Advertisement

Recognizing and Overcoming Resistance to New Beta-Lactam/Beta-Lactamase Inhibitor Combinations

  • Stephanie Ho
  • Lynn Nguyen
  • Trang Trinh
  • Conan MacDougallEmail author
Antimicrobial Development and Drug Resistance (K Claeys and A Vega, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Antimicrobial Development and Drug Resistance

Abstract

Purpose of Review

To describe the mechanisms and clinical relevance of emergent resistance to three recently introduced beta-lactamase inhibitor combinations (BLICs) active against resistant Gram-negative organisms: ceftolozane-tazobactam, ceftazidime-avibactam, and meropenem-vaborbactam.

Recent Findings

Despite their recent introduction into practice, clinical reports of resistance to BLICs among typically susceptible organisms have already emerged, in some cases associated with therapeutic failure. The resistance mechanisms vary by agent, including mutations in beta-lactamase active sites, upregulation of efflux pumps, and alterations in the structure or expression of porin channels. These changes may confer cross-resistance or, rarely, increased susceptibility to related agents. Clinicians need to be aware of the potential for initial or emergent resistance to BLICs and ensure appropriate antimicrobial susceptibility testing is performed. Dose optimization and novel combinations of agents may play a role in preventing and managing resistance.

Summary

Recently approved BLICs have provided important new therapeutic options against resistant Gram-negative organisms, but are already coming up against emergent resistance. Awareness of the potential for resistance, early detection, and dose optimization may be important in preserving the utility of these agents.

Keywords

Antimicrobial resistance Ceftazidime-avibactam Ceftolozane-tazobactam Meropenem-vaborbactam Pseudomonas aeruginosa Carbapenem-resistant Enterobacteriaceae 

