Advertisement

Multidrug Resistant Acinetobacter baumannii: Resistance by Any Other Name Would Still be Hard to Treat

  • David A. Butler
  • Mark Biagi
  • Xing Tan
  • Samah Qasmieh
  • Zackery P. Bulman
  • Eric WenzlerEmail author
Antimicrobial Development and Drug Resistance (K Claeys and A Vega, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Antimicrobial Development and Drug Resistance

Abstract

Purpose of Review

Acinetobacter baumannii (AB) is an infamous nosocomial pathogen with a seemingly limitless capacity for antimicrobial resistance, leading to few treatment options and poor clinical outcomes. The debatably low pathogenicity and virulence of AB are juxtaposed by its exceptionally high rate of infection-related mortality, likely due to delays in time to effective antimicrobial therapy secondary to its predilection for resistance to first-line agents. Recent studies of AB and its infections have led to a burgeoning understanding of this critical microbial threat and provided clinicians with new ammunition for which to target this elusive pathogen. This review will provide an update on the virulence, resistance, diagnosis, and treatment of multidrug resistant (MDR) AB.

Recent Findings

Advances in bacterial genomics have led to a deeper understanding of the unique mechanisms of resistance often present in MDR AB and how they may be exploited by new antimicrobials or optimized combinations of existing agents. Further, improvements in rapid diagnostic tests (RDTs) and their more pervasive use in combination with antimicrobial stewardship interventions have allowed for more rapid diagnosis of AB and decreases in time to effective therapy. Unfortunately, there remains a paucity of high-quality clinical data for which to inform the optimal treatment of MDR AB infections. In fact, recently completed studies have failed to identify a combination regimen that is consistently superior to monotherapy, despite the benefits demonstrated in vitro. Encouragingly, new and updated guidelines offer strategies for the treatment of MDR AB and may help to harmonize the use of high toxicity agents such as the polymyxins. Finally, new antimicrobial agents such as eravacycline and cefiderocol have promising in vitro activity against MDR AB but their place in therapy for these infections remains to be determined.

Summary

Notwithstanding available clinical trial data, polymyxin-based combination therapies with either a carbapenem, minocycline, or eravacycline remain the treatment of choice for MDR, particularly carbapenem-resistant, AB. Incorporating antimicrobial stewardship intervention with RDTs relevant to MDR AB can help avoid potentially toxic combination therapies and catalyze the most important modifiable risk factor for mortality—time to effective therapy. Further research efforts into pharmacokinetic/pharmacodynamic-based dose optimization and clinical outcomes data for MDR AB continue to be desperately needed.

Keywords

Acinetobacter baumannii Resistance Rapid diagnostics Combination therapy Polymyxins Tetracyclines 

