Advertisement

Does Dexmedetomidine Ameliorate Postoperative Cognitive Dysfunction? A Brief Review of the Recent Literature

  • Zyad J. Carr
  • Theodore J. Cios
  • Kenneth F. Potter
  • John T. Swick
Critical Care (SA Mayer, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Critical Care

Abstract

Purpose of Review

Postoperative cognitive dysfunction (POCD) occurs in 20–50% of postsurgical patients with a higher prevalence in elderly patients and patients with vascular disease and heart failure. In addition, POCD has been associated with many negative outcomes, such as increased hospital length of stay, increased rates of institutionalization, and higher patient mortality. This brief review discusses select evidence suggesting an association between neuroinflammation and POCD and whether the use of dexmedetomidine, a short-acting alpha 2 agonist, may ameliorate the incidence of POCD. We review the recent evidence for neuroinflammation in POCD, dexmedetomidine’s properties in reducing inflammatory-mediated brain injury, and clinical studies of dexmedetomidine and POCD.

Recent Findings

There is evidence to support the anti-inflammatory and immunomodulatory effects of dexmedetomidine in animal models. Several clinical investigations have demonstrated favorable outcomes using dexmedetomidine over placebo for the reduction of postoperative delirium. Few studies have used high-quality endpoints for the assessment of POCD and no demonstrable evidence supports the use of dexmedetomidine for the prevention of POCD.

Summary

While evidence exists for the neural anti-inflammatory properties of dexmedetomidine, human trials have yielded incomplete results concerning its use for the management of POCD. Dexmedetomidine may reduce acute postoperative delirium, but further studies are needed prior to recommending the use of dexmedetomidine for the direct reduction of POCD.

