Advertisement

Impact of Recent Studies for the Treatment of Intracerebral Hemorrhage

  • Jochen A. Sembill
  • Hagen B. Huttner
  • Joji B. Kuramatsu
Stroke (H Diener, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Stroke

Abstract

Purpose of Review

The present review will cover most recent and important studies on acute treatment of intracerebral hemorrhage (ICH).

Recent Findings

Overly pessimistic prognostication in ICH may deny meaningful recovery achieved by specialized neurocritical care. Hematoma enlargement represents the most important target of acute ICH care, which is reduced by aggressive blood pressure management (targeting a systolic blood pressure of 140 mmHg) and appropriate hemostatic treatment especially in anticoagulation-associated ICH (INR reversal using prothrombin complex concentrates, eventually idarucizumab, andexanet, or tranexamic acid). Surgical treatment strategies involving fibrinolytics either used for direct hematoma lysis or used for intraventricular clot removal with/without additional lumbar drainage show great promise. Further novel treatment strategies are underway and need validation or evaluation strongly warranting well-designed future ICH research.

Summary

Several randomized and large-sized observational studies have considerably expanded the field and the evidence on how to treat acute ICH patients. Yet, the one breakthrough intervention to improve functional outcome is still missing, though various treatment concepts possibly interacting with one another have been evaluated and such treatment bundle may improve patients’ outcome.