Notes

Compliance with Ethical Standards

Conflict of Interest

Eric Wenzler serves on the speaker’s bureau for Melinta Therapeutics and Astellas Pharma and on the advisory board for Shionogi and Genmark Diagnostics. All other authors certify no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Wong D, Nielsen TB, Bonomo RA, Pantapalangkoor P, Luna B, Spellberg B. Clinical and pathophysiological overview of Acinetobacter infections: a century of challenges. Clin Microbiol Rev. 2017;30(1):409–47.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.CrossRefGoogle Scholar
  3. 3.
    • Kadri SS, Adjemian J, Lai YL, Hooper DC, Spaulding AB, Ricotta E, et al. Difficult-to-treat resistance in Gram-negative bacteremia at 173 US Hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803–14 This large retrospective cohort study analyses the correlation of antibiotic resistance and clinical outcomes in Gram-negative bacteremia and proposes a new definition of antibiotic resistance defined by non-susceptibility of first-line agents. PubMedPubMedCentralGoogle Scholar
  4. 4.
    Activity of antimicrobial agents when tested against 448 Acinetobacter baumannii-calcoaceticus species complex isolates in the SENTRY program collected from medical centers in North America from medical centers in USA during 2017 and 2018 [Internet]. JMI Laboratories, Inc. [cited 23 Jun 2019]. Available from: https://sentry-mvp.jmilabs.com/.
  5. 5.
    Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57(1):138–63.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Bouchillon S, Hawser S, Monti F, Morrissey I, Ditch K, Olesky M, Fyfe C. Surveillance of the in vitro activity of eravacycline and comparators against clinical isolates from the USA from 20132016. Oral presentation at 38th Surgical Infection Society Annual Meeting; 22 Apr 2018. Westlake Village, CA, USA.Google Scholar
  7. 7.
    Pfaller MA, Huband MD, Shortridge D, Flamm RK. Surveillance of omadacycline activity tested against clinical isolates from the United States and Europe as part of the 2016 SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2018;62(4):e02327–17.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Garcia-Salguero C, Rodriguez-Avial I, Picazo JJ, Culebras E. Can Plazomicin Alone or in Combination Be a Therapeutic Option against Carbapenem-Resistant Acinetobacter baumannii? Antimicrob Agents Chemother 2015; 59(10):5959–66.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Seifert H, Stefanik D, Sutcliffe JA, Higgins PG. In-vitro activity of the novel fluorocycline eravacycline against carbapenem non-susceptible Acinetobacter baumannii. Int J Antimicrob Agents. 2018;51(1):62–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018;11:1249–60.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001;45(12):3375–80.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Grossman TH, Starosta AL, Fyfe C, O’Brien W, Rothstein DM, Mikolajka A, et al. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Antimicrob Agents Chemother. 2012;56(5):2559–64.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Shrestha S, Tada T, Shrestha B, Kirikae T, Ohara H, Rijal BP, et al. Emergence of aminoglycoside resistance due to armA methylase in multi-drug resistant Acinetobacter baumannii isolates in a University Hospital in Nepal. J Nepal Health Res Counc. 2016;14(33):72–6.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Vila J, Ruiz J, Goni P. Jimenez de Anta T. Quinolone-resistance mutations in the topoisomerase IV parC gene of Acinetobacter baumannii. J Antimicrob Chemother. 1997;39(6):757–62.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017;30(1):1–22.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Cai B, Echols R, Magee G, Arjona Ferreira JC, Morgan G, Ariyasu M, et al. Prevalence of carbapenem-resistant Gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis. 2017;4(3):ofx176.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Reinert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky MJ. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother. 2007;60(5):1018–29.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Al-Agamy MH, Jeannot K, El-Mahdy TS, Shibl AM, Kattan W, Plesiat P, et al. First detection of GES-5 carbapenemase-producing Acinetobacter baumannii isolate. Microb Drug Resist. 2017;23(5):556–62.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bogaerts P, Naas T, El Garch F, Cuzon G, Deplano A, Delaire T, et al. GES extended-spectrum beta-lactamases in Acinetobacter baumannii isolates in Belgium. Antimicrob Agents Chemother. 2010;54(11):4872–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Azimi L, Talebi M, Pourshafie MR, Owlia P, Rastegar LA. Characterization of carbapenemases in extensively drug resistance Acinetobacter baumannii in a Burn Care Center in Iran. Int J Mol Cell Med. 2015;4(1):46–53.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Robledo IE, Aquino EE, Sante MI, Santana JL, Otero DM, Leon CF, et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother. 