Advertisement

Regulation of Ion Channels by MicroRNAs and the Implication for Epilepsy

  • Christina Gross
  • Durgesh Tiwari
Epilepsy (C W Bazil, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Epilepsy

Abstract

Purpose of Review

The goal of this focused review is to describe recent studies supporting a critical role of microRNAs in the regulation of ion channels and discuss the resulting implications for the modulation of neuronal excitability in epilepsy.

Recent Findings

MicroRNA-induced silencing of ion channels has been shown in several different studies in recent years, and some of these reports suggest a prominent role in epilepsy. The ion channels regulated by microRNAs include ligand- and voltage-gated channels and are not only limited to the central nervous system but have also been found in the peripheral nervous system.

Summary

Ion channel-targeting microRNAs can regulate the intrinsic excitability of neurons, and thus influence entire networks in the brain. Their dysregulation in epilepsy may contribute to the disease phenotype. More research is needed to better understand the molecular mechanisms of how microRNAs regulate ion channels to control neuronal excitability, and how these processes are altered in epilepsy.

Keywords

microRNA Ion channels Epilepsy Neuronal excitability microRNA therapeutics Dendritic translation 

Notes

Funding Information

Christina Gross’ and Durgesh Tiwari’s epilepsy- and microRNA-related work are supported by the NIH (R01NS092705 to C.G.) and a postdoctoral fellowship from the American Epilepsy Society (to D.T.).

Compliance with Ethical Standards

Conflict of Interest

Durgesh Tiwari declares no conflict of interest.