Notes

Compliance with Ethical Standards

Conflict of Interest

Stephanie Ho, Lynn Nguyen, and Trang Trinh declare no conflicts of interest.Conan MacDougall has received honoraria from Shionogi Pharmaceuticals and has served on an advisory board for Paratek Pharmaceuticals.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis Off Publ Infect Dis Soc Am. 2009;48:1–12.CrossRefGoogle Scholar
  2. 2.••
    Bush K. Past and present perspectives on β-lactamases. Antimicrob Agents Chemother. 2018;62:e01076-18. Incredibly useful and updated perspective on beta-lactamases from one of the leaders in the field. Google Scholar
  3. 3.
    Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8:557–84.CrossRefGoogle Scholar
  4. 4.
    Babic M, Hujer AM, Bonomo RA. What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother. 2006;9:142–56.Google Scholar
  5. 5.
    Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L, et al. Beta-lactamase database (BLDB)—structure and function. J Enzyme Inhib Med Chem. 2017;32:917–9.CrossRefGoogle Scholar
  6. 6.
    Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev. 2008;32:361–85.CrossRefGoogle Scholar
  7. 7.
    Bellido F, Veuthey C, Blaser J, Bauernfeind A, Pechère JC. Novel resistance to imipenem associated with an altered PBP-4 in a Pseudomonas aeruginosa clinical isolate. J Antimicrob Chemother. 1990;25:57–68.CrossRefGoogle Scholar
  8. 8.
    Neuwirth C, Siébor E, Duez JM, Péchinot A, Kazmierczak A. Imipenem resistance in clinical isolates of Proteus mirabilis associated with alterations in penicillin-binding proteins. J Antimicrob Chemother. 1995;36:335–42.CrossRefGoogle Scholar
  9. 9.
    Moyá B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, et al. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother. 2012;56:4771–8.CrossRefGoogle Scholar
  10. 10.
    Pagès J-M, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol. 2008;6:893–903.CrossRefGoogle Scholar
  11. 11.
    Fernández L, Hancock REW. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev. 2012;25:661–81.CrossRefGoogle Scholar
  12. 12.
    Pagès J-M, Peslier S, Keating TA, Lavigne J-P, Nichols WW. Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother. 2015;60:1349–59.CrossRefGoogle Scholar
  13. 13.
    Chalhoub H, Sáenz Y, Nichols WW, Tulkens PM, Van Bambeke F. Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis. Int J Antimicrob Agents. 2018;52:697–701.CrossRefGoogle Scholar
  14. 14.
    Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60:1462–71.CrossRefGoogle Scholar
  15. 15.
    Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet Lond Engl. 2015;385:1949–56.CrossRefGoogle Scholar
  16. 16.
    Rodríguez-Martínez J-M, Poirel L, Nordmann P. Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:1766–71.CrossRefGoogle Scholar
  17. 17.
    Cabot G, Bruchmann S, Mulet X, Zamorano L, Moyà B, Juan C, et al. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC. Antimicrob Agents Chemother. 2014;58:3091–9.CrossRefGoogle Scholar
  18. 18.
    Fraile-Ribot PA, Cabot G, Mulet X, Periañez L, Martín-Pena ML, Juan C, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73:658–63.CrossRefGoogle Scholar
  19. 19.
    Zamudio R, Hijazi K, Joshi C, Aitken E, Oggioni MR, Gould IM. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients. Int J Antimicrob Agents. 2019;53:774–80.CrossRefGoogle Scholar
  20. 20.
    Barnes MD, Taracila MA, Rutter JD, Bethel CR, Galdadas I, Hujer AM, et al. Deciphering the evolution of cephalosporin resistance to ceftolozane-tazobactam in Pseudomonas aeruginosa. mBio. 2018;9:e02085-18.Google Scholar
  21. 21.•
    Bassetti M, Castaldo N, Cattelan A, Mussini C, Righi E, Tascini C, et al. Ceftolozane/tazobactam for the treatment of serious Pseudomonas aeruginosa infections: a multicentre nationwide clinical experience. Int J Antimicrob Agents. 2019;53:408–15. This study describes the clinical experience with ceftolozane/tazobactam across 22 hospitals in Italy. It details clinical outcomes, resistance rates, and characteristics associated with clinical failure. CrossRefGoogle Scholar
  22. 22.
    Haidar G, Philips NJ, Shields RK, Snyder D, Cheng S, Potoski BA, et al. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: clinical effectiveness and evolution of resistance. Clin Infect Dis Off Publ Infect Dis Soc Am. 2017;65:110–20.CrossRefGoogle Scholar
  23. 23.
    So W, Shurko J, Galega R, Quilitz R, Greene JN, Lee GC. Mechanisms of high-level ceftolozane/tazobactam resistance in Pseudomonas aeruginosa from a severely neutropenic patient and treatment success from synergy with tobramycin. J Antimicrob Chemother. 2019;74:269–71.PubMedGoogle Scholar
  24. 24.
    Skoglund E, Abodakpi H, Rios R, Diaz L, De La Cadena E, Dinh AQ, et al. In vivo resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa arising by AmpC- and non-AmpC-mediated pathways. Case Rep Infect Dis. 2018;2018:9095203.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Xiao AJ, Miller BW, Huntington JA, Nicolau DP. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic-derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol. 2016;56:56–66.CrossRefGoogle Scholar