2010;54(3):1354–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lee CR, Lee JH, Park M, Park KS, Bae IK, Kim YB, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Front Cell Infect Microbiol. 2017;7:55.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Palzkill T. Metallo-beta-lactamase structure and function. Ann N Y Acad Sci. 2013;1277:91–104.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010;35(3):219–26.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis. 2010;16(1):35–40.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    • Pogue JM, Heil EL, Lephart P, Johnson JK, Mynatt RP, Salimnia H, et al. An Antibiotic stewardship program blueprint for optimizing Verigene BC-GN within an Institution: a tale of two cities. Antimicrob Agents Chemother. 2018;62(5) This antibiotic stewardship-driven analysis of Verigene BC-GN blood culture results is the first to show an actionable correlation between the absence of the blaOXA carbapenem resistance marker and Acinetobacter spp. susceptibility to meropenem. Google Scholar
  27. 27.
    Shapiro AB. Kinetics of sulbactam hydrolysis by β-lactamases, and kinetics of β-lactamase inhibition by sulbactam. Antimicrob Agents Chemother. 2017;61(12):e01612–7.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gales AC, Seifert H, Gur D, Sader HS, Castanheira M, Jones RN. Antimicrobial susceptibility of Acinetobacter calcoaceticus–Acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY antimicrobial surveillance program (1997–2016). Open Forum Infect Dis. 2019;6(Supplement_1):S34–46.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yang Y, Xu Q, Li T, Fu Y, Shi Y, Lan P, et al. OXA-23 Is a prevalent mechanism contributing to sulbactam resistance in diverse Acinetobacter baumannii clinical strains. Antimicrob Agents Chemother. 2019;63(1).Google Scholar
  30. 30.
    Krizova L, Poirel L, Nordmann P, Nemec A. TEM-1 beta-lactamase as a source of resistance to sulbactam in clinical strains of Acinetobacter baumannii. J Antimicrob Chemother. 2013;68(12):2786–91.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kuo SC, Lee YT, Yang Lauderdale TL, Huang WC, Chuang MF, Chen CP, et al. Contribution of Acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front Microbiol. 2015;6:231.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Yang Y, Fu Y, Lan P, Xu Q, Jiang Y, Chen Y, et al. Molecular epidemiology and mechanism of sulbactam resistance in Acinetobacter baumannii isolates with diverse genetic backgrounds in China. Antimicrob Agents Chemother. 2018;62(3):e01947–17.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother. 2010;54(12):4971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Arroyo LA, Herrera CM, Fernandez L, Hankins JV, Trent MS, Hancock RE. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother. 2011;55(8):3743–51.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Adams MD, Nickel GC, Bajaksouzian S, Lavender H, Murthy AR, Jacobs MR, et al. Resistance to colistin in Acinetobacter baumannii associated with mutations in the PmrAB two-component system. Antimicrob Agents Chemother. 2009;53(9):3628–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Beceiro A, Llobet E, Aranda J, Bengoechea JA, Doumith M, Hornsey M, et al. Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother. 2011;55(7):3370–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chin CY, Gregg KA, Napier BA, Ernst RK, Weiss DS. A PmrB-regulated deacetylase required for lipid a modification and polymyxin resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2015;59(12):7911–4.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ma F, Shen C, Zheng X, Liu Y, Chen H, Zhong L, et al. Identification of a novel plasmid carrying mcr-4.3 in an Acinetobacter baumannii strain in China. Antimicrob Agents Chemother. 2019;(6):63.Google Scholar
  39. 39.
    Nang SC, Morris FC, McDonald MJ, Han ML, Wang J, Strugnell RA, et al. Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(6):1604–10.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sutcliffe JA, O’Brien W, Fyfe C, Grossman TH. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother. 2013;57(11):5548–58.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Nguyen F, Starosta AL, Arenz S, Sohmen D, Donhofer A, Wilson DN. Tetracycline antibiotics and resistance mechanisms. Biol Chem. 2014;395(5):559–75.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Akers KS, Mende K, Yun HC, Hospenthal DR, Beckius ML, Yu X, et al. Tetracycline susceptibility testing and resistance genes in isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus complex from a U.S. military hospital. Antimicrob Agents Chemother. 2009;53(6):2693–5.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Mendes R, Castanheira M, Armstrong E, Steenbergen J, Flamm R. Omadacycline in vitro activity against a molecularly characterized collection of clinical isolates with known tetracycline resistance mechanisms. Presented at IDWeek 2018 [Poster #1377]. San Francisco, CA, USA.Google Scholar