Keywords

Dexmedetomidine Postoperative cognitive dysfunction Delirium Neuroinflammation 

Notes

Compliance with Ethical Standards

Conflict of Interest

Zyad J. Carr, Theodore J. Cios, Kenneth F. Potter, and John T. Swick declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Feinkohl I, Winterer G, Spies CD, Pischon T. Cognitive reserve and the risk of postoperative cognitive dysfunction. Deutsch Arztebl Int. 2017;114(7):110–7.Google Scholar
  2. 2.
    • Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth. 2017;119(suppl_1):i115–i25. An excellent analysis of the definition and diagnosis of postoperative dysfunction. CrossRefPubMedGoogle Scholar
  3. 3.
    Rasmussen LS. Postoperative cognitive dysfunction: incidence and prevention. Best Pract Res Clin Anaesthesiol. 2006;20(2):315–30.CrossRefPubMedGoogle Scholar
  4. 4.
    Coburn M, Fahlenkamp A, Zoremba N, Schaelte G. Postoperative cognitive dysfunction: incidence and prophylaxis. Anaesthesist. 2010;59(2):177–84. quiz 85CrossRefPubMedGoogle Scholar
  5. 5.
    Moskowitz EE, Overbey DM, Jones TS, Jones EL, Arcomano TR, Moore JT, et al. Post-operative delirium is associated with increased 5-year mortality. Am J Surg. 2017;214(6):1036–8.CrossRefPubMedGoogle Scholar
  6. 6.
    Radtke FM, Franck M, Herbig TS, Papkalla N, Kleinwaechter R, Kork F, et al. Incidence and risk factors for cognitive dysfunction in patients with severe systemic disease. J Int Med Res. 2012;40(2):612–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Robinson TN, Raeburn CD, Tran ZV, Angles EM, Brenner LA, Moss M. Postoperative delirium in the elderly: risk factors and outcomes. Ann Surg. 2009;249(1):173–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Feinkohl I, Winterer G, Pischon T. Diabetes is associated with risk of postoperative cognitive dysfunction: a meta-analysis. Diabetes Metab Res Rev. 2017;33(5).CrossRefGoogle Scholar
  9. 9.
    Plas M, Rotteveel E, Izaks GJ, Spikman JM, van der Wal-Huisman H, van Etten B, et al. Cognitive decline after major oncological surgery in the elderly. Eur J Cancer (Oxford, England: 1990). 2017;86:394–402.CrossRefGoogle Scholar
  10. 10.
    Devore EE, Fong TG, Marcantonio ER, Schmitt EM, Travison TG, Jones RN, et al. Prediction of long-term cognitive decline following postoperative delirium in older adults. J Gerontol A Biol Sci Med Sci. 2017;72(12):1697–702.CrossRefPubMedGoogle Scholar
  11. 11.
    Singh-Manoux A, Fayosse A, Sabia S, Canonico M, Bobak M, Elbaz A, et al. Atrial fibrillation as a risk factor for cognitive decline and dementia. Eur Heart J. 2017;38(34):2612–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Celutkiene J, Vaitkevicius A, Jakstiene S, Jatuzis D. Expert opinion-cognitive decline in heart failure: more attention is needed. Card Fail Rev. 2016;2(2):106–9.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Langer SZ, Hicks PE. Alpha-adrenoreceptor subtypes in blood vessels: physiology and pharmacology. J Cardiovasc Pharmacol. 1984;6(Suppl 4):S547–58.CrossRefPubMedGoogle Scholar
  14. 14.
    Dawson LF, Phillips JK, Finch PM, Inglis JJ, Drummond PD. Expression of alpha1-adrenoceptors on peripheral nociceptive neurons. Neuroscience. 2011;175:300–14.CrossRefPubMedGoogle Scholar
  15. 15.
    Arnsten AF, Pliszka SR. Catecholamine influences on prefrontal cortical function: relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol Biochem Behav. 2011;99(2):211–6.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Di Cesare Mannelli L, Micheli L, Crocetti L, Giovannoni MP, Vergelli C, Ghelardini C. alpha2 Adrenoceptor: a target for neuropathic pain treatment. Mini Rev Med Chem. 2017;17(2):95–107.CrossRefPubMedGoogle Scholar
  17. 17.
    Langer SZ. alpha2-Adrenoceptors in the treatment of major neuropsychiatric disorders. Trends Pharmacol Sci. 2015;36(4):196–202.CrossRefPubMedGoogle Scholar
  18. 18.
    Virtanen R. Pharmacological profiles of medetomidine and its antagonist, atipamezole. Acta Vet Scand Suppl. 1989;85:29–37.PubMedGoogle Scholar
  19. 19.
    Song AH, Kucyi A, Napadow V, Brown EN, Loggia ML, Akeju O. Pharmacological modulation of noradrenergic arousal circuitry disrupts functional connectivity of the locus ceruleus in humans. J Neurosci. 2017;37(29):6938–45.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Akeju O, Loggia ML, Catana C, Pavone KJ, Vazquez R, Rhee J, et al. Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-induced unconsciousness. elife. 2014;3:e04499.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hamilton C, Ma Y, Zhang N. Global reduction of information exchange during anesthetic-induced unconsciousness. Brain Struct Funct. 2017;222(7):3205–16.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Funai Y, Pickering AE, Uta D, Nishikawa K, Mori T, Asada A, et al. Systemic dexmedetomidine augments inhibitory synaptic transmission in the superficial dorsal horn through activation of descending noradrenergic control: an in vivo patch-clamp analysis of analgesic mechanisms. Pain. 2014;155(3):617–28.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang B, Wang G, Liu X, Wang TL, Chi P. The opioid-sparing effect of perioperative dexmedetomidine combined with oxycodone infusion during open hepatectomy: a randomized controlled trial. Front Pharmacol. 2017;8:940.CrossRefPubMedGoogle Scholar
  24. 24.