  26. 26.
    VanScoy BD, Mendes RE, Castanheira M, McCauley J, Bhavnani SM, Jones RN, et al. Relationship between ceftolozane-tazobactam exposure and selection for Pseudomonas aeruginosa resistance in a hollow-fiber infection model. Antimicrob Agents Chemother. 2014;58:6024–31.CrossRefGoogle Scholar
  27. 27.
    Natesan S, Pai MP, Lodise TP. Determination of alternative ceftolozane/tazobactam dosing regimens for patients with infections due to Pseudomonas aeruginosa with MIC values between 4 and 32 mg/L. J Antimicrob Chemother. 2017;72:2813–6.CrossRefGoogle Scholar
  28. 28.
    Rico Caballero V, Almarzoky Abuhussain S, Kuti JL, Nicolau DP. Efficacy of human-simulated exposures of ceftolozane-tazobactam alone and in combination with amikacin or colistin against multidrug-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother. 2018;62.Google Scholar
  29. 29.
    Gómez-Junyent J, Benavent E, Sierra Y, El Haj C, Soldevila L, Torrejón B, et al. Efficacy of ceftolozane/tazobactam, alone and in combination with colistin, against multidrug-resistant Pseudomonas aeruginosa in an in vitro biofilm pharmacodynamic model. Int J Antimicrob Agents. 2019;53:612–9.CrossRefGoogle Scholar
  30. 30.
    Zasowski EJ, Rybak JM, Rybak MJ. The β-lactams strike back: ceftazidime-avibactam. Pharmacotherapy. 2015;35:755–70.CrossRefGoogle Scholar
  31. 31.
    Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol. 2011;14:550–5.CrossRefGoogle Scholar
  32. 32.
    Bush K, Bradford PA. Interplay between β-lactamases and new β-lactamase inhibitors. Nat Rev Microbiol. 2019;17:295–306.CrossRefGoogle Scholar
  33. 33.
    Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;63:754–62.CrossRefGoogle Scholar
  34. 34.
    Mazuski JE, Gasink LB, Armstrong J, Broadhurst H, Stone GG, Rank D, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;62:1380–9.CrossRefGoogle Scholar
  35. 35.
    Torres A, Zhong N, Pachl J, Timsit J-F, Kollef M, Chen Z, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018;18:285–95.CrossRefGoogle Scholar
  36. 36.
    Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16:661–73.CrossRefGoogle Scholar
  37. 37.
    Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59:5324–30.CrossRefGoogle Scholar
  38. 38.
    Livermore DM, Mushtaq S, Barker K, Hope R, Warner M, Woodford N. Characterization of β-lactamase and porin mutants of Enterobacteriaceae selected with ceftaroline + avibactam (NXL104). J Antimicrob Chemother. 2012;67:1354–8.CrossRefGoogle Scholar
  39. 39.
    Shields RK, Nguyen MH, Press EG, Chen L, Kreiswirth BN, Clancy CJ. In vitro selection of meropenem resistance among ceftazidime-avibactam-resistant, Meropenem-susceptible Klebsiella pneumoniae isolates with variant KPC-3 Carbapenemases. Antimicrob Agents Chemother. 2017;61.Google Scholar
  40. 40.
    Compain F, Arthur M. Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 β-lactamase. Antimicrob Agents Chemother. 2017;61.Google Scholar
  41. 41.
    Haidar G, Clancy CJ, Shields RK, Hao B, Cheng S, Nguyen MH. Mutations in blaKPC-3 that confer ceftazidime-avibactam resistance encode novel KPC-3 variants that function as extended-spectrum β-lactamases. Antimicrob Agents Chemother. 2017;61.Google Scholar
  42. 42.
    Compain F, Dorchène D, Arthur M. Combination of amino acid substitutions leading to CTX-M-15-mediated resistance to the ceftazidime-avibactam combination. Antimicrob Agents Chemother. 2018;62.Google Scholar
  43. 43.
    Nelson K, Hemarajata P, Sun D, Rubio-Aparicio D, Tsivkovski R, Yang S, et al. Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother. 2017;61:e00989-17Google Scholar
  44. 44.
    Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BLM, Bouchillon SK, et al. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob Agents Chemother. 2016;60:4490–500.CrossRefGoogle Scholar
  45. 45.
    Winkler ML, Papp-Wallace KM, Hujer AM, Domitrovic TN, Hujer KM, Hurless KN, et al. Unexpected challenges in treating multidrug-resistant gram-negative bacteria: resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2015;59:1020–9.CrossRefGoogle Scholar
  46. 46.
    Sanz-García F, Hernando-Amado S, Martínez JL. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob Agents Chemother. 2018;62.Google Scholar
  47. 47.
    Humphries RM, Yang S, Hemarajata P, Ward KW, Hindler JA, Miller SA, et al. First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother. 2015;59:6605–7.CrossRefGoogle Scholar
  48. 48.••
    Shields RK, Potoski BA, Haidar G, Hao B, Doi Y, Chen L, et al. Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis Off Publ Infect Dis Soc Am. 2016;63:1615–8. This key reference describes the development of clinical resistance to ceftazidime-avibactam with as few as 10 days of exposure, further emphasizing the need for additional data to better understand how to avert such cases. CrossRefGoogle Scholar