  44. 44.
    Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harbor Perspect Med. 2016;6(4):a025387.CrossRefGoogle Scholar
  45. 45.
    Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011;55(3):947–53.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lomovskaya O, Sun D, King P, Dudley M. Tigecycline (TIG) but not minocycline (MINO) selects for clinically relevant efflux-mediated resistance (R) in Acinetobacter spp. (ACB). In: Abstr 54th Intersci Conf Antimicrob Agents Chemother , Abstract C1-1087.Google Scholar
  47. 47.
    Honeyman L, Ismail M, Nelson ML, Bhatia B, Bowser TE, Chen J, et al. Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline. Antimicrob Agents Chemother. 2015;59(11):7044–53.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Beabout K, Hammerstrom TG, Perez AM, Magalhaes BF, Prater AG, Clements TP, et al. The ribosomal S10 protein is a general target for decreased tigecycline susceptibility. Antimicrob Agents Chemother. 2015;59(9):5561–6.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chen Q, Li X, Zhou H, Jiang Y, Chen Y, Hua X, et al. Decreased susceptibility to tigecycline in Acinetobacter baumannii mediated by a mutation in trm encoding SAM-dependent methyltransferase. J Antimicrob Chemother. 2014;69(1):72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, Quale J. Activity of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including multidrug-resistant isolates, from New York City. Antimicrob Agents Chemother. 2015;59(3):1802–5.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Yang W, Moore IF, Koteva KP, Bareich DC, Hughes DW, Wright GD. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J Biol Chem. 2004;279(50):52346–52.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bulens SN, Yi SH, Walters MS, Jacob JT, Bower C, Reno J, et al. Carbapenem-nonsusceptible Acinetobacter baumannii, 8 US Metropolitan areas, 2012-2015. Emerg Infect Dis. 2018;24(4):727–34.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Castanheira M, Davis AP, Mendes RE, Serio AW, Krause KM, Flamm RK. In vitro activity of plazomicin against Gram-negative and Gram-positive isolates collected from U.S. hospitals and comparative activities of aminoglycosides against carbapenem-resistant Enterobacteriaceae and isolates carrying carbapenemase genes. Antimicrob Agents Chemother. 2018;(8):62.Google Scholar
  54. 54.
    Chau SL, Chu YW, Houang ET. Novel resistance-nodulation-cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother. 2004;48(10):4054–5.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Park S, Lee KM, Yoo YS, Yoo JS, Yoo JI, Kim HS, et al. Alterations of gyrA, gyrB, and parC and activity of efflux pump in fluoroquinolone-resistant Acinetobacter baumannii. Osong Public Health Res Perspect. 2011;2(3):164–70.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yang H, Hu L, Liu Y, Ye Y, Li J. Detection of the plasmid-mediated quinolone resistance determinants in clinical isolates of Acinetobacter baumannii in China. J Chemother. 2016;28(5):443–5.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Touati A, Brasme L, Benallaoua S, Gharout A, Madoux J, De Champs C. First report of qnrB-producing Enterobacter cloacae and qnrA-producing Acinetobacter baumannii recovered from Algerian hospitals. Diagn Microbiol Infect Dis. 2008;60(3):287–90.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mirnejad R, Heidary M, Bahramian A, Goudarzi M, Pournajaf A. Evaluation of polymyxin B susceptibility profile and detection of drug resistance genes among Acinetobacter baumannii clinical isolates in Tehran, Iran during 2015-2016. Mediterr J Hematol Infect Dis. 2018;10(1):e2018044.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(10):4389–93.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–82.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tjernberg I, Ursing J. Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS. 1989;97(7):595–605.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol. 1991;29(2):277–82.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Bauer KA, Perez KK, Forrest GN, Goff DA. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis. 2014;59(Suppl 3):S134–45.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sullivan KV. Advances in diagnostic testing that impact infection prevention and antimicrobial stewardship programs. Curr Infect Dis Rep. 2019;21(6):20.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kostyanev T, Vilken T, Lammens C, Timbermont L, Van’t Veen A, Goossens H. Detection and prevalence of carbapenem-resistant Gram-negative bacteria among European laboratories in the COMBACTE network: a COMBACTE LAB-Net survey. Int J Antimicrob Agents. 2019;53(3):268–74.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Chusri S, Chongsuvivatwong V, Rivera JI, Silpapojakul K, Singkhamanan K, McNeil E, et al. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob Agents Chemother. 2014;58(7):4172–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    European Centre for Disease Prevention and Control. Carbapenem-resistant Acinetobacter baumannii in healthcare settings 2016 [Available from: https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/8-Dec-2016-RRA-Acinetobacter%20baumannii-Europe.pdf. Accessed 03 Jun 2019.