Keywords

Intracerebral hemorrhage Neurocritical care Hemorrhagic stroke 

Abbreviations

BP

Blood pressure

CI

Confidence interval

DNR

Do not resuscitate

EVD

External ventricular drain

FFP

Fresh frozen plasma

HE

Hematoma enlargement

ICH

Intracerebral hemorrhage

ICP

Intracranial pressure

INR

International normalized ratio

IQR

Interquartile range

IVH

Intraventricular hemorrhage

mRS

Modified Rankin Scale

NOAC

Non-vitamin k antagonist oral anticoagulant

OR

Odds ratio

PCC

Prothrombin complex concentrate

RR

Risk ratio

rtPA

Recombinant tissue-type plasminogen activator

TXA

Tranexamic acid

VKA

Vitamin K antagonist

Notes

Compliance with Ethical Standards

Conflict of Interest

Jochen A. Sembill, Hagen B. Huttner, and Joji B. Kuramatsu declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Qureshi AI, Mendelow AD, Hanley DF. Intracerebral haemorrhage. Lancet. 2009;373(9675):1632–44.  https://doi.org/10.1016/s0140-6736(09)60371-8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344(19):1450–60.  https://doi.org/10.1056/nejm200105103441907.CrossRefGoogle Scholar
  3. 3.
    Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 2016;15(9):913–24.  https://doi.org/10.1016/S1474-4422(16)30073-4.CrossRefPubMedGoogle Scholar
  4. 4.
    Sacco S, Marini C, Toni D, Olivieri L, Carolei A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40(2):394–9.  https://doi.org/10.1161/STROKEAHA.108.523209.CrossRefGoogle Scholar
  5. 5.
    van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.  https://doi.org/10.1016/s1474-4422(09)70340-0.CrossRefGoogle Scholar
  6. 6.
    Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.  https://doi.org/10.1161/str.0000000000000069.CrossRefGoogle Scholar
  7. 7.
    • Sembill JA, Gerner ST, Volbers B, Bobinger T, Lucking H, Kloska SP, et al. Severity assessment in maximally treated ICH patients: the max-ICH score. Neurology. 2017;89(5):423–31.  https://doi.org/10.1212/WNL.0000000000004174. Authors report that overly pessimisitc prognostication may deny a meanignfull recovery and provide a novel prognostic tool.CrossRefPubMedGoogle Scholar
  8. 8.
    Zahuranec DB, Brown DL, Lisabeth LD, Gonzales NR, Longwell PJ, Smith MA, et al. Early care limitations independently predict mortality after intracerebral hemorrhage. Neurology. 2007;68(20):1651–7.  https://doi.org/10.1212/01.wnl.0000261906.93238.72.CrossRefGoogle Scholar
  9. 9.
    Morgenstern LB, Zahuranec DB, Sanchez BN, Becker KJ, Geraghty M, Hughes R, et al. Full medical support for intracerebral hemorrhage. Neurology. 2015;84(17):1739–44.  https://doi.org/10.1212/WNL.0000000000001525.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Becker KJ, Baxter AB, Cohen WA, Bybee HM, Tirschwell DL, Newell DW, et al. Withdrawal of support in intracerebral hemorrhage may lead to self-fulfilling prophecies. Neurology. 2001;56(6):766–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Yogendrakumar V, Smith EE, Demchuk AM, Aviv RI, Rodriguez-Luna D, Molina CA, et al. Lack of early improvement predicts poor outcome following acute intracerebral hemorrhage. Crit Care Med. 2018;46(4):e310–e7.  https://doi.org/10.1097/CCM.0000000000002962.CrossRefPubMedGoogle Scholar
  12. 12.
    Maas MB, Francis BA, Sangha RS, Lizza BD, Liotta EM, Naidech AM. Refining prognosis for intracerebral hemorrhage by early reassessment. Cerebrovasc Dis. 2017;43(3–4):110–6.  https://doi.org/10.1159/000452679000452679.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Suo Y, Chen WQ, Pan YS, Peng YJ, Yan HY, Zhao XQ, Liu LP, Wang YL, Liu GF, Wang YJ The max-intracerebral hemorrhage score predicts long-term outcome of intracerebral hemorrhage. CNS Neurosci Ther. 2018.  https://doi.org/10.1111/cns.12846.
  14. 14.
    Jacobs BS, Poggesi A, Terry JB. Max-ICH score: can it prevent self-fulfilling prophecy in ICH? Neurology. 2017;89(5):417–8.  https://doi.org/10.1212/WNL.0000000000004195.CrossRefPubMedGoogle Scholar