Christina Gross is co-inventor on US Patent No. 9932585.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dudek FE, Staley KJ. The Time Course and Circuit Mechanisms of Acquired Epileptogenesis. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. Bethesda (MD): National Center for Biotechnology Information (US); 2012.Google Scholar
  2. 2.
    Golyala A, Kwan P. Drug development for refractory epilepsy: the past 25 years and beyond. Seizure. 2017;44:147–56.  https://doi.org/10.1016/j.seizure.2016.11.022.PubMedGoogle Scholar
  3. 3.
    Lerche H, Shah M, Beck H, Noebels J, Johnston D, Vincent A. Ion channels in genetic and acquired forms of epilepsy. J Physiol. 2013;591(4):753–64.  https://doi.org/10.1113/jphysiol.2012.240606.PubMedGoogle Scholar
  4. 4.
    Bernard C, Anderson A, Becker A, Poolos NP, Beck H, Johnston D. Acquired dendritic channelopathy in temporal lobe epilepsy. Science. 2004;305(5683):532–5.  https://doi.org/10.1126/science.1097065.PubMedGoogle Scholar
  5. 5.
    Poolos NP, Johnston D. Dendritic ion channelopathy in acquired epilepsy. Epilepsia. 2012;53:32–40.  https://doi.org/10.1111/epi.12033.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51.  https://doi.org/10.1016/j.cell.2018.03.006.PubMedGoogle Scholar
  7. 7.
    Griffiths-Jones S. The microRNA registry. Nucleic Acids Res. 2004;32(suppl_1):109D–111.  https://doi.org/10.1093/nar/gkh023.Google Scholar
  8. 8.
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.  https://doi.org/10.1101/gr.082701.108.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Fromm B, Billipp T, Peck LE, Johansen M, Tarver JE, King BL, et al. A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet. 2015;49:213–42.  https://doi.org/10.1146/annurev-genet-120213-092023.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4  https://doi.org/10.7554/eLife.05005.
  11. 11.
    Henshall DC, Hamer HM, Pasterkamp RJ, Goldstein DB, Kjems J, Prehn JHM, et al. MicroRNAs in epilepsy: pathophysiology and clinical utility. The Lancet Neurology. 2016;15(13):1368–76.  https://doi.org/10.1016/S1474-4422(16)30246-0.PubMedGoogle Scholar
  12. 12.
    Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31(6):1100–7.  https://doi.org/10.1111/j.1460-9568.2010.07122.x.PubMedGoogle Scholar
  13. 13.
    Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, Engel T, McKiernan RC, Mouri G, et al. miRNA expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol. 2011;179(5):2519–32.  https://doi.org/10.1016/j.ajpath.2011.07.036.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Kaalund SS, Venø MT, Bak M, Møller RS, Laursen H, Madsen F, et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis—convergence on axonal guidance. Epilepsia. 2014;55(12):2017–27.  https://doi.org/10.1111/epi.12839.PubMedGoogle Scholar
  15. 15.
    Li MM, Jiang T, Sun Z, Zhang Q, Tan CC, Yu JT, et al. Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep. 2014;4:4734.  https://doi.org/10.1038/srep04734.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee JY, Park AK, Lee ES, Park WY, Park SH, Choi JW, et al. miRNA expression analysis in cortical dysplasia: regulation of mTOR and LIS1 pathway. Epilepsy Res. 2014;108(3):433–41.  https://doi.org/10.1016/j.eplepsyres.2014.01.005.PubMedGoogle Scholar
  17. 17.
    Tiwari D, Peariso K, Gross C. MicroRNA-induced silencing in epilepsy: opportunities and challenges for clinical application. Developmental Dynamics : an Official Publication of the American Association of Anatomists. 2018;247(1):94–110.  https://doi.org/10.1002/dvdy.24582.Google Scholar
  18. 18.
    •• Mooney C, Becker BA, Raoof R, Henshall DC. EpimiRBase: a comprehensive database of microRNA-epilepsy associations. Bioinformatics. 2016;32(9):1436–8.  https://doi.org/10.1093/bioinformatics/btw008. This database provides a useful tool for researchers to easily obtain information about published studies related to microRNAs in epilepsy. PubMedGoogle Scholar
  19. 19.
    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee S-S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Molecular Therapy - Nucleic Acids. 2017;8:132–43.  https://doi.org/10.1016/j.omtn.2017.06.005.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Henshall DC. Antagomirs and microRNA in status epilepticus. Epilepsia. 2013;54 Suppl 6:17–9.  https://doi.org/10.1111/epi.12267.PubMedGoogle Scholar