  68. 68.
    Connolly LE, Riddle V, Cebrik D, Armstrong ES, Miller LG. A multicenter, randomized, double-blind, phase 2 study of the efficacy and safety of plazomicin compared with levofloxacin in the treatment of complicated urinary tract infection and acute pyelonephritis. Antimicrob Agents Chemother. 2018;62(4).Google Scholar
  69. 69.
    Kang CI, Kim J, Park DW, Kim BN, Ha US, Lee SJ, et al. Clinical practice guidelines for the antibiotic treatment of community-acquired urinary tract infections. Infect Chemother. 2018;50(1):67–100.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12(9):826–36.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wenzler E, Goff DA, Mangino JE, Reed EE, Wehr A, Bauer KA. Impact of rapid identification of Acinetobacter baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn Microbiol Infect Dis. 2016;84(1):63–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    GlobeNewswire. Entasis therapeutics receives positive feedback from FDA end-of-phase 2 meeting for ETX2514SUL; signs rapid diagnostic agreement with bioMérieux 2019 [Available from: https://www.globenewswire.com/news-release/2019/02/05/1710540/0/en/Entasis-Therapeutics-Receives-Positive-Feedback-from-FDA-End-of-Phase-2-Meeting-for-ETX2514SUL-Signs-Rapid-Diagnostic-Agreement-with-bioM%C3%A9rieux.html. Accessed 20 Jun 2019.
  73. 73.
    Sagan O YR, Yanev K, Fomkin R, Stone E, O’Donnell J, Miller A, Isaacs R, Srinivasan S. A double-blind, randomized, placebo-controlled study to evaluate the safety and efficacy of intravenous sulbactam-ETX2514 in the treatment of hospitalized adults with complicated urinary tract infections, including acute pyelonephritis. Poster presented at 29th European Congress of Clinical Microbiology and Infections Diseases; 2019 Apr 13-19; Amsterdam, Netherlands.Google Scholar
  74. 74.
    Isaacs R. ETX2514SUL (sulbactam/ETX2514SUL for treatment of Acinetobacter baumannii infections. Oral presentation at 2018 IDWeek; 2018 Oct 4. San Francisco, CA, USA.Google Scholar
  75. 75.
    Yokoyama Y, Matsumoto K, Ikawa K, Watanabe E, Morikawa N, Takeda Y. Population pharmacokinetic-pharmacodynamic target attainment analysis of sulbactam in patients with impaired renal function: dosing considerations for Acinetobacter baumannii infections. J Infect Chemother. 2015;21(4):284–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lenhard JR, Smith NM, Bulman ZP, Tao X, Thamlikitkul V, Shin BS, et al. High-dose ampicillin-sulbactam combinations combat polymyxin-resistant Acinetobacter baumannii in a hollow-fiber infection model. Antimicrob Agents Chemother. 2017;61(3).Google Scholar
  77. 77.
    Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Scheld WM, et al. 2017 Infectious diseases society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017;64(6):e34–65.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Garnacho-Montero J, Dimopoulos G, Poulakou G, Akova M, Cisneros JM, De Waele J, et al. Task force on management and prevention of Acinetobacter baumannii infections in the ICU. Intensive Care Med. 2015;41(12):2057–75.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Lenhard JR, Thamlikitkul V, Silveira FP, Garonzik SM, Tao X, Forrest A, et al. Polymyxin-resistant, carbapenem-resistant Acinetobacter baumannii is eradicated by a triple combination of agents that lack individual activity. J Antimicrob Chemother. 2017;72(5):1415–20.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Rodvold KA, Gotfried MH, Isaacs RD, O’Donnell JP, Stone E. Plasma and Intrapulmonary concentrations of ETX2514 and sulbactam following intravenous administration of ETX2514SUL to healthy adult subjects. Antimicrob Agents Chemother. 2018;62(11).Google Scholar
  82. 82.
    • Lim SMS, Sime FB, Roberts J. Multidrug-resistant Acinetobacter baumannii infections: current evidence on treatment options and role of PK/PD in dose optimization. Int J Antimicrob Agents. 2019; An excellent review of PK/PD for AB infections including in vitro, in vivo, and clinical trials. The supplementary tables provide an enpansive list of in vitro and in vivo synergy studies over the last decade. Google Scholar
  83. 83.
    Activity of antimicrobial agents when tested against 568 CLSI 2019 MDR Acinetobacter baumannii-calcoaceticus species complex isolates in the SENTRY program collected during 2018 [Internet]. JMI Laboratories, Inc. Available from: https://sentry-mvp.jmilabs.com/. Accessed 03 Jun 2019.
  84. 84.