  15. 15.
    Langhorne P, Fearon P, Ronning OM, Kaste M, Palomaki H, Vemmos K, Kalra L, Indredavik B, Blomstrand C, Rodgers H, Dennis MS, Salman RAS, on behalf of the Stroke Unit Trialists’ Collaboration, The following collaborators provided new data, advice and comment, and assisted with the redrafting of the report:, Blomstrand C, Indredavik B, Kalra L, Kaste M, Palomaki H, Rodgers H, Ronning MO, Vemmos K, The Stroke Unit Trialists’ Collaboration supported and provided for the main stroke unit review:, Asplund K, Berman P, Blomstrand C, Britton M, Cabral NL, Cavallini A, Dey P, Hamrin E, Hankey G, Indredavik B, Kalra L, Kaste M, Laursen SO, Ma RH, Patel N, Rodgers H, Ronning MO, Sivenius J, Stevens R, Sulter G, Svensson A, Vemmos K, Wood-Dauphinee S, Yagura H Stroke unit care benefits patients with intracerebral hemorrhage: systematic review and meta-analysis. Stroke 2013;44(11):3044–3049.  https://doi.org/10.1161/STROKEAHA.113.001564 CrossRefGoogle Scholar
  16. 16.
    Damian MS, Ben-Shlomo Y, Howard R, Bellotti T, Harrison D, Griggs K, et al. The effect of secular trends and specialist neurocritical care on mortality for patients with intracerebral haemorrhage, myasthenia gravis and Guillain-Barre syndrome admitted to critical care : an analysis of the Intensive Care National Audit & Research Centre (ICNARC) national United Kingdom database. Intensive Care Med. 2013;39(8):1405–12.  https://doi.org/10.1007/s00134-013-2960-6.CrossRefGoogle Scholar
  17. 17.
    Middleton S, McElduff P, Ward J, Grimshaw JM, Dale S, D’Este C, et al. Implementation of evidence-based treatment protocols to manage fever, hyperglycaemia, and swallowing dysfunction in acute stroke (QASC): a cluster randomised controlled trial. Lancet. 2011;378(9804):1699–706.  https://doi.org/10.1016/S0140-6736(11)61485-2.CrossRefGoogle Scholar
  18. 18.
    Sreekrishnan A, Leasure AC, Shi FD, Hwang DY, Schindler JL, Petersen NH, et al. Functional improvement among intracerebral hemorrhage (ICH) survivors up to 12 months post-injury. Neurocrit Care. 2017;27(3):326–33.  https://doi.org/10.1007/s12028-017-0425-4.CrossRefPubMedGoogle Scholar
  19. 19.
    Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, et al. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79(4):314–9.  https://doi.org/10.1212/WNL.0b013e318260cbba.CrossRefPubMedGoogle Scholar
  20. 20.
    •• Kuramatsu JB, Gerner ST, Schellinger PD, Glahn J, Endres M, Sobesky J, et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA. 2015;313(8):824–36.  https://doi.org/10.1001/jama.2015.0846. Large cohort study reporting on both acute and long-term management in anticoaugulation-associated ICH. For the first time provides INR targets to minimize hematoma expansion.CrossRefGoogle Scholar
  21. 21.
    Demchuk AM, Dowlatshahi D, Rodriguez-Luna D, Molina CA, Blas YS, Dzialowski I, et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study. Lancet Neurol. 2012;11(4):307–14.  https://doi.org/10.1016/S1474-4422(12)70038-8.CrossRefGoogle Scholar
  22. 22.
    Morotti A, Boulouis G, Romero JM, Brouwers HB, Jessel MJ, Vashkevich A, et al. Blood pressure reduction and noncontrast CT markers of intracerebral hemorrhage expansion. Neurology. 2017;89(6):548–54.  https://doi.org/10.1212/WNL.0000000000004210.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Morotti A, Dowlatshahi D, Boulouis G, Al-Ajlan F, Demchuk AM, Aviv RI, et al. Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: the BAT score. Stroke. 2018;49(5):1163–9.  https://doi.org/10.1161/STROKEAHA.117.020138.CrossRefPubMedGoogle Scholar
  24. 24.
    Wang X, Arima H, Al-Shahi Salman R, Woodward M, Heeley E, Stapf C, et al. Clinical prediction algorithm (BRAIN) to determine risk of hematoma growth in acute intracerebral hemorrhage. Stroke. 2015;46(2):376–81.  https://doi.org/10.1161/STROKEAHA.114.006910.CrossRefPubMedGoogle Scholar
