adler CH, Hentz JG, Shill HA, Caviness JN, Sabbagh MN, et al. Autonomic function, as self-reported on the SCOPA-autonomic questionnaire, is normal in essential tremor but not in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18:1089–93.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Sakakibara R, Odaka T, Uchiyama T, Asahina M, Yamaguchi K, Yamaguchi T, et al. Colonic transit time and rectoanal videomanometry in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2003;74:268–72.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Mathers SE, Kempster PA, Swash M, Lees AJ. Constipation and paradoxical puborectalis contraction in anismus and Parkinson’s disease: a dystonic phenomenon? J Neurol Neurosurg Psychiatry. 1988;51:1503–7.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Visser M, Marinus J, Stiggelbout AM, Van Hilten JJ. Assessment of autonomic dysfunction in Parkinson’s disease: the SCOPA-AUT. Mov Disord. 2004;19:1306–12.PubMedGoogle Scholar
  145. 145.
    Wang CP, Sung WH, Wang CC, Tsai PY. Early recognition of pelvic floor dyssynergia and colorectal assessment in Parkinson’s disease associated with bowel dysfunction. Color Dis. 2013;15:e130–7.Google Scholar
  146. 146.
    Nilsson M, Sandberg TH, Poulsen JL, Gram M, Frokjaer JB, Ostergaard LR, et al. Quantification and variability in colonic volume with a novel magnetic resonance imaging method. Neurogastroenterol Motil. 2015;27:1755–63.PubMedGoogle Scholar
  147. 147.
    Stocchi F, Badiali D, Vacca L, D'Alba L, Bracci F, Ruggieri S, et al. Anorectal function in multiple system atrophy and Parkinson’s disease. Mov Disord. 2000;15:71–6.PubMedGoogle Scholar
  148. 148.
    Zhang L, Cao B, Ou R, Wei QQ, Zhao B, Yang J, et al. Non-motor symptoms and the quality of life in multiple system atrophy with different subtypes. Parkinsonism Relat Disord. 2017;35:63–8.PubMedGoogle Scholar
  149. 149.
    Sakakibara R, Odaka T, Uchiyama T, Liu R, Asahina M, Yamaguchi K, et al. Colonic transit time, sphincter EMG, and rectoanal videomanometry in multiple system atrophy. Mov Disord. 2004;19:924–9.PubMedGoogle Scholar
  150. 150.
    Edwards LL, Quigley EM, Harned RK, Hofman R, Pfeiffer RF. Characterization of swallowing and defecation in Parkinson’s disease. Am J Gastroenterol. 1994;89:15–25.PubMedGoogle Scholar
  151. 151.
    Chiu CM, Wang CP, Sung WH, Huang SF, Chiang SC, Tsai PY. Functional magnetic stimulation in constipation associated with Parkinson’s disease. J Rehabil Med. 2009;41:1085–9.PubMedGoogle Scholar
  152. 152.
    Cadeddu F, Bentivoglio AR, Brandara F, Marniga G, Brisinda G, Maria G. Outlet type constipation in Parkinson’s disease: results of botulinum toxin treatment. Aliment Pharmacol Ther. 2005;22:997–1003.PubMedGoogle Scholar
  153. 153.
    Libelius R, Johansson F. Quantitative electromyography of the external anal sphincter in Parkinson’s disease and multiple system atrophy. Muscle Nerve. 2000;23:1250–6.PubMedGoogle Scholar
  154. 154.
    Vodusek DB. Sphincter EMG and differential diagnosis of multiple system atrophy. Mov Disord. 2001;16:600–7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear Medicine and PET Centre Aarhus University HospitalInstitute of Clinical Medicine Aarhus UniversityAarhus CDenmark

Personalised recommendations