  21. 21.
    • Korotkov A, Mills JD, Gorter JA, van Vliet EA, Aronica E. Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci Rep. 2017;7(1):11592.  https://doi.org/10.1038/s41598-017-11510-8. This study provides useful databases of microRNAs shown to be differentially expressed in temporal lobe epilepsy in animal models and humans. PubMedPubMedCentralGoogle Scholar
  22. 22.
    • Srivastava PK, Roncon P, Lukasiuk K, Gorter JA, Aronica E, Pitkänen A et al. Meta-analysis of microRNAs dysregulated in the hippocampal dentate gyrus of animal models of epilepsy eNeuro 2017;4(6):ENEURO.0152-17.2017.  https://doi.org/10.1523/ENEURO0152-17.2017. This is the first study that performed a meta analysis of studies reporting differentially expressed microRNAs in the dentate gyrus of epilepsy mouse models.
  23. 23.
    D'Adamo MC, Catacuzzeno L, Di Giovanni G, Franciolini F, Pessia MK. K+ channelepsy: progress in the neurobiology of potassium channels and epilepsy. Front Cell Neurosci. 2013;7:134.  https://doi.org/10.3389/fncel.2013.00134.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Brenner R, Wilcox KS. Potassium channelopathies of epilepsy. In: th, Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper’s basic mechanisms of the epilepsies. Bethesda (MD): National Center for Biotechnology Information (US); 2012.Google Scholar
  25. 25.
    •• Sosanya NM, Huang PP, Cacheaux LP, Chen CJ, Nguyen K, Perrone-Bizzozero NI, et al. Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1. J Cell Biol. 2013;202(1):53–69.  https://doi.org/10.1083/jcb.201212089. This is the first study showing that a microRNA is involved in the local dendritic translation of an ion channel. PubMedPubMedCentralGoogle Scholar
  26. 26.
    •• Sosanya NM, Brager DH, Wolfe S, Niere F, Raab-Graham KF. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis. 2015;73:96–105.  https://doi.org/10.1016/j.nbd.2014.09.011. Together with [25], this study suggests that microRNA-mediated regulation of dendritic translation of Kv1.1 is involved in epielpsy. PubMedGoogle Scholar
  27. 27.
    Rajman M, Metge F, Fiore R, Khudayberdiev S, Aksoy-Aksel A, Bicker S, et al. A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J. 2017;36(12):1770–87.  https://doi.org/10.15252/embj.201695748.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Browne DL, Gancher ST, Nutt JG, Brunt ER, Smith EA, Kramer P, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 1994;8(2):136–40.  https://doi.org/10.1038/ng1094-136.PubMedGoogle Scholar
  29. 29.
    Zuberi SM, Eunson LH, Spauschus A, De Silva R, Tolmie J, Wood NW, et al. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain. 1999;122(Pt 5):817–25.PubMedGoogle Scholar
  30. 30.
    Glasscock E, Yoo JW, Chen TT, Klassen TL, Noebels JL. Kv1.1 potassium channel deficiency reveals brain-driven cardiac dysfunction as a candidate mechanism for sudden unexplained death in epilepsy. J Neurosci. 2010;30(15):5167–75.  https://doi.org/10.1523/jneurosci.5591-09.2010.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Moore BM, Jerry Jou C, Tatalovic M, Kaufman ES, Kline DD, Kunze DL. The Kv1.1 null mouse, a model of sudden unexpected death in epilepsy (SUDEP). Epilepsia. 2014;55(11):1808–16.  https://doi.org/10.1111/epi.12793.PubMedGoogle Scholar
  32. 32.
    • Gross C, Yao X, Engel T, Tiwari D, Xing L, Rowley S, et al. MicroRNA-mediated downregulation of the potassium channel Kv4.2 contributes to seizure onset. Cell reports. 2016;17(1):37–45.  https://doi.org/10.1016/j.celrep.2016.08.074. This is the first study showing that regulation through a specific microRNA-mRNA pair is essential to control seiuzre onset. PubMedPubMedCentralGoogle Scholar
  33. 33.
    Liu X, Zhang Y, Du W, Liang H, He H, Zhang L, et al. MiR-223-3p as a novel microRNA regulator of expression of voltage-gated K+ channel Kv4.2 in acute myocardial infarction. Cell Physiol Biochem. 2016;39(1):102–14.  https://doi.org/10.1159/000445609.PubMedGoogle Scholar