  25. 25.
    Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63(6):1059–64.CrossRefGoogle Scholar
  26. 26.
    Biffi A, Battey TW, Ayres AM, Cortellini L, Schwab K, Gilson AJ, et al. Warfarin-related intraventricular hemorrhage: imaging and outcome. Neurology. 2011;77(20):1840–6.  https://doi.org/10.1212/WNL.0b013e3182377e12.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kobayashi J, Koga M, Tanaka E, Okada Y, Kimura K, Yamagami H, et al. Continuous antihypertensive therapy throughout the initial 24 hours of intracerebral hemorrhage: the stroke acute management with urgent risk-factor assessment and improvement-intracerebral hemorrhage study. Stroke. 2014;45(3):868–70.  https://doi.org/10.1161/STROKEAHA.113.004319.CrossRefPubMedGoogle Scholar
  28. 28.
    Tsivgoulis G, Katsanos AH, Butcher KS, Boviatsis E, Triantafyllou N, Rizos I, et al. Intensive blood pressure reduction in acute intracerebral hemorrhage: a meta-analysis. Neurology. 2014;83(17):1523–9.  https://doi.org/10.1212/WNL.0000000000000917.CrossRefPubMedGoogle Scholar
  29. 29.
    Butcher KS, Jeerakathil T, Hill M, Demchuk AM, Dowlatshahi D, Coutts SB, et al. The Intracerebral Hemorrhage Acutely Decreasing Arterial Pressure Trial. Stroke. 2013;44(3):620–6.  https://doi.org/10.1161/strokeaha.111.000188.CrossRefGoogle Scholar
  30. 30.
    Anderson CS, Huang Y, Wang JG, Arima H, Neal B, Peng B, et al. Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial. Lancet Neurol. 2008;7(5):391–9.  https://doi.org/10.1016/S1474-4422(08)70069-3.CrossRefGoogle Scholar
  31. 31.
    Qureshi AI, Palesch YY, Martin R, Novitzke J, Cruz-Flores S, Ehtisham A, et al. Effect of systolic blood pressure reduction on hematoma expansion, perihematomal edema, and 3-month outcome among patients with intracerebral hemorrhage: results from the antihypertensive treatment of acute cerebral hemorrhage study. Arch Neurol. 2010;67(5):570–6.  https://doi.org/10.1001/archneurol.2010.61.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Anderson CS, Huang Y, Arima H, Heeley E, Skulina C, Parsons MW, et al. Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage: the Intensive Blood Pressure Reduction in Acute Cerebral Haemorrhage Trial (INTERACT). Stroke. 2010;41(2):307–12.  https://doi.org/10.1161/strokeaha.109.561795.CrossRefPubMedGoogle Scholar
  33. 33.
    •• Anderson CS, Heeley E, Huang Y, Wang J, Stapf C, Delcourt C, et al. Rapid blood-pressure lowering in patients with acute intracerebral hemorrhage. N Engl J Med. 2013;368(25):2355–65.  https://doi.org/10.1056/NEJMoa1214609. Randomized controlled trial showing improved functional outcomes with intensive lowering of blood pressure among ordinal analysis of the modified Rankin scale.CrossRefGoogle Scholar
  34. 34.
    •• Qureshi AI, Palesch YY, Barsan WG, Hanley DF, Hsu CY, Martin RL, et al. Intensive blood-pressure lowering in patients with acute cerebral hemorrhage. N Engl J Med. 2016;375(11):1033–43.  https://doi.org/10.1056/NEJMoa1603460. Most recent randomized controlled trial documenting no significant benefit of intensive blood pressure lowering.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Burgess LG, Goyal N, Jones GM, Khorchid Y, Kerro A, Chapple K et al. Evaluation of acute kidney injury and mortality after intensive blood pressure control in patients with intracerebral hemorrhage. J Am Heart Assoc. 2018;7(8).  https://doi.org/10.1161/JAHA.117.008439.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Morotti A, Brouwers HB, Romero JM, Jessel MJ, Vashkevich A, Schwab K, et al. Intensive blood pressure reduction and spot sign in intracerebral hemorrhage: a secondary analysis of a randomized clinical trial. JAMA Neurol. 2017;74(8):950–60.  https://doi.org/10.1001/jamaneurol.2017.1014.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shoamanesh A, Morotti A, Romero JM, Oliveira-Filho J, Schlunk F, Jessel MJ, et al. Cerebral microbleeds and the effect of intensive blood pressure reduction on hematoma expansion and functional outcomes: a secondary analysis of the ATACH-2 randomized clinical trial. JAMA Neurol. 2018;75:850–9.  https://doi.org/10.1001/jamaneurol.2018.0454.CrossRefPubMedGoogle Scholar