    Zusman O, Avni T, Leibovici L, Adler A, Friberg L, Stergiopoulou T, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother. 2013;57(10):5104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-producing Klebsiella pneumoniae bloodstream infections: lowering mortality by antibiotic combination schemes and the role of carbapenems. Antimicrob Agents Chemother. 2014;58(4):2322–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother. 2015;70(7):2133–43.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    •• Paul M, Daikos GL, Durante-Mangoni E, Yahav D, Carmeli Y, Benattar YD, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. 2018;18(4):391–400 This is the largest randomized controlled trial of carbapenem-resistant Gram-negative bacterial infections to date, including 77% AB, and is the basis of recent limitations regarding carbapenem-polymyxin combinations. PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Dickstein Y, Lellouche J, Ben Dalak Amar M, Schwartz D, Nutman A, Daitch V, Yahav D, Leibovici L, Skiada A, Antoniadou A, Daikos GL, Andini R, Zampino R, Durante-Mangoni E, Mouton JW, Friberg LE, Dishon Benattar Y, Bitterman R, Neuberger A, Carmeli Y, Paul M. 2018. Treatment Outcomes of Colistin- and Carbapenem-resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clinical Infectious Diseases 2019;69(5):769–776.CrossRefGoogle Scholar
  89. 89.
    Jung SY, Lee SH, Lee SY, Yang S, Noh H, Chung EK, et al. Antimicrobials for the treatment of drug-resistant Acinetobacter baumannii pneumonia in critically ill patients: a systemic review and Bayesian network meta-analysis. Crit Care. 2017;21(1):319.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kengkla K, Saokaew S, Kongpakwattana K, Chaiyakunapruk N, Apisarnthanarak A. Comparative efficacy and safety of treatment options for MDR and XDR Acinetobacter baumannii infections: a systematic review and network meta-analysis. J Antimicrob Chemother. 2017;73(1):22–32.CrossRefGoogle Scholar
  91. 91.
    Chen H, Liu Q, Chen Z, Li C. Efficacy of sulbactam for the treatment of Acinetobacter baumannii complex infection: a systematic review and meta-analysis. J Infect Chemother. 2017;23(5):278–85.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Jaruratanasirikul S, Wongpoowarak W, Wattanavijitkul T, Sukarnjanaset W, Samaeng M, Nawakitrangsan M, et al. Population pharmacokinetics and pharmacodynamics modeling to optimize dosage regimens of sulbactam in critically ill patients with severe sepsis caused by Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(12):7236–44.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial suscptibility testing. 29th edn. CLSI Supplement M100. Wayne PC, 2019.Google Scholar
  94. 94.
    Pouch SM, Patel G. Multidrug-resistant Gram-negative bacterial infections in solid organ transplant recipients - guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019;33:e13594.CrossRefGoogle Scholar
  95. 95.
    Mazuski J, Tessier J, May A, Sawyer R, Nadler E, Rosengart M, et al. The Surgical Infection Society revised guidelines on the management of intra-abdominal infection. Surg Infect. 2017;18(1):1–76.CrossRefGoogle Scholar
  96. 96.
    Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, et al. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom. 2018;4(3).Google Scholar
  97. 97.
    Guilhaumou R, Benaboud S, Bennis Y, Dahyot-Fizelier C, Dailly E, Gandia P, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit Care. 2019;23(1):104.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Katsube T, Wajima T, Ishibashi T, Arjona Ferreira JC, Echols R. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother. 2017;61(1).Google Scholar
  99. 99.
    Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ, et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant Gram-negative bacilli. Drugs. 2019;79(3):271–89.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Portsmouth S, van Veenhuyzen D, Echols R, Machida M, Ferreira JCA, Ariyasu M, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319–28.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Shionogi, Shionogi I. Clinical study of S-649266 for the treatment of nosocomial pneumonia caused by Gram-negative pathogens 2019 [updated February 26. Available from: https://ClinicalTrials.gov/show/NCT03032380. Accessed 20 Jun 2019.
  102. 102.
    Shionogi, Shionogi I. Study of S-649266 or best available therapy for the treatment of severe infections caused by carbapenem-resistant Gram-negative pathogens 2019 [updated April 1. Available from: https://ClinicalTrials.gov/show/NCT02714595. Accessed 20 Jun 2019.
  103. 103.
    Durand-Reville TF, Guler S, Comita-Prevoir J, Chen B, Bifulco N, Huynh H, et al. ETX2514 is a broad-spectrum beta-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat Microbiol. 2017;2:17104.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Lickliter J LK, O’Donnell J, Isaacs R. Safety and pharmacokinetics (PK) in humans of intravenous ETX2514, a β-lactamase inhibitor (BLI) which broadly inhibits Ambler class A, C, and D β-lactamases. Poster presented at 2017 IDWeek; 2017 Oct 3-8. San Diego, California, USA.Google Scholar