  49. 49.
    Shields RK, Nguyen MH, Press EG, Chen L, Kreiswirth BN, Clancy CJ. Emergence of ceftazidime-avibactam resistance and restoration of carbapenem susceptibility in Klebsiella pneumoniae carbapenemase-producing K pneumoniae: a case report and review of literature. Open Forum Infect Dis. 2017;4:ofx101.CrossRefGoogle Scholar
  50. 50.•
    Giddins MJ, Macesic N, Annavajhala MK, Stump S, Khan S, McConville TH, et al. Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in blaKPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother. 2018;62. This reference is important as it highlights the balance and quick shift between susceptibility and resistance with certain antibiotic selections. Google Scholar
  51. 51.
    Thomson GK, Snyder JW, McElheny CL, Thomson KS, Doi Y. Coproduction of KPC-18 and VIM-1 carbapenemases by Enterobacter cloacae: implications for newer β-lactam-β-lactamase inhibitor combinations. J Clin Microbiol. 2016;54:791–4.CrossRefGoogle Scholar
  52. 52.
    Both A, Büttner H, Huang J, Perbandt M, Belmar Campos C, Christner M, et al. Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother. 2017;72:2483–8.CrossRefGoogle Scholar
  53. 53.
    King M, Heil E, Kuriakose S, Bias T, Huang V, El-Beyrouty C, et al. Multicenter study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2017;61:e00449-17.Google Scholar
  54. 54.
    Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, Mathers AJ, Bassetti M, Vazquez J, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7:439–55.CrossRefGoogle Scholar
  55. 55.
    Shields RK, Nguyen MH, Chen L, Press EG, Kreiswirth BN, Clancy CJ. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62:e02497–17.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Mojica MF, Ouellette CP, Leber A, Becknell MB, Ardura MI, Perez F, et al. Successful treatment of bloodstream infection due to Metallo-β-lactamase-producing Stenotrophomonas maltophilia in a renal transplant patient. Antimicrob Agents Chemother. 2016;60:5130–4.CrossRefGoogle Scholar
  57. 57.
    Shaw E, Rombauts A, Tubau F, Padullés A, Càmara J, Lozano T, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother. 2018;73:1104–6.CrossRefGoogle Scholar
  58. 58.
    Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60:5454–8.CrossRefGoogle Scholar
  59. 59.
    Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78:65–98.CrossRefGoogle Scholar
  60. 60.•
    Lomovskaya O, Sun D, Rubio-Aparicio D, Nelson K, Tsivkovski R, Griffith DC, et al. Vaborbactam: Spectrum of beta-lactamase inhibition and impact of resistance mechanisms on activity in Enterobacteriaceae. Antimicrob Agents Chemother. 2017;61. This article discusses meropenem-vaborbactam's main mechanism of resistance—outer membrane porins—and specifies which specific porin (aka OmpK36) increases the need for higher vaborbactam concentrations. Google Scholar
  61. 61.
    Dhillon S. Meropenem/vaborbactam: a review in complicated urinary tract infections. Drugs. 2018;78:1259–70.CrossRefGoogle Scholar
  62. 62.
    Kaye KS, Bhowmick T, Metallidis S, Bleasdale SC, Sagan OS, Stus V, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018;319:788–99.CrossRefGoogle Scholar
  63. 63.
    Sun D, Rubio-Aparicio D, Nelson K, Dudley MN, Lomovskaya O. Meropenem-vaborbactam resistance selection, resistance prevention, and molecular mechanisms in mutants of KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother. 2017;61.Google Scholar
  64. 64.
    Wilson WR, Kline EG, Jones CE, Morder KT, Mettus RT, Doi Y, et al. Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother. 2019;63.Google Scholar
  65. 65.
    Pfaller MA, Huband MD, Mendes RE, Flamm RK, Castanheira M. In vitro activity of meropenem/vaborbactam and characterisation of carbapenem resistance mechanisms among carbapenem-resistant Enterobacteriaceae from the 2015 meropenem/vaborbactam surveillance programme. Int J Antimicrob Agents. 2018;52:144–50.CrossRefGoogle Scholar
  66. 66.
    Livermore DM, Winstanley TG, Shannon KP. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J Antimicrob Chemother. 2001;48(Suppl 1):87–102.CrossRefGoogle Scholar
  67. 67.
    Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67:1597–606.CrossRefGoogle Scholar
  68. 68.
    Martínez-Martínez L. Extended-spectrum beta-lactamases and the permeability barrier. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2008;14(Suppl 1):82–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Stephanie Ho
    • 1
  • Lynn Nguyen
    • 2
  • Trang Trinh
    • 1
  • Conan MacDougall
    • 1
    Email author
  1. 1.University of California San Francisco School of PharmacySan FranciscoUSA
  2. 2.University of California San Francisco Medical CenterSan FranciscoUSA

Personalised recommendations