  34. 34.
    Panguluri SK, Tur J, Chapalamadugu KC, Katnik C, Cuevas J, Tipparaju SM. MicroRNA-301a mediated regulation of Kv4.2 in diabetes: identification of key modulators. PLoS One. 2013;8(4):e60545.  https://doi.org/10.1371/journal.pone.0060545.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Singh B, Ogiwara I, Kaneda M, Tokonami N, Mazaki E, Baba K, et al. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis. 2006;24(2):245–53.  https://doi.org/10.1016/j.nbd.2006.07.001.PubMedGoogle Scholar
  36. 36.
    Lee H, Lin MC, Kornblum HI, Papazian DM, Nelson SF. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation. Hum Mol Genet. 2014;23(13):3481–9.  https://doi.org/10.1093/hmg/ddu056.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lugo JN, Smith GD, Arbuckle EP, White J, Holley AJ, Floruta CM, et al. Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins. Front Mol Neurosci. 2014;7  https://doi.org/10.3389/fnmol.2014.00027.
  38. 38.
    Catterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol. 2010;588(Pt 11):1849–59.  https://doi.org/10.1113/jphysiol.2010.187484.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang Z, Wang Z, Zhang B, Liu Y. Downregulation of microRNA155 by preoperative administration of valproic acid prevents postoperative seizures by upregulating SCN1A. Mol Med Rep. 2018;17(1):1375–81.  https://doi.org/10.3892/mmr.2017.8004.PubMedGoogle Scholar
  40. 40.
    Li T, Kuang Y, Li B. The genetic variants in 3′ untranslated region of voltage-gated sodium channel alpha 1 subunit gene affect the mRNA-microRNA interactions and associate with epilepsy. BMC Genet. 2016;17(1):111.  https://doi.org/10.1186/s12863-016-0417-y.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ribak C, Harris A, Vaughn J, Roberts E. Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. Science. 1979;205(4402):211–4.  https://doi.org/10.1126/science.109922.PubMedGoogle Scholar
  42. 42.
    Spampanato J, Dudek FE. Targeted interneuron ablation in the mouse hippocampus can cause spontaneous recurrent seizures. eNeuro. 2017;4(4):ENEURO.0130-17.2017. doi: https://doi.org/10.1523/ENEURO.0130-17.2017, ENEURO.0130, ENEU17.2017.
  43. 43.
    Drexel M, Romanov RA, Wood J, Weger S, Heilbronn R, Wulff P, et al. Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice. J Neurosci. 2017;37(34):8166–79.  https://doi.org/10.1523/jneurosci.3456-16.2017.PubMedGoogle Scholar
  44. 44.
    Gross C. Lost inhibition—brain activity temporarily out of control. Epilepsy Curr. 2018;18(1):53–5.  https://doi.org/10.5698/1535-7597.18.1.53.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int. 2012;61(4):546–58.  https://doi.org/10.1016/j.neuint.2012.02.013.PubMedGoogle Scholar
  46. 46.
    Hunt RF, Baraban SC. Interneuron transplantation as a treatment for epilepsy. Cold Spring Harbor Perspectives in Medicine. 2015;5(12)  https://doi.org/10.1101/cshperspect.a022376.
  47. 47.
    Rogawski MA. AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand Suppl. 2013;197:9–18.  https://doi.org/10.1111/ane.12099.Google Scholar
  48. 48.
    Hanley JG. Subunit-specific trafficking mechanisms regulating the synaptic expression of Ca2+−permeable AMPA receptors. Semin Cell Dev Biol. 2014;27:14–22.  https://doi.org/10.1016/j.semcdb.2013.12.002.PubMedGoogle Scholar
  49. 49.
    •• Letellier M, Elramah S, Mondin M, Soula A, Penn A, Choquet D, et al. miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci. 2014;17(8):1040–2.  https://doi.org/10.1038/nn.3762. This study shows that microRNA-mediated regulation of GluA1 regulates homeostatic scaling, one of the first studies demonstrating a direct role of microRNA-induced silencing of an ion channel in synaptic plasticity. PubMedGoogle Scholar
  50. 50.
    Turrigiano G. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb Perspect Biol. 2012;4(1):a005736.  https://doi.org/10.1101/cshperspect.a005736.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 1998;391:892–6.  https://doi.org/10.1038/36103.PubMedGoogle Scholar
  52. 52.
    Trasande CA, Ramirez JM. Activity deprivation leads to seizures in hippocampal slice cultures: is epilepsy the consequence of homeostatic plasticity? Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society. 2007;24(2):154–64.  https://doi.org/10.1097/WNP.0b013e318033787f.Google Scholar
  53. 53.
    McKiernan RC, Jimenez-Mateos EM, Bray I, Engel T, Brennan GP, Sano T, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One. 2012;7(5):e35921.  https://doi.org/10.1371/journal.pone.0035921.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Roncon P, Soukupovà M, Binaschi A, Falcicchia C, Zucchini S, Ferracin M, et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy—comparison with human epileptic samples. Sci Rep. 2015;5:14143.  https://doi.org/10.1038/srep14143.PubMedPubMedCentralGoogle Scholar
  55. 55.
    • Olde Loohuis NF, Ba W, Stoerchel PH, Kos A, Jager A, Schratt G, et al. MicroRNA-137 controls AMPA-receptor-mediated transmission and mGluR-dependent LTD. Cell Rep. 2015;11(12):1876–84.  https://doi.org/10.1016/j.celrep.2015.05.040. This study is the first to report a role for a microRNA in mGluR-LTD. PubMedGoogle Scholar
  56. 56.
    Thomas KT, Anderson BR, Shah N, Zimmer SE, Hawkins D, Valdez AN, et al. Inhibition of the schizophrenia-associated microRNA miR-137 disrupts Nrg1α neurodevelopmental signal transduction. Cell Rep. 2017;20(1):1–12.  https://doi.org/10.1016/j.celrep.2017.06.038.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sakamoto K, Crowley JJ. A comprehensive review of the genetic and biological evidence supports a role for microRNA-137 in the etiology of schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2018;177(2):242–56.  https://doi.org/10.1002/ajmg.b.32554.PubMedGoogle Scholar
  58. 58.
    Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S, et al. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis. 2014;62(0):508–20.  https://doi.org/10.1016/j.nbd.2013.10.026.PubMedGoogle Scholar
  59. 59.
    Song YJ, Tian XB, Zhang S, Zhang YX, Li X, Li D, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res. 2011;1387:134–40.  https://doi.org/10.1016/j.brainres.2011.02.073.PubMedGoogle Scholar
  60. 60.
    Bot AM, Debski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS One. 2013;8(10):e76051.  https://doi.org/10.1371/journal.pone.0076051.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Schouten M, Fratantoni SA, Hubens CJ, Piersma SR, Pham TV, Bielefeld P, et al. MicroRNA-124 and -137 cooperativity controls caspase-3 activity through BCL2L13 in hippocampal neural stem cells. Sci Rep. 2015;5:12448.  https://doi.org/10.1038/srep12448.PubMedPubMedCentralGoogle Scholar
  62. 62.
    •• Hu Z, Zhao J, Hu T, Luo Y, Zhu J, Li Z. miR-501-3p mediates the activity-dependent regulation of the expression of AMPA receptor subunit GluA1. J Cell Biol. 2015;208(7):949–59.  https://doi.org/10.1083/jcb.201404092. This study provides in vivo evidence that the local dendritic translation of GluA1 is regulated by a microRNA. PubMedPubMedCentralGoogle Scholar
  63. 63.
    Grooms SY, Noh KM, Regis R, Bassell GJ, Bryan MK, Carroll RC, et al. Activity bidirectionally regulates AMPA receptor mRNA abundance in dendrites of hippocampal neurons. J Neurosci. 2006;26(32):8339–51.PubMedGoogle Scholar
  64. 64.
    Muddashetty RS, Kelic S, Gross C, Xu M, Bassell GJ. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci. 2007;27(20):5338–48.  https://doi.org/10.1523/jneurosci.0937-07.2007.PubMedGoogle Scholar
  65. 65.
    Sutton MA, Ito HT, Cressy P, Kempf C, Woo JC, Schuman EM. Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell. 2006;125(4):785–99.  https://doi.org/10.1016/j.cell.2006.03.040.PubMedGoogle Scholar
  66. 66.
    Smith WB, Starck SR, Roberts RW, Schuman EM. Dopaminergic stimulation of local protein synthesis enhances surface expression of GluR1 and synaptic transmission in hippocampal neurons. Neuron. 2005;45(5):765–79.  https://doi.org/10.1016/j.neuron.2005.01.015.PubMedGoogle Scholar
  67. 67.
    Isaac JTR, Ashby MC, McBain CJ. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron. 2007;54(6):859–71.  https://doi.org/10.1016/j.neuron.2007.06.001.PubMedGoogle Scholar
  68. 68.
    Saba R, Storchel PH, Aksoy-Aksel A, Kepura F, Lippi G, Plant TD, et al. Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol. 2012;32(3):619–32.  https://doi.org/10.1128/mcb.05896-11.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ren L, Zhu R, Li X. Silencing miR-181a produces neuroprotection against hippocampus neuron cell apoptosis post-status epilepticus in a rat model and in children with temporal lobe epilepsy. Genetics and Molecular Research : GMR. 2016;15(1)  https://doi.org/10.4238/gmr.15017798.
  70. 70.
    • Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL. MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci U S A. 2012;109(46):18962–7.  https://doi.org/10.1073/pnas.1121288109. This study, together with [33], suggests that a microRNA regulates neuronal activity by targeting several different ion channels. PubMedPubMedCentralGoogle Scholar
  71. 71.
    Srivastava A, Dixit AB, Paul D, Tripathi M, Sarkar C, Chandra PS, et al. Comparative analysis of cytokine/chemokine regulatory networks in patients with hippocampal sclerosis (HS) and focal cortical dysplasia (FCD). Sci Rep. 2017;7(1):15904.  https://doi.org/10.1038/s41598-017-16041-w.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ranjan D, CA M, Ansi C, RM V, DS A, DM K, et al. Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miR-124 and reduced AMPA receptors. Ann Neurol. 2013;73(5):637–45.  https://doi.org/10.1002/ana.23860.Google Scholar
  73. 73.
    •• Brennan GP, Dey D, Chen Y, Patterson KP, Magnetta EJ, Hall AM, et al. Dual and opposing roles of microRNA-124 in epilepsy are mediated through inflammatory and NRSF-dependent gene networks. Cell Rep. 2016;14(10):2402–12.  https://doi.org/10.1016/j.celrep.2016.02.042. This study illustrates that the physiological function of microRNAs is the summary of actions on all targets and therefore not always predictable. PubMedPubMedCentralGoogle Scholar
  74. 74.
    Wang W, Wang X, Chen L, Zhang Y, Xu Z, Liu J, et al. The microRNA miR-124 suppresses seizure activity and regulates CREB1 activity. Expert Rev Mol Med. 2016;18:e4.  https://doi.org/10.1017/erm.2016.3.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Iacobucci GJ, Popescu GK. NMDA receptors: linking physiological output to biophysical operation. Nat Rev Neurosci. 2017;18:236–49.  https://doi.org/10.1038/nrn.2017.24.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4(6):a005710.  https://doi.org/10.1101/cshperspect.a005710.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Shen H, Li Z. miRNAs in NMDA receptor-dependent synaptic plasticity and psychiatric disorders. Clinical Science (London, England : 1979). 2016;130(14):1137–46.  https://doi.org/10.1042/CS20160046.Google Scholar
  78. 78.
    Corbel C, Hernandez I, Wu B, Kosik KS. Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Dev. 2015;10:20.  https://doi.org/10.1186/s13064-015-0047-5.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Muller L, Tokay T, Porath K, Kohling R, Kirschstein T. Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiol Dis. 2013;54:183–93.  https://doi.org/10.1016/j.nbd.2012.12.011.PubMedGoogle Scholar
  80. 80.
    Morris RG, Moser EI, Riedel G, Martin SJ, Sandin J, Day M, et al. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc Lond Ser B Biol Sci. 2003;358(1432):773–86.  https://doi.org/10.1098/rstb.2002.1264.Google Scholar
  81. 81.
    Lenck-Santini PP, Scott RC. Mechanisms responsible for cognitive impairment in epilepsy. Cold Spring Harb Perspect Med. 2015;5(10)  https://doi.org/10.1101/cshperspect.a022772.
  82. 82.
    Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010;65(3):373–84.  https://doi.org/10.1016/j.neuron.2010.01.005.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic strategies in fragile X syndrome: from bench to bedside and back. Neurotherapeutics. 2015;12(3):584–608.  https://doi.org/10.1007/s13311-015-0355-9.PubMedPubMedCentralGoogle Scholar
  84. 84.
    • Alsharafi WA, Xiao B, Li J. MicroRNA-139-5p negatively regulates NR2A-containing NMDA receptor in the rat pilocarpine model and patients with temporal lobe epilepsy. Epilepsia. 2016;57(11):1931–40.  https://doi.org/10.1111/epi.13568. The first direct link of a microRNA regulating NMDA receptors and epilepsy. PubMedGoogle Scholar
  85. 85.
    Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, et al. Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet. 2016;99(6):1261–80.  https://doi.org/10.1016/j.ajhg.2016.10.002.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10(1):63–74.  https://doi.org/10.1016/s1474-4422(10)70253-2.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Wu C, Sun D. GABA receptors in brain development, function, and injury. Metab Brain Dis. 2015;30(2):367–79.  https://doi.org/10.1007/s11011-014-9560-1.PubMedGoogle Scholar
  88. 88.
    Jovasevic V, Corcoran KA, Leaderbrand K, Yamawaki N, Guedea AL, Chen HJ, et al. GABAergic mechanisms regulated by miR-33 encode state-dependent fear. Nat Neurosci. 2015;18(9):1265–71.  https://doi.org/10.1038/nn.4084.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115.  https://doi.org/10.1186/1471-2202-13-115.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Albert S, Stephanie S. Changing channels in pain and epilepsy: exploiting ion channel gene therapy for disorders of neuronal hyperexcitability. FEBS Lett. 2015;589(14):1620–34.  https://doi.org/10.1016/j.febslet.2015.05.004.Google Scholar
  91. 91.
    • Sakai A, Saitow F, Maruyama M, Miyake N, Miyake K, Shimada T, et al. MicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain. Nat Commun. 2017;8:16079.  https://doi.org/10.1038/ncomms16079. The study shows that microRNAs of the same family/gene cluster can regulate the same physiological outcome, namely A-type potassium currents, providing further insight into microRNA-induced silencing and suggesting similar mechanisms in epilepsy. PubMedPubMedCentralGoogle Scholar
  92. 92.
    Concepcion CP, Bonetti C, Ventura A. The microRNA-17-92 family of microRNA clusters in development and disease. Cancer Journal (Sudbury, Mass). 2012;18(3):262–7.  https://doi.org/10.1097/PPO.0b013e318258b60a.Google Scholar
  93. 93.
    Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep. 2017;7(1):3328.  https://doi.org/10.1038/s41598-017-02969-6.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Shao J, Cao J, Wang J, Ren X, Su S, Li M, et al. MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat. Mol Pain. 2016;12:174480691667152.  https://doi.org/10.1177/1744806916671523.Google Scholar
  95. 95.
    Singh NA, Pappas C, Dahle EJ, Claes LR, Pruess TH, De Jonghe P, et al. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome. PLoS Genet. 2009;5(9):e1000649.  https://doi.org/10.1371/journal.pgen.1000649.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H. miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain. 2013;136(Pt 9):2738–50.  https://doi.org/10.1093/brain/awt191.PubMedGoogle Scholar
  97. 97.
    Baum L, Haerian BS, Ng HK, Wong VC, Ng PW, Lui CH, et al. Case-control association study of polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, SCN3A, SCN1B, and SCN2B and epilepsy. Hum Genet. 2014;133(5):651–9.  https://doi.org/10.1007/s00439-013-1405-1.PubMedGoogle Scholar
  98. 98.
    Lu Y, Yu W, Xi Z, Xiao Z, Kou X, Wang XF. Mutational analysis of SCN2B, SCN3B and SCN4B in a large Chinese Han family with generalized tonic-clonic seizure. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2010;31(5):675–7.  https://doi.org/10.1007/s10072-010-0390-6. Google Scholar
  99. 99.
    Chen C, Bharucha V, Chen Y, Westenbroek RE, Brown A, Malhotra JD, et al. Reduced sodium channel density, altered voltage dependence of inactivation, and increased susceptibility to seizures in mice lacking sodium channel beta 2-subunits. Proc Natl Acad Sci U S A. 2002;99(26):17072–7.  https://doi.org/10.1073/pnas.212638099.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Sun LH, Yan ML, Hu XL, Peng LW, Che H, Bao YN, et al. MicroRNA-9 induces defective trafficking of Nav1.1 and Nav1.2 by targeting Navbeta2 protein coding region in rat with chronic brain hypoperfusion. Mol Neurodegener. 2015;10:36.  https://doi.org/10.1186/s13024-015-0032-9.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of NeurologyCincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of Pediatrics, College of MedicineUniversity of CincinnatiCincinnatiUSA

Personalised recommendations