    Sharma R, Gupta R, Choudhary R, Singh Bajwa SJ. Postoperative analgesia with intravenous paracetamol and dexmedetomidine in laparoscopic cholecystectomy surgeries: a prospective randomized comparative study. Int J Appl Basic Med Res. 2017;7(4):218–22.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun S, Wang J, Bao N, Chen Y. Comparison of dexmedetomidine and fentanyl as local anesthetic adjuvants in spinal anesthesia: a systematic review and meta-analysis of randomized controlled trials. Drug Des Devel Ther. 2017;11:3413–24.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schomer KJ, Sebat CM, Adams JY, Duby JJ, Shahlaie K, Louie EL. Dexmedetomidine for refractory intracranial hypertension. J Intensive Care Med. 2017;  https://doi.org/10.1177/0885066616689555.
  27. 27.
    Aouad MT, Zeeni C, Al Nawwar R, Siddik-Sayyid SM, Barakat HB, Elias S, et al. Dexmedetomidine for improved quality of emergence from general anesthesia: a dose-finding study. Anesth Analg. 2017.Google Scholar
  28. 28.
    Elbakry AE, Sultan WE, Ibrahim E. A comparison between inhalational (desflurane) and total intravenous anaesthesia (propofol and dexmedetomidine) in improving postoperative recovery for morbidly obese patients undergoing laparoscopic sleeve gastrectomy: a double-blinded randomised controlled trial. J Clin Anesth. 2017;45:6–11.CrossRefPubMedGoogle Scholar
  29. 29.
    Davy A, Fessler J, Fischler M. M LEG. Dexmedetomidine and general anesthesia: a narrative literature review of its major indications for use in adults undergoing non-cardiac surgery. Minerva Anestesiol. 2017;83(12):1294–308.PubMedGoogle Scholar
  30. 30.
    Perry EC. Inpatient management of acute alcohol withdrawal syndrome. CNS Drugs. 2014;28(5):401–10.CrossRefPubMedGoogle Scholar
  31. 31.
    Muzyk AJ, Kerns S, Brudney S, Gagliardi JP. Dexmedetomidine for the treatment of alcohol withdrawal syndrome: rationale and current status of research. CNS Drugs. 2013;27(11):913–20.CrossRefPubMedGoogle Scholar
  32. 32.
    Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, et al. Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev. 2018;84:116–33.CrossRefPubMedGoogle Scholar
  33. 33.
    •• Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL. Postoperative cognitive dysfunction: involvement of neuroinflammation and neuronal functioning. Brain Behav Immun. 2014;38:202–10. A comprehensive review of neuroinflammation. CrossRefPubMedGoogle Scholar
  34. 34.
    •• Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol. 2011;70(6):986–95. An elegant series of experiments detailing the effects of surgical related inflammation on the blood brain barrier and cognition. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Yang N, Liang Y, Yang P, Wang W, Zhang X, Wang J. TNF-alpha receptor antagonist attenuates isoflurane-induced cognitive impairment in aged rats. Exp Ther Med. 2016;12(1):463–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bi J, Shan W, Luo A, Zuo Z. Critical role of matrix metallopeptidase 9 in postoperative cognitive dysfunction and age-dependent cognitive decline. Oncotarget. 2017;8(31):51817–29.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Zhang S, Dong H, Zhang X, Li N, Sun J, Qian Y. Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption. Behav Brain Res. 2016;298(Pt B):158–66.CrossRefPubMedGoogle Scholar
  38. 38.
    Xu J, Dong H, Qian Q, Zhang X, Wang Y, Jin W, et al. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res. 2017;332:145–53.CrossRefPubMedGoogle Scholar
  39. 39.
    Willner AE, Rabiner CJ. Psychopathology and cognitive dysfunction five years after open-heart surgery. Compr Psychiatry. 1979;20(5):409–18.CrossRefPubMedGoogle Scholar
  40. 40.
    Westaby S, Saatvedt K, White S, Katsumata T, van Oeveren W, Halligan PW. Is there a relationship between cognitive dysfunction and systemic inflammatory response after cardiopulmonary bypass? Ann Thorac Surg. 2001;71(2):667–72.CrossRefPubMedGoogle Scholar
  41. 41.
    Smith PL. The systemic inflammatory response to cardiopulmonary bypass and the brain. Perfusion. 1996;11(3):196–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One. 2013;8(11):e79624.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Li YC, Xi CH, An YF, Dong WH, Zhou M. Perioperative inflammatory response and protein S-100beta concentrations - relationship with post-operative cognitive dysfunction in elderly patients. Acta Anaesthesiol Scand. 2012;56(5):595–600.CrossRefPubMedGoogle Scholar
  44. 44.
    Kline R, Wong E, Haile M, Didehvar S, Farber S, Sacks A, et al. Peri-operative inflammatory cytokines in plasma of the elderly correlate in prospective study with postoperative changes in cognitive test scores. Int J Anesthesiol Res. 2016;4(8):313–21.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Steinberg BE, Sundman E, Terrando N, Eriksson LI, Olofsson PS. Neural control of inflammation: implications for perioperative and critical care. Anesthesiology. 2016;124(5):1174–89.CrossRefPubMedGoogle Scholar
  46. 46.
    Qiao Y, Feng H, Zhao T, Yan H, Zhang H, Zhao X. Postoperative cognitive dysfunction after inhalational anesthesia in elderly patients undergoing major surgery: the influence of anesthetic technique, cerebral injury and systemic inflammation. BMC Anesthesiol. 2015;15:154.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Forsberg A, Cervenka S, Jonsson Fagerlund M, Rasmussen LS, Zetterberg H, Erlandsson Harris H, et al. The immune response of the human brain to abdominal surgery. Ann Neurol. 2017;81(4):572–82.CrossRefPubMedGoogle Scholar
  48. 48.
    Wang L, Liu H, Zhang L, Wang G, Zhang M, Yu Y. Neuroprotection of dexmedetomidine against cerebral ischemia-reperfusion injury in rats: involved in inhibition of NF-kappaB and inflammation response. Biomol Ther. 2017;25(4):383–9.CrossRefGoogle Scholar
  49. 49.
    Xiong B, Shi Q, Fang H. Dexmedetomidine alleviates postoperative cognitive dysfunction by inhibiting neuron excitation in aged rats. Am J Transl Res. 2016;8(1):70–80.PubMedPubMedCentralGoogle Scholar
  50. 50.
    • Yamanaka D, Kawano T, Nishigaki A, Aoyama B, Tateiwa H, Shigematsu-Locatelli M, et al. Preventive effects of dexmedetomidine on the development of cognitive dysfunction following systemic inflammation in aged rats. J Anesth. 2017;31(1):25–35. Yamanaka demonstrates that pre-systemic insult treatment with dexmedetomidine may mitigate neuroinflammation in a rat model of cognitive dysfunction. CrossRefPubMedGoogle Scholar
  51. 51.
    Zhu YJ, Peng K, Meng XW, Ji FH. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Res. 2016;1644:1–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Xu KL, Liu XQ, Yao YL, Ye MR, Han YG, Zhang T, et al. Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. Biochem Biophys Res Commun. 2017.Google Scholar
  53. 53.
    Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget. 2017;8(69):114393–413.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Peng M, Wang YL, Wang CY, Chen C. Dexmedetomidine attenuates lipopolysaccharide-induced proinflammatory response in primary microglia. J Surg Res. 2013;179(1):e219–25.CrossRefPubMedGoogle Scholar
  55. 55.
    Liu H, Davis JR, Wu ZL, Faez Abdelgawad A. Dexmedetomidine attenuates lipopolysaccharide induced MCP-1 expression in primary astrocyte. Biomed Res Int. 2017;2017:6352159.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Chen C, Qian Y. Protective role of dexmedetomidine in unmethylated CpG-induced inflammation responses in BV2 microglia cells. Folia Neuropathol. 2016;54(4):382–91.CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang X, Wang J, Qian W, Zhao J, Sun L, Qian Y, et al. Dexmedetomidine inhibits inducible nitric oxide synthase in lipopolysaccharide-stimulated microglia by suppression of extracellular signal-regulated kinase. Neurol Res. 2015;37(3):238–45.CrossRefPubMedGoogle Scholar
  58. 58.
    Choi S-H, Lee H, Chung T-S, Park K-M, Jung Y-C, Kim SI, et al. Neural network functional connectivity during and after an episode of delirium. Am J Psychiatr. 2012;169(5):498–507.CrossRefPubMedGoogle Scholar
  59. 59.
    Zhou C, Zhu Y, Liu Z, Ruan L. Effect of dexmedetomidine on postoperative cognitive dysfunction in elderly patients after general anaesthesia: a meta-analysis. J Int Med Res. 2016;44(6):1182–90.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Palsetia D, Rao GP, Tiwari SC, Lodha P, De Sousa A. The clock drawing test versus mini-mental status examination as a screening tool for dementia: a clinical comparison. Indian J Psychol Med. 2018;40(1):1–10.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Man Y, Guo Z, Cao J, Mi W. Efficacy of perioperative dexmedetomidine in postoperative neurocognitive function: a meta-analysis. Clin Exp Pharmacol Physiol. 2015;42(8):837–42.CrossRefPubMedGoogle Scholar
  62. 62.
    •• Deiner S, Luo X, Lin HM, Sessler DI, Saager L, Sieber FE, et al. Intraoperative infusion of dexmedetomidine for prevention of postoperative delirium and cognitive dysfunction in elderly patients undergoing major elective noncardiac surgery: a randomized clinical trial. JAMA Surg. 2017;152(8):e171505. The most comprehensive clinical trial of dexemedetomidine for the treatment of postoperative cognitive dysfunction to date. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Weintraub S, Besser L, Dodge HH, Teylan M, Ferris S, Goldstein FC, et al. Version 3 of the Alzheimer disease centers’ neuropsychological test battery in the uniform data set (UDS). Alzheimer Dis Assoc Disord. 2017.Google Scholar
  64. 64.
    Su X, Meng ZT, Wu XH, Cui F, Li HL, Wang DX, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet (London, England). 2016;388(10054):1893–902.CrossRefGoogle Scholar
  65. 65.
    Li X, Yang J, Nie XL, Zhang Y, Li XY, Li LH, et al. Impact of dexmedetomidine on the incidence of delirium in elderly patients after cardiac surgery: a randomized controlled trial. PLoS One. 2017;12(2):e0170757.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Inouye SK, Marcantonio ER, Kosar CM, Tommet D, Schmitt EM, Travison TG, et al. The short-term and long-term relationship between delirium and cognitive trajectory in older surgical patients. Alzheimers Dement. 2016;12(7):766–75.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Krogseth M, Watne LO, Juliebo V, Skovlund E, Engedal K, Frihagen F, et al. Delirium is a risk factor for further cognitive decline in cognitively impaired hip fracture patients. Arch Gerontol Geriatr. 2016;64:38–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zyad J. Carr
    • 1
  • Theodore J. Cios
    • 1
  • Kenneth F. Potter
    • 1
  • John T. Swick
    • 1
  1. 1.Department of Anesthesiology & Perioperative MedicinePenn State Health Milton S. Hershey Medical CenterHersheyUSA

Personalised recommendations