  38. 38.
    Qureshi AI, Palesch YY, Foster LD, Barsan WG, Goldstein JN, Hanley DF, et al. Blood pressure-attained analysis of ATACH 2 trial. Stroke. 2018;49(6):1412–8.  https://doi.org/10.1161/STROKEAHA.117.019845.CrossRefPubMedGoogle Scholar
  39. 39.
    •• Boulouis G, Morotti A, Goldstein JN, Charidimou A. Intensive blood pressure lowering in patients with acute intracerebral haemorrhage: clinical outcomes and haemorrhage expansion. Systematic review and meta-analysis of randomised trials. J Neurol Neurosurg Psychiatry. 2017;88(4):339–45.  https://doi.org/10.1136/jnnp-2016-315346. Meta-analysis of randomized data ( n= 4360) investigating the effect of intensive blood pressure reductions on outcomes.CrossRefPubMedGoogle Scholar
  40. 40.
    • Morotti A, Charidimou A, Phuah CL, Jessel MJ, Schwab K, Ayres AM, et al. Association between serum calcium level and extent of bleeding in patients with intracerebral hemorrhage. JAMA Neurol. 2016;73(11):1285–90.  https://doi.org/10.1001/jamaneurol.2016.22522546924. Authors report on a novel parameter associated with ICH volumes.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Liotta EM, Prabhakaran S, Sangha RS, Bush RA, Long AE, Trevick SA, et al. Magnesium, hemostasis, and outcomes in patients with intracerebral hemorrhage. Neurology. 2017;89(8):813–9.  https://doi.org/10.1212/WNL.0000000000004249.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Goyal N, Tsivgoulis G, Malhotra K, Houck AL, Khorchid YM, Pandhi A et al. Serum magnesium levels and outcomes in patients with acute spontaneous intracerebral hemorrhage. J Am Heart Assoc. 2018;7(8).  https://doi.org/10.1161/JAHA.118.008698 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hoffman M, Monroe DM 3rd, Roberts HR. Activated factor VII activates factors IX and X on the surface of activated platelets: thoughts on the mechanism of action of high-dose activated factor VII. Blood Coagul Fibrinolysis. 1998;9(Suppl 1):S61–5.PubMedGoogle Scholar
  44. 44.
    Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352(8):777–85.  https://doi.org/10.1056/NEJMoa042991.CrossRefGoogle Scholar
  45. 45.
    Mayer SA, Brun NC, Begtrup K, Broderick J, Davis S, Diringer MN, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2008;358(20):2127–37.  https://doi.org/10.1056/NEJMoa0707534.CrossRefGoogle Scholar
  46. 46.
    Roberts I, Shakur H, Coats T, Hunt B, Balogun E, Barnetson L, et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol Assess. 2013;17(10):1–79.  https://doi.org/10.3310/hta17100.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    •• Sprigg N, Flaherty K, Appleton JP, Salman RA, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet. 2018;391:2107–15.  https://doi.org/10.1016/S0140-6736(18)31033-X. Randomized controlled trial on effects of tranexamic acid in ICH patients showing a decreased early (7 days) mortality, reduced hematoma enlargement, and a favorable safety profile for tranexamic acid. Sub-group analyses favored treatment in patients with systolic blood pressures below 170 mmHg, lobar ICH location, and ICH volumes between 30 and 60 mL.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Meretoja A, Churilov L, Campbell BC, Aviv RI, Yassi N, Barras C, et al. The spot sign and tranexamic acid on preventing ICH growth--AUStralasia Trial (STOP-AUST): protocol of a phase II randomized, placebo-controlled, double-blind, multicenter trial. Int J Stroke. 2014;9(4):519–24.  https://doi.org/10.1111/ijs.12132.CrossRefGoogle Scholar
  49. 49.