  105. 105.
    Zak-Doron Y, Dishon Benattar Y, Pfeffer I, Daikos GL, Skiada A, Antoniadou A, et al. The association between empirical antibiotic treatment and mortality in severe infections caused by carbapenem-resistant Gram-negative bacteria: a prospective study. Clin Infect Dis. 2018;67(12):1815–23.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39(1):10–39.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, et al. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party†. J Antimicrob Chemother. 2018;73(suppl_3):iii2–iii78.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Torres A, Niederman MS, Chastre J, Ewig S, Fernandez-Vandellos P, Hanberger H, et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur Respir J. 2017;50(3):1700582.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for Gram-negative respiratory infections. Clin Microbiol Rev. 2016;29(3):581–632.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Biagi M, Butler D, Tan X, Qasmieh S, Wenzler E. A breath of fresh air in the fog of antimicrobial resistance: inhaled polymyxins for Gram-negative pneumonia. Antibiotics (Basel, Switzerland). 2019;8(1).PubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lenhard JR, Bulman ZP, Tsuji BT, Kaye KS. Shifting gears: the future of polymyxin antibiotics. Antibiotics. 2019;8(2):42.PubMedCentralCrossRefGoogle Scholar
  112. 112.
    Corbett D, Wise A, Langley T, Skinner K, Trimby E, Birchall S, et al. Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother. 2017;61(8):e00200–17.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Eckburg PB FN, Utley L, Walpole L, Keutzer T, Kopp E, Coleman S, Tomayko J. Safety of SPR741, a novel polymyxin potentiator, in healthy adults receiving single- and multiple-dose intravenous administrations. Poster presented at 28th European Congress of Clinical Microbiology and Infections Diseases; 2018 Apr 21-24; Madrid, Spain.Google Scholar
  114. 114.
    Liang CA, Lin YC, Lu PL, Chen HC, Chang HL, Sheu CC. Antibiotic strategies and clinical outcomes in critically ill patients with pneumonia caused by carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2018;24(8):908.e1–7.CrossRefGoogle Scholar
  115. 115.
    Niu T, Luo Q, Li Y, Zhou Y, Yu W, Xiao Y. Comparison of tigecycline or cefoperazone/sulbactam therapy for bloodstream infection due to carbapenem-resistant Acinetobacter baumannii. Antimicrob Resist Infect Control. 2019;8(1):52.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Amat T, Gutierrez-Pizarraya A, Machuca I, Gracia-Ahufinger I, Perez-Nadales E, Torre-Gimenez A, et al. The combined use of tigecycline with high-dose colistin might not be associated with higher survival in critically ill patients with bacteraemia due to carbapenem-resistant Acinetobacter baumannii. Clin Microbiol Infect. 2018;24(6):630–4.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Zhou XP, Ye XJ, Shen JP, Lan JP, Jiang HF, Zhang J, et al. Salvage tigecycline in high risk febrile neutropenic patients with hematological malignancies: a prospective multicenter study. Leuk Lymphoma. 2018;59(11):2679–85.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Ni W, Han Y, Zhao J, Wei C, Cui J, Wang R, et al. Tigecycline treatment experience against multidrug-resistant Acinetobacter baumannii infections: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;47(2):107–16.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Falagas ME, Vardakas KZ, Tsiveriotis KP, Triarides NA, Tansarli GS. Effectiveness and safety of high-dose tigecycline-containing regimens for the treatment of severe bacterial infections. Int J Antimicrob Agents. 2014;44(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Xu Y, Jin L, Liu N, Luo X, Dong D, Tang J, et al. Evaluation of the ratio of the estimated area under the concentration-time curve to minimum inhibitory concentration (estimated AUIC) as a predictor of the outcome for tigecycline treatment for pneumonia due to multidrug-resistant bacteria in an intensive care unit. Int J Infect Dis. 2019;82:79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Ditch K NJ, Izmailyan S, Fyfe C, Tsai L. Microbiological efficacy of eravacycline against Enterobacteriaceae and Acinetobacter baumannii, including MDR isolates: a pooled analysis from IGNITE1 and IGNITE4, two phase 3 trials of complicated intra-abdominal infection. Poster 629. Presented at 2018 ASM Microbe; 2018 June 7-11, Atlanta, GA, USA.Google Scholar
  122. 122.