    Liu L, Wang Y, Meng X, Li N, Tan Y, Nie X, et al. Tranexamic acid for acute intracerebral hemorrhage growth predicted by spot sign trial: rationale and design. Int J Stroke. 2017;12(3):326–31.  https://doi.org/10.1177/1747493017694394.CrossRefGoogle Scholar
  50. 50.
    Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, Battey TW, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71(2):158–64.  https://doi.org/10.1001/jamaneurol.2013.5433.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    • Steiner T, Poli S, Griebe M, Husing J, Hajda J, Freiberger A, et al. Fresh frozen plasma versus prothrombin complex concentrate in patients with intracranial haemorrhage related to vitamin K antagonists (INCH): a randomised trial. Lancet Neurol. 2016;15(6):566–73.  https://doi.org/10.1016/S1474-4422(16)00110-1. Randomized controlled trial comparing PCC versus FFP in VKA ICH patients providing evidence in favor of PCC for reversal of anticoagulation.CrossRefGoogle Scholar
  52. 52.
    Kuramatsu JB, Sembill JA, Gerner ST, Sprugel MI, Hagen M, Roeder SS, et al. Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves. Eur Heart J. 2018;39:1709–23.  https://doi.org/10.1093/eurheartj/ehy056.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    • Gerner ST, Kuramatsu JB, Sembill JA, Sprugel MI, Endres M, Haeusler KG, et al. Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol. 2018;83(1):186–96.  https://doi.org/10.1002/ana.25134. Large cohort study reporting on reversal strategies in non-vitamin K anticoaugulation-associated ICH.CrossRefPubMedGoogle Scholar
  54. 54.
    Purrucker JC, Haas K, Rizos T, Khan S, Wolf M, Hennerici MG, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73(2):169–77.  https://doi.org/10.1001/jamaneurol.2015.3682.CrossRefGoogle Scholar
  55. 55.
    Boulouis G, Morotti A, Pasi M, Goldstein JN, Gurol ME, Charidimou A. Outcome of intracerebral haemorrhage related to non-vitamin K antagonists oral anticoagulants versus vitamin K antagonists: a comprehensive systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2018;89(3):263–70.  https://doi.org/10.1136/jnnp-2017-316631.CrossRefPubMedGoogle Scholar
  56. 56.
    Wilson D, Seiffge DJ, Traenka C, Basir G, Purrucker JC, Rizos T, et al. Outcome of intracerebral hemorrhage associated with different oral anticoagulants. Neurology. 2017;88(18):1693–700.  https://doi.org/10.1212/WNL.0000000000003886.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kurogi R, Nishimura K, Nakai M, Kada A, Kamitani S, Nakagawara J, et al. Comparing intracerebral hemorrhages associated with direct oral anticoagulants or warfarin. Neurology. 2018;90(13):e1143–e9.  https://doi.org/10.1212/WNL.0000000000005207.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tsivgoulis G, Lioutas VA, Varelas P, Katsanos AH, Goyal N, Mikulik R, et al. Direct oral anticoagulant- vs vitamin K antagonist-related nontraumatic intracerebral hemorrhage. Neurology. 2017;89(11):1142–51.  https://doi.org/10.1212/WNL.0000000000004362.CrossRefPubMedGoogle Scholar
  59. 59.
    Inohara T, Xian Y, Liang L, Matsouaka RA, Saver JL, Smith EE, et al. Association of intracerebral hemorrhage among patients taking non-vitamin K antagonist vs vitamin K antagonist oral anticoagulants with in-hospital mortality. JAMA. 2018;319(5):463–73.  https://doi.org/10.1001/jama.2017.21917.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ebner M, Birschmann I, Peter A, Spencer C, Hartig F, Kuhn J, et al. Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants. Crit Care. 2017;21(1):32.  https://doi.org/10.1186/s13054-017-1619-z.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    •• Pollack CV Jr, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, et al. Idarucizumab for dabigatran reversal - full cohort analysis. N Engl J Med. 2017;377(5):431–41.  https://doi.org/10.1056/NEJMoa1707278. Full cohort analysis of idarucizumab for dabigatran reversal.CrossRefGoogle Scholar
  62. 62.
    Connolly SJ, Milling TJ Jr, Eikelboom JW, Gibson CM, Curnutte JT, Gold A, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med. 2016;375:1131–41.  https://doi.org/10.1056/NEJMoa1607887.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373(25):2413–24.  https://doi.org/10.1056/NEJMoa1510991.CrossRefGoogle Scholar
  64. 64.
    • Baharoglu MI, Cordonnier C, Salman RA, de Gans K, Koopman MM, Brand A, et al. Platelet transfusion versus standard care after acute stroke due to spontaneous cerebral haemorrhage associated with antiplatelet therapy (PATCH): a randomised, open-label, phase 3 trial. Lancet. 2016;387(10038):2605–13.  https://doi.org/10.1016/S0140-6736(16)30392-0. Randomized controlled trial investigating platelet transfusions in ICH patients using platelet inhibitors, showing evidence in disfavor of platelet transfusions.CrossRefGoogle Scholar
  65. 65.
    Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387–97.  https://doi.org/10.1016/s0140-6736(05)17826-x.CrossRefGoogle Scholar
  66. 66.
    Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.  https://doi.org/10.1016/s0140-6736(13)60986-1.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    •• Hanley DF, Thompson RE, Muschelli J, Rosenblum M, McBee N, Lane K, et al. Safety and efficacy of minimally invasive surgery plus alteplase in intracerebral haemorrhage evacuation (MISTIE): a randomised, controlled, open-label, phase 2 trial. Lancet Neurol. 2016;15(12):1228–37.  https://doi.org/10.1016/s1474-4422(16)30234-4. Randomized controlled trial investigating intraventricular thrombolysis, showing a reduced mortality at 180 days, a safe profile, and faster clot removal which was associated with favorable functional outcome.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    van Loon J, Van Calenbergh F, Goffin J, Plets C. Controversies in the management of spontaneous cerebellar haemorrhage. A consecutive series of 49 cases and review of the literature. Acta Neurochir. 1993;122(3–4):187–93.CrossRefPubMedGoogle Scholar
  69. 69.
    Firsching R, Huber M, Frowein RA. Cerebellar haemorrhage: management and prognosis. Neurosurg Rev. 1991;14(3):191–4.CrossRefPubMedGoogle Scholar
  70. 70.
    Tamaki T, Kitamura T, Node Y, Teramoto A. Paramedian suboccipital mini-craniectomy for evacuation of spontaneous cerebellar hemorrhage. Neurol Med Chir (Tokyo). 2004;44(11):578–82. discussion 83CrossRefGoogle Scholar
  71. 71.
    Hackenberg KA, Unterberg AW, Jung CS, Bosel J, Schonenberger S, Zweckberger K. Does suboccipital decompression and evacuation of intraparenchymal hematoma improve neurological outcome in patients with spontaneous cerebellar hemorrhage? Clin Neurol Neurosurg. 2017;155:22–9.  https://doi.org/10.1016/j.clineuro.2017.01.019.CrossRefPubMedGoogle Scholar
  72. 72.
    Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.  https://doi.org/10.1161/STR.0000000000000158.CrossRefPubMedGoogle Scholar
  73. 73.
    Volbers B, Giede-Jeppe A, Gerner ST, Sembill JA, Kuramatsu JB, Lang S, et al. Peak perihemorrhagic edema correlates with functional outcome in intracerebral hemorrhage. Neurology. 2018;90(12):e1005–e12.  https://doi.org/10.1212/WNL.0000000000005167.CrossRefPubMedGoogle Scholar
  74. 74.
    Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5(1):53–63.  https://doi.org/10.1016/s1474-4422(05)70283-0.CrossRefGoogle Scholar
  75. 75.
    Wang X, Arima H, Yang J, Zhang S, Wu G, Woodward M, et al. Mannitol and outcome in intracerebral hemorrhage: propensity score and multivariable intensive blood pressure reduction in acute cerebral hemorrhage trial 2 results. Stroke. 2015;46(10):2762–7.  https://doi.org/10.1161/STROKEAHA.115.009357.CrossRefPubMedGoogle Scholar
  76. 76.
    Shah M, Birnbaum L, Rasmussen J, Sekar P, Moomaw CJ, Osborne J, et al. Effect of hyperosmolar therapy on outcome following spontaneous intracerebral hemorrhage: Ethnic/Racial Variations of Intracerebral Hemorrhage (ERICH) study. J Stroke Cerebrovasc Dis. 2018;27(4):1061–7.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.11.013.CrossRefPubMedGoogle Scholar
  77. 77.
    Volbers B, Herrmann S, Willfarth W, Lucking H, Kloska SP, Doerfler A, et al. Impact of hypothermia initiation and duration on perihemorrhagic edema evolution after intracerebral hemorrhage. Stroke. 2016;47(9):2249–55.  https://doi.org/10.1161/STROKEAHA.116.013486.CrossRefPubMedGoogle Scholar
  78. 78.
    Staykov D, Wagner I, Volbers B, Doerfler A, Schwab S, Kollmar R. Mild prolonged hypothermia for large intracerebral hemorrhage. Neurocrit Care. 2013;18(2):178–83.  https://doi.org/10.1007/s12028-012-9762-5.CrossRefGoogle Scholar
  79. 79.
    Rincon F, Friedman DP, Bell R, Mayer SA, Bray PF. Targeted temperature management after intracerebral hemorrhage (TTM-ICH): methodology of a prospective randomized clinical trial. Int J Stroke. 2014;9(5):646–51.  https://doi.org/10.1111/ijs.12220.CrossRefPubMedGoogle Scholar
  80. 80.
    Fischer M, Schiefecker A, Lackner P, Frank F, Helbok R, Beer R, et al. Targeted temperature management in spontaneous intracerebral hemorrhage: a systematic review. Curr Drug Targets. 2017;18(12):1430–40.  https://doi.org/10.2174/1389450117666160703161511.CrossRefPubMedGoogle Scholar
  81. 81.
    Zeng L, Tan L, Li H, Zhang Q, Li Y, Guo J. Deferoxamine therapy for intracerebral hemorrhage: a systematic review. PLoS One. 2018;13(3):e0193615.  https://doi.org/10.1371/journal.pone.0193615.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fu Y, Hao J, Zhang N, Ren L, Sun N, Li YJ, et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 2014;71(9):1092–101.  https://doi.org/10.1001/jamaneurol.2014.1065.CrossRefPubMedGoogle Scholar
  83. 83.
    Morgan T, Awad I, Keyl P, Lane K, Hanley D. Preliminary report of the clot lysis evaluating accelerated resolution of intraventricular hemorrhage (CLEAR-IVH) clinical trial. Acta Neurochir Suppl. 2008;105:217–20.CrossRefPubMedGoogle Scholar
  84. 84.
    Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, et al. Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial. Lancet. 2017;389(10069):603–11.  https://doi.org/10.1016/S0140-6736(16)32410-2.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Staykov D, Huttner HB, Struffert T, Ganslandt O, Doerfler A, Schwab S, et al. Intraventricular fibrinolysis and lumbar drainage for ventricular hemorrhage. Stroke. 2009;40(10):3275–80.  https://doi.org/10.1161/strokeaha.109.551945.CrossRefPubMedGoogle Scholar
  86. 86.
    Huttner HB, Nagel S, Tognoni E, Kohrmann M, Juttler E, Orakcioglu B, et al. Intracerebral hemorrhage with severe ventricular involvement: lumbar drainage for communicating hydrocephalus. Stroke. 2007;38(1):183–7.  https://doi.org/10.1161/01.str.0000251795.02560.62.CrossRefPubMedGoogle Scholar
  87. 87.
    • Staykov D, Kuramatsu JB, Bardutzky J, Volbers B, Gerner ST, Kloska SP, et al. Efficacy and safety of combined intraventricular fibrinolysis with lumbar drainage for prevention of permanent shunt dependency after intracerebral hemorrhage with severe ventricular involvement: a randomized trial and individual patient data meta-analysis. Ann Neurol. 2017;81(1):93–103.  https://doi.org/10.1002/ana.24834. Small randomized controlled trial and meta-analyses investigating the influence of lumbar drains on permanent shunt dependency.CrossRefPubMedGoogle Scholar
  88. 88.
    Murthy SB, Awad I, Harnof S, Aldrich F, Harrigan M, Jallo J, et al. Permanent CSF shunting after intraventricular hemorrhage in the CLEAR III trial. Neurology. 2017;89(4):355–62.  https://doi.org/10.1212/WNL.0000000000004155.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jochen A. Sembill
    • 1
  • Hagen B. Huttner
    • 1
  • Joji B. Kuramatsu
    • 1
  1. 1.Department of NeurologyUniversity Hospital Erlangen-NürnbergErlangenGermany

Personalised recommendations