    Pogue JM, Neelakanta A, Mynatt RP, Sharma S, Lephart P, Kaye KS. Carbapenem-resistance in gram-negative bacilli and intravenous minocycline: an antimicrobial stewardship approach at the Detroit Medical Center. Clin Infect Dis. 2014;59(Suppl 6):S388–93.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Lashinsky JN, Henig O, Pogue JM, Kaye KS. Minocycline for the treatment of multidrug and extensively drug-resistant A. baumannii: a review. Infect Dis Ther. 2017;6(2):199–211.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Goff D, Bauer K, Mangino J. Bad bugs need old drugs: a stewardship program’s evaluation of minocycline for multidrug-resistant Acinetobacter baumannii infections. Clin Infect Dis. 2014;59(suppl_6):S381–S7.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Falagas ME, Skalidis T, Vardakas KZ, Voulgaris GL, Papanikolaou G, Legakis N. Activity of TP-6076 against carbapenem-resistant Acinetobacter baumannii isolates collected from inpatients in Greek hospitals. Int J Antimicrob Agents. 2018;52(2):269–71.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Newman J ZJ, Fyfe C, Weiss W, Pulse M. In vivo efficacy of TP-6076 in murine thigh and lung infection models challenged with Acinetobacter baumannii. Poster presented at 29th European Congress of Clinical Microbiology and Infections Diseases; 2019 Apr 13-16; Amsterdam, Netherlands.Google Scholar
  127. 127.
    Tsai L MAS, Tolerability and pharmacokinetics of multiple doses of TP-6076, a novel, fully synthetic tetracycline, in a phase 1 study. Poster presented at 2019 ID Week; 2019 Oct 3-7; San Francisco, CA, USA.Google Scholar
  128. 128.
    Tetraphase Pharmaceuticals announces corporate reorganization aimed at maximizing XERAVA™ (Eravacycline) commercial opportunity [press release]. Business Wire, 12 Jun 2019.Google Scholar
  129. 129.
    Pfaller MA, Sader HS, Rhomberg PR, Flamm RK. In vitro activity of delafloxacin against contemporary bacterial pathogens from the United States and Europe, 2014. Antimicrob Agents Chemother. 2017;61(4).Google Scholar
  130. 130.
    Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs. 2019;79(3):243–69.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Jorgensen SCJ, Mercuro NJ, Davis SL, Rybak MJ. Delafloxacin: place in therapy and review of microbiologic, clinical and pharmacologic properties. Infect Dis Ther. 2018;7(2):197–217.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Menegucci TC, Albiero J, Migliorini LB, Alves JL, Viana GF, Mazucheli J, et al. Strategies for the treatment of polymyxin B-resistant Acinetobacter baumannii infections. Int J Antimicrob Agents. 2016;47(5):380–5.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Kang AD, Smith KP, Eliopoulos GM, Berg AH, McCoy C, Kirby JE. In vitro apramycin activity against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2017;88(2):188–91.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Cisek AA, Dabrowska I, Gregorczyk KP, Wyzewski Z. Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol. 2017;74(2):277–83.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Caflisch KM, Patel R. Implications of bacteriophage- and bacteriophage component-based therapies for the clinical microbiology laboratory. J Clin Microbiol. 2019.Google Scholar
  136. 136.
    Ho YH, Tseng CC, Wang LS, Chen YT, Ho GJ, Lin TY, et al. Application of bacteriophage-containing aerosol against nosocomial transmission of carbapenem-resistant Acinetobacter baumannii in an intensive care unit. PLoS One. 2016;11(12):e0168380.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii Infection. Antimicrob Agents Chemother. 2017;61(10).Google Scholar
  138. 138.
    LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D. Phage Therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis. 2018;5(4):ofy064.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Isler B, Doi Y, Bonomo RA, Paterson DL. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob Agents Chemother. 2019;63(1):e01110–8.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Baginska N, Pichlak A, Gorski A, Jonczyk-Matysiak E. Specific and selective bacteriophages in the fight against multidrug-resistant Acinetobacter baumannii. Virol Sin. 2019;34(4):347–57.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Motley MP, Fries BC. A new take on an old remedy: generating antibodies against multidrug-resistant Gram-negative bacteria in a postantibiotic world. mSphere. 2017;2(5):e00397–17.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Nielsen TB, Pantapalangkoor P, Luna BM, Bruhn KW, Yan J, Dekitani K, et al. Monoclonal antibody protects against Acinetobacter baumannii infection by enhancing bacterial clearance and evading sepsis. J Infect Dis. 2017;216(4):489–501.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Wang-Lin SX, Olson R, Beanan JM, MacDonald U, Russo TA, Balthasar JP. Antibody dependent enhancement of Acinetobacter baumannii infection in a mouse pneumonia model. J Pharmacol Exp Ther. 2019;368(3):475–89.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Evans BA, Amyes SG. OXA beta-lactamases. Clin Microbiol Rev. 2014;27(2):241–63.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • David A. Butler
    • 1
  • Mark Biagi
    • 1
  • Xing Tan
    • 1
  • Samah Qasmieh
    • 1
  • Zackery P. Bulman
    • 1
  • Eric Wenzler
    • 1
    Email author
  1. 1.Department of Pharmacy Practice, College of PharmacyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations