Carbapenem-Resistant Enterobacteriaceae in Solid Organ Transplantation: Management Principles

  • Olivia Smibert
  • Michael J. Satlin
  • Anoma Nellore
  • Anton Y. PelegEmail author
Transplant and Oncology (M Ison, N Theodoropoulos and S Pergam, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Transplant and Oncology


Purpose of Review

Carbapenem-resistant Enterobacteriaceae (CRE) have emerged as a worldwide problem. Given their degree of immunosuppression and the level of contact with the healthcare system, solid organ transplant (SOT) recipients are at a disproportionately higher risk of acquisition, colonization, and infection with CRE, and outcomes from infection tend to be worse compared to non-transplant patients. Therapeutic options are limited for CRE infections although several newer agents have recently been approved for use. How well these agents perform in the setting of immunosuppression and SOT is unclear. We sought to review the epidemiology of CRE in SOT and the management principles.

Recent Findings

CRE infections are becoming an increasing problem in SOT, and donor-derived infections present a challenge in the peri-transplant period. Newer treatments for CRE are emerging that are less toxic and potentially more effective than prior CRE-active agents, but supportive clinical data are limited. Newer beta-lactamase inhibitors have good activity against KPC carbapenemases, but they lack activity against metallo-beta-lactamases (e.g., NDM). Promising data is emerging with newer agents that have activity against most carbapenemases, but, again, clinical data is needed. Combination therapy in addition to optimal pharmacokinetic and pharmacodynamics may go some way to improve outcomes against these difficult-to-treat organisms. Other novel therapies that prevent the emergence of resistance (oral beta-lactamase inhibitors) and eradication of resistant Gram-negative colonization (fecal microbiota transplant) may eventually become part of a bundle approach to reduce CRE infections in the future.


As in non-transplant patients, CRE infections in the transplant setting are challenging to treat and prevent. Infection prevention and control remains crucial to prevent widespread dissemination, and unique challenges exist with donor-derived CRE and how best to manage recipients in the peri-transplant period. Newer treatments are now in early-phase clinical studies, and in vitro activity data are supportive for several agents providing hope for improved outcomes with these typically difficult-to-treat and highly morbid infections in transplant recipients.


CRE CPE Transplant Treatment Gram-negative bacteria 



Anton Y. Peleg acknowledges support from an Australian National Health and Medical Research Council Practitioner Fellowship.

Compliance with Ethical Standards

Conflict of Interest

Olivia Smibert and Anoma Nellore declare that they have no conflict of interest.

Michael Satlin consulted for Shionogi and Achaogen and has received grant funding from Allergan and Merck. Anton Peleg has received research grant support through the investigator initiated research grant program from MSD.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29(12):1099–106.PubMedGoogle Scholar
  2. 2.
    Moreno Camacho A, Ruiz Camps I. Nosocomial infection in patients receiving a solid organ transplant or haematopoietic stem cell transplant. Enferm Infecc Microbiol Clin. 2014;32(6):386–95.PubMedGoogle Scholar
  3. 3.
    Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother. 2008;52(3):1028–33.PubMedGoogle Scholar
  4. 4.
    Lanini S, Costa AN, Puro V, Procaccio F, Grossi PA, Vespasiano F, et al. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: a nationwide surveillance study. PLoS One. 2015;10(4):e0123706.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Aguado JM, Silva JT, Fernandez-Ruiz M, et al. Management of multidrug resistant Gram-negative bacilli infections in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplantation Reviews (Orlando, Fla). 2018;32(1):36–57.Google Scholar
  6. 6.
    Satlin MJ, Jenkins SG, Walsh TJ. The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2014;58(9):1274–83.Google Scholar
  7. 7.
    Beam E, Razonable RR. A survey of infection prevention and control practices among solid organ transplantation centers. Am J Infect Control 2018.Google Scholar
  8. 8.
    Mathers AJ, Cox HL, Bonatti H, Kitchel B, Brassinga AKC, Wispelwey B, et al. Fatal cross infection by carbapenem-resistant Klebsiella in two liver transplant recipients. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2009;11(3):257–65.Google Scholar
  9. 9.
    Banach DB, Bearman G, Barnden M, Hanrahan JA, Leekha S, Morgan DJ, et al. Duration of contact precautions for acute-care settings. Infect Control Hosp Epidemiol. 2018;39(2):127–44.PubMedGoogle Scholar
  10. 10.
    Viale P, Tumietto F, Giannella M, Bartoletti M, Tedeschi S, Ambretti S, et al. Impact of a hospital-wide multifaceted programme for reducing carbapenem-resistant Enterobacteriaceae infections in a large teaching hospital in northern Italy. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2015;21(3):242–7.Google Scholar
  11. 11.
    WHO Guidelines Approved by the Guidelines Review Committee. In: Guidelines for the prevention and control of carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa in health care facilities. Geneva: World Health Organization. Copyright (c) World Health Organization 2017; 2017.Google Scholar
  12. 12.
    Ben-David D, Masarwa S, Adler A, Mishali H, Carmeli Y, Schwaber MJ. A national intervention to prevent the spread of carbapenem-resistant Enterobacteriaceae in Israeli post-acute care hospitals. Infect Control Hosp Epidemiol. 2014;35(7):802–9.PubMedGoogle Scholar
  13. 13.
    Campos AC, Albiero J, Ecker AB, Kuroda CM, Meirelles LEF, Polato A, et al. Outbreak of Klebsiella pneumoniae carbapenemase-producing K pneumoniae: a systematic review. Am J Infect Control. 2016;44(11):1374–80.PubMedGoogle Scholar
  14. 14.
    Ciobotaro P, Oved M, Nadir E, Bardenstein R, Zimhony O. An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute care setting: from theory to practice. Am J Infect Control. 2011;39(8):671–7.PubMedGoogle Scholar
  15. 15.
    DalBen MF, Teixeira Mendes E, Moura ML, et al. A model-based strategy to control the spread of carbapenem-resistant Enterobacteriaceae: simulate and implement. Infect Control Hosp Epidemiol. 2016;37(11):1315–22.PubMedGoogle Scholar
  16. 16.
    Enfield KB, Huq NN, Gosseling MF, Low DJ, Hazen KC, Toney DM, et al. Control of simultaneous outbreaks of carbapenemase-producing Enterobacteriaceae and extensively drug-resistant Acinetobacter baumannii infection in an intensive care unit using interventions promoted in the Centers for Disease Control and Prevention 2012 carbapenemase-resistant Enterobacteriaceae toolkit. Infect Control Hosp Epidemiol. 2014;35(7):810–7.PubMedGoogle Scholar
  17. 17.
    Gagliotti C, Cappelli V, Carretto E, et al. Control of carbapenemase-producing Klebsiella pneumoniae: a region-wide intervention. Euro Surveillance: Bulletin Europeen sur les maladies transmissibles = European Communicable Disease Bulletin. 2014;19:43.Google Scholar
  18. 18.
    Hayden MK, Lin MY, Lolans K, Weiner S, Blom D, Moore NM, et al. Prevention of colonization and infection by Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae in long-term acute-care hospitals. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2015;60(8):1153–61.Google Scholar
  19. 19.
    Kim NH, Han WD, Song KH, Seo HK, Shin MJ, Kim TS, et al. Successful containment of carbapenem-resistant Enterobacteriaceae by strict contact precautions without active surveillance. Am J Infect Control. 2014;42(12):1270–3.PubMedGoogle Scholar
  20. 20.
    Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinovitch B, et al. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2011;52(7):848–55.Google Scholar
  21. 21.
    Borer A, Eskira S, Nativ R, Saidel-Odes L, Riesenberg K, Livshiz-Riven I, et al. A multifaceted intervention strategy for eradication of a hospital-wide outbreak caused by carbapenem-resistant Klebsiella pneumoniae in Southern Israel. Infect Control Hosp Epidemiol. 2011;32(12):1158–65.PubMedGoogle Scholar
  22. 22.
    Martins N, Martins IS, de Freitas WV, et al. Severe infection in a lung transplant recipient caused by donor-transmitted carbapenem-resistant Acinetobacter baumannii. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2012;14(3):316–20.Google Scholar
  23. 23.
    Fishman JA, Grossi PA. Donor-derived infection—the challenge for transplant safety. Nat Rev Nephrol. 2014;10(11):663–72.PubMedGoogle Scholar
  24. 24.
    Miller R, Covington S, Taranto S, Carrico R, Ehsan A, Friedman B, et al. Communication gaps associated with donor-derived infections. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(1):259–64.Google Scholar
  25. 25.
    Tacconelli E, Cataldo MA, Dancer SJ, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2014;20 Suppl 1:1–55.Google Scholar
  26. 26.
    Gysin DV, Cookson B, Saenz H, Dettenkofer M, Widmer AF. Variability in contact precautions to control the nosocomial spread of multi-drug resistant organisms in the endemic setting: a multinational cross-sectional survey. Antimicrob Resist Infect Control. 2018;7:81.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Ariza-Heredia EJ, Patel R, Blumberg EA, Walker RC, Lewis R, Evans J, et al. Outcomes of transplantation using organs from a donor infected with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2012;14(3):229–36.Google Scholar
  28. 28.
    •• Errico G, Gagliotti C, Monaco M, et al. Colonization and infection due to carbapenemase-producing Enterobacteriaceae in liver and lung transplant recipients and donor-derived transmission: a prospective cohort study conducted in Italy. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2018. Important study that described the experience of donor-derived CPE across multiple Italian transplant centres, and documented the outcomes of the recipients. Google Scholar
  29. 29.
    Galvao LM, Oliveira APR, Ibanes AS, et al. Fatal case of donor-derived colistin-resistant carbapenemase-producing Klebsiella pneumoniae transmission in cardiac transplantation. The Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases. 2018;22(3):235–8.Google Scholar
  30. 30.
    Giani T, Conte V, Mandala S, D'Andrea MM, Luzzaro F, Conaldi PG, et al. Cross-infection of solid organ transplant recipients by a multidrug-resistant Klebsiella pneumoniae isolate producing the OXA-48 carbapenemase, likely derived from a multiorgan donor. J Clin Microbiol. 2014;52(7):2702–5.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Goldberg E, Bishara J, Lev S, Singer P, Cohen J. Organ transplantation from a donor colonized with a multidrug-resistant organism: a case report. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2012;14(3):296–9.Google Scholar
  32. 32.
    Mularoni A, Bertani A, Vizzini G, Gona F, Campanella M, Spada M, et al. Outcome of transplantation using organs from donors infected or colonized with carbapenem-resistant gram-negative bacteria. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(10):2674–82.Google Scholar
  33. 33.
    Varotti G, Dodi F, Marchese A, Terulla A, Bertocchi M, Fontana I. Fatal donor-derived carbapenem-resistant Klebsiella pneumoniae infection in a combined kidney-pancreas transplantation. Case Reports in Transplantation. 2016;2016:7920951.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Mehta SR, Logan C, Kotton CN, Kumar D, Aslam S. Use of organs from donors with bloodstream infection, pneumonia, and influenza: results of a survey of infectious diseases practitioners. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2017;19(1).Google Scholar
  35. 35.
    Bishara J, Goldberg E, Lev S, Singer P, Ashkenazi T, Cohen J. The utilization of solid organs for transplantation in the setting of infection with multidrug-resistant organisms: an expert opinion. Clin Transpl. 2012;26(6):811–5.Google Scholar
  36. 36.
    Fischer SA, Lu K. Screening of donor and recipient in solid organ transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(Suppl 4):9–21.Google Scholar
  37. 37.
    van Duin D, van Delden C. Multidrug-resistant gram-negative bacteria infections in solid organ transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13 Suppl 4:31–41.Google Scholar
  38. 38.
    Mills JP, Wilck MB, Weikert BC, Porrett PM, Timko D, Alby K, et al. Successful treatment of a disseminated infection with extensively drug-resistant Klebsiella pneumoniae in a liver transplant recipient with a fosfomycin-based multidrug regimen. Transplant Infectious Disease: An Official Journal of the Transplantation Society. 2016;18(5):777–81.Google Scholar
  39. 39.
    Alatoom A, Elsayed H, Lawlor K, et al. Comparison of antimicrobial activity between ceftolozane-tazobactam and ceftazidime-avibactam against multidrug-resistant isolates of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases. 2017;62:39–43.Google Scholar
  40. 40.
    de Jonge BL, Karlowsky JA, Kazmierczak KM, Biedenbach DJ, Sahm DF, Nichols WW. In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother. 2016;60(5):3163–9.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Haidar G, Clancy CJ, Chen L, Samanta P, Shields RK, Kreiswirth BN, Nguyen MH Identifying spectra of activity and therapeutic niches for ceftazidime-avibactam and imipenem-relebactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017;61(9).Google Scholar
  42. 42.
    Sader HS, Mendes RE, Pfaller MA, Shortridge D, Flamm RK, Castanheira M. Antimicrobial activities of aztreonam-avibactam and comparator agents against contemporary (2016) clinical Enterobacteriaceae isolates. Antimicrob Agents Chemother 2018;62(1).Google Scholar
  43. 43.
    Carvalhaes CG, Ramos AC, Oliveira LCG, Juliano MA, Gales AC. Rapid detection of ceftazidime/avibactam resistance by MALDI-TOF MS. J Antimicrob Chemother. 2018;73:2579–82.PubMedGoogle Scholar
  44. 44.
    Castanheira M, Mendes RE, Sader HS. Low frequency of ceftazidime-avibactam resistance among Enterobacteriaceae isolates carrying blaKPC collected in U.S. hospitals from 2012 to 2015. Antimicrob Agents Chemother 2017;61(3).Google Scholar
  45. 45.
    Temkin E, Torre-Cisneros J, Beovic B, et al. Ceftazidime-avibactam as salvage therapy for infections caused by carbapenem-resistant organisms. Antimicrob Agents Chemother 2017;61(2).Google Scholar
  46. 46.
    Jacobs DM, DiTursi S, Ruh C, Sharma R, Claus J, Banjade R, et al. Combination treatment with extended-infusion ceftazidime/avibactam for a KPC-3-producing Klebsiella pneumoniae bacteraemia in a kidney and pancreas transplant patient. Int J Antimicrob Agents. 2016;48(2):225–7.PubMedGoogle Scholar
  47. 47.
    Camargo JF, Simkins J, Beduschi T, Tekin A, Aragon L, Pérez-Cardona A, et al. Successful treatment of carbapenemase-producing pandrug-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2015;59(10):5903–8.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Caravaca-Fontan F, Jimenez-Alvaro S, Marcen-Letosa R, Fernandez-Rodriguez A, Rodriguez-Navarro CQ. Ceftazidime-avibactam in urinary tract infections due to carbapenemase-producing Klebsiella in kidney transplantation. Nefrologia: publicacion oficial de la Sociedad Espanola Nefrologia. 2015;35(4):412–3.Google Scholar
  49. 49.
    Shields RK, Nguyen MH, Chen L, Press EG, Potoski BA, Marini RV, et al. Ceftazidime-avibactam is superior to other treatment regimens against carbapenem-resistant Klebsiella pneumoniae bacteremia. Antimicrob Agents Chemother. 2017;61(8).Google Scholar
  50. 50.
    Tumbarello M, Trecarichi EM, Corona A, et al. Efficacy of ceftazidime-avibactam salvage therapy in patients with infections caused by KPC-producing Klebsiella pneumoniae. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2018.Google Scholar
  51. 51.
    Shields RK, Chen L, Cheng S, et al. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 2017;61(3).Google Scholar
  52. 52.
    Wenzler E, Bunnell KL, Bleasdale SC, Benken S, Danziger LH, Rodvold KA. Pharmacokinetics and dialytic clearance of ceftazidime-avibactam in a critically ill patient on continuous venovenous hemofiltration. Antimicrob Agents Chemother 2017;61(7).Google Scholar
  53. 53.
    Shields RK, Nguyen MH, Chen L, Press EG, Kreiswirth BN, Clancy CJ. Pneumonia and renal replacement therapy are risk factors for ceftazidime-avibactam treatment failures and resistance among patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother. 2018;62(5):e02497–17.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Barber KE, Pogue JM, Warnock HD, Bonomo RA, Kaye KS. Ceftazidime/avibactam versus standard-of-care agents against carbapenem-resistant Enterobacteriaceae harbouring blaKPC in a one-compartment pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother. 2018;73:2405–10.PubMedGoogle Scholar
  55. 55.
    Veillette JJ, Truong J, Forland SC. Pharmacokinetics of ceftazidime-avibactam in two patients with KPC-producing Klebsiella pneumoniae bacteremia and renal impairment. Pharmacotherapy. 2016;36(11):e172–7.PubMedGoogle Scholar
  56. 56.
    van Duin D, Lok JJ, Earley M, Cober E, Richter SS, Perez F, et al. Colistin versus ceftazidime-avibactam in the treatment of infections due to carbapenem-resistant Enterobacteriaceae. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2018;66(2):163–71.Google Scholar
  57. 57.
    King M, Heil E, Kuriakose S, Bias T, Huang V, el-Beyrouty C, McCoy D, Hiles J, Richards L, Gardner J, Harrington N, Biason K, Gallagher JC Multicenter study of outcomes with ceftazidime-avibactam in patients with carbapenem-resistant Enterobacteriaceae infections. Antimicrob Agents Chemother 2017;61(7).Google Scholar
  58. 58.
    Krapp F, Grant JL, Sutton SH, Ozer EA, Barr VO. Treating complicated carbapenem-resistant Enterobacteriaceae infections with ceftazidime/avibactam: a retrospective study with molecular strain characterisation. Int J Antimicrob Agents. 2017;49(6):770–3.PubMedGoogle Scholar
  59. 59.
    Stone GG, Newell P, Gasink LB, Broadhurst H, Wardman A, Yates K, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam phase III clinical trial programme. J Antimicrob Chemother. 2018;73:2519–23.PubMedGoogle Scholar
  60. 60.
    Castanheira M, Rhomberg PR, Flamm RK, Jones RN. Effect of the beta-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016;60(9):5454–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Hackel MA, Lomovskaya O, Dudley MN, Karlowsky JA, Sahm DF. In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae. Antimicrob Agents Chemother 2018;62(1).Google Scholar
  62. 62.
    Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D, et al. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59(8):5029–31.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Livermore DM, Warner M, Jamrozy D, Mushtaq S, Nichols WW, Mustafa N, et al. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother. 2015;59(9):5324–30.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Kaye KS, Bhowmick T, Metallidis S, Bleasdale SC, Sagan OS, Stus V, et al. Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018;319(8):788–99.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Wunderink RG, Giamarellos-Bourboulis EJ, Rahav G, Mathers AJ, Bassetti M, Vazquez J, et al. Effect and safety of Meropenem-Vaborbactam versus best-available therapy in patients with Carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7(4):439–55.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Livermore DM, Warner M, Mushtaq S. Activity of MK-7655 combined with imipenem against Enterobacteriaceae and Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68(10):2286–90.PubMedGoogle Scholar
  67. 67.
    Lob SH, Hoban DJ, Young K, Motyl MR, Sahm DF. Activity of Imipenem-Relebactam against Gram-negative bacilli from global ICU and non-ICU wards—SMART 2015-2016. Journal of Global Antimicrobial Resistance. 2018;15:12–9.PubMedGoogle Scholar
  68. 68.
    Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M, et al. Imipenem-Relebactam and Meropenem-Vaborbactam: two novel Carbapenem-beta-lactamase inhibitor combinations. Drugs. 2018;78(1):65–98.PubMedGoogle Scholar
  69. 69.
    Nicolau DP, Siew L, Armstrong J, Li J, Edeki T, Learoyd M, et al. Phase 1 study assessing the steady-state concentration of ceftazidime and avibactam in plasma and epithelial lining fluid following two dosing regimens. J Antimicrob Chemother. 2015;70(10):2862–9.PubMedGoogle Scholar
  70. 70.
    Biedenbach DJ, Kazmierczak K, Bouchillon SK, Sahm DF, Bradford PA. In vitro activity of aztreonam-avibactam against a global collection of Gram-negative pathogens from 2012 and 2013. Antimicrob Agents Chemother. 2015;59(7):4239–48.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA. In vitro activity of Aztreonam-Avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother 2017;61(9).Google Scholar
  72. 72.
    Vasoo S, Cunningham SA, Cole NC, Kohner PC, Menon SR, Krause KM, et al. In vitro activities of Ceftazidime-Avibactam, Aztreonam-Avibactam, and a panel of older and contemporary antimicrobial agents against Carbapenemase-producing Gram-negative bacilli. Antimicrob Agents Chemother. 2015;59(12):7842–6.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Chew KL, Tay MKL, Cheng B, Lin RTP, Octavia S, Teo JWP. Aztreonam-Avibactam combination restores susceptibility of Aztreonam in dual-Carbapenemase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2018;62(8).Google Scholar
  74. 74.
    Jayol A, Nordmann P, Poirel L, Dubois V. Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2018;73(2):542–4.PubMedGoogle Scholar
  75. 75.
    Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, Hujer KM, Marshall EK, Rudin SD, Perez F, Wilson BM, Wasserman RB, Chikowski L, Paterson DL, Vila AJ, van Duin D, Kreiswirth BN, Chambers HF, Fowler Jr VG, Jacobs MR, Pulse ME, Weiss WJ, Bonomo RA Can Ceftazidime-Avibactam and Aztreonam overcome beta-lactam resistance conferred by metallo-beta-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother 2017;61(4).Google Scholar
  76. 76.
    • Shaw E, Rombauts A, Tubau F, Padullés A, Càmara J, Lozano T, et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother. 2018;73(4):1104–6. MBL producing Gram negatives are particularly difficult to treat with many of the newer agents providing little to no additional coverage. However, the amalgamation of avibactam with aztreonam presents an exciting combination therapy with evidence of improved efficacy in vitro and in vivo.PubMedGoogle Scholar
  77. 77.
    Cox G, Ejim L, Stogios PJ, Koteva K, Bordeleau E, Evdokimova E, et al. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infectious Diseases. 2018;4(6):980–7.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Doi Y, Wachino JI, Arakawa Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin N Am. 2016;30(2):523–37.Google Scholar
  79. 79.
    Taylor E, Sriskandan S, Woodford N, Hopkins KL. High prevalence of 16S rRNA methyltransferases among carbapenemase-producing Enterobacteriaceae in the UK and Ireland. Int J Antimicrob Agents. 2018;52(2):278–82.PubMedGoogle Scholar
  80. 80.
    JA McKinnell, Connolly L, Pushkin R, et al. Improved outcomes with Plazomicin (PLZ) compared with Colistin (CST) in patients with bloodstream infections (BSI) caused by carbapenem-resistant Enterobacteriaceae (CRE): results from the CARE study. Vol 42017.Google Scholar
  81. 81.
    Komirenko AS, Riddle V, Gibbons JA, Van Wart S, Seroogy JD. A phase 1 study to assess the pharmacokinetics of intravenous Plazomicin in adult subjects with varying degrees of renal function. Antimicrob Agents Chemother 2018;62(12).Google Scholar
  82. 82.
    Zhanel GG, Cheung D, Adam H, Zelenitsky S, Golden A, Schweizer F, et al. Review of Eravacycline, a novel Fluorocycline antibacterial agent. Drugs. 2016;76(5):567–88.PubMedGoogle Scholar
  83. 83.
    Ito A, Kohira N, Bouchillon SK, West J, Rittenhouse S, Sader HS, et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother. 2016;71(3):670–7.PubMedGoogle Scholar
  84. 84.
    Kohira N, West J, Ito A, Ito-Horiyama T, Nakamura R, Sato T, et al. In vitro antimicrobial activity of a siderophore cephalosporin, S-649266, against Enterobacteriaceae clinical isolates, including Carbapenem-resistant strains. Antimicrob Agents Chemother. 2016;60(2):729–34.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Escola-Verge L, Pigrau C, Los-Arcos I, et al. Ceftolozane/tazobactam for the treatment of XDR Pseudomonas aeruginosa infections. Infection. 2018;46:461–8.PubMedGoogle Scholar
  86. 86.
    Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58(2):654–63.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Lee GC, Burgess DS. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. Ann Clin Microbiol Antimicrob. 2012;11:32.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Parchem NL, Bauer KA, Cook CH, Mangino JE, Jones CD, Porter K, et al. Colistin combination therapy improves microbiologic cure in critically ill patients with multi-drug resistant gram-negative pneumonia. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology. 2016;35(9):1433–9.Google Scholar
  89. 89.
    Pournaras S, Vrioni G, Neou E, Dendrinos J, Dimitroulia E, Poulou A, et al. Activity of tigecycline alone and in combination with colistin and meropenem against Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains by time-kill assay. Int J Antimicrob Agents. 2011;37(3):244–7.PubMedGoogle Scholar
  90. 90.
    • Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. 2018;18(4):391–400. An important randomised trial that attempted to determine the benefit of combination versus monotherapy for CRE infection. Despite the negative results, the improtant caveat is that this trail was biased to treatment of Acinetobacter infections and results should not be generalised to infections with Enterobacteriaceae.PubMedGoogle Scholar
  91. 91.
    Barlow G, Morice A. Successful treatment of resistant Burkholderia multivorans infection in a patient with cystic fibrosis using ceftazidime/avibactam plus aztreonam. J Antimicrob Chemother. 2018;73(8):2270–1.PubMedGoogle Scholar
  92. 92.
    Monogue ML, Nicolau DP. Antibacterial activity of ceftolozane/tazobactam alone and in combination with other antimicrobial agents against MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(4):942–52.PubMedGoogle Scholar
  93. 93.
    Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology. 2012;31(5):695–701.Google Scholar
  94. 94.
    Donnelly JP, Locke JE, MacLennan PA, et al. Inpatient mortality among solid organ transplant recipients hospitalized for sepsis and severe sepsis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2016;63(2):186–94.Google Scholar
  95. 95.
    Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681–91.PubMedGoogle Scholar
  96. 96.
    Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;77:3–11.PubMedGoogle Scholar
  97. 97.
    Dhaese SAM, De Kezel M, Callant M, et al. Emergence of antimicrobial resistance to piperacillin/tazobactam or meropenem in the ICU: intermittent versus continuous infusion. A retrospective cohort study. J Crit Care. 2018;47:164–8.PubMedGoogle Scholar
  98. 98.
    Masich AM, Heavner MS, Gonzales JP, Claeys KC. Pharmacokinetic/pharmacodynamic considerations of beta-lactam antibiotics in adult critically ill patients. Curr Infect Dis Rep. 2018;20(5):9.PubMedGoogle Scholar
  99. 99.
    Osthoff M, Siegemund M, Balestra G, Abdul-Aziz MH, Roberts JA. Prolonged administration of beta-lactam antibiotics—a comprehensive review and critical appraisal. Swiss Med Wkly. 2016;146:w14368.PubMedGoogle Scholar
  100. 100.
    Delattre IK, Taccone FS, Jacobs F, Hites M, Dugernier T, Spapen H, et al. Optimizing beta-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective? Expert Rev Anti-Infect Ther. 2017;15(7):677–88.PubMedGoogle Scholar
  101. 101.
    Roberts JA, Paul SK, Akova M, Bassetti M, de Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2014;58(8):1072–83.Google Scholar
  102. 102.
    Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42(10):1535–45.PubMedGoogle Scholar
  103. 103.
    Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term intravenous infusion of antipseudomonal beta-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018;18(1):108–20.PubMedGoogle Scholar
  104. 104.
    Donadello K, Antonucci E, Cristallini S, Roberts JA, Beumier M, Scolletta S, et al. Beta-lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: a case-control study. Int J Antimicrob Agents. 2015;45(3):278–82.PubMedGoogle Scholar
  105. 105.
    Romano TG, Mendes PV, Park M, Costa EL. Extracorporeal respiratory support in adult patients. Jornal brasileiro de pneumologia: publicacao oficial da Sociedade Brasileira de Pneumologia e Tisilogia. 2017;43(1):60–70.Google Scholar
  106. 106.
    Sherwin J, Heath T, Watt K. Pharmacokinetics and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: a review of the current literature. Clin Ther. 2016;38(9):1976–94.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Shekar K, Roberts JA, Ghassabian S, Mullany DV, Wallis SC, Smith MT, et al. Altered antibiotic pharmacokinetics during extracorporeal membrane oxygenation: cause for concern? J Antimicrob Chemother. 2013;68(3):726–7.PubMedGoogle Scholar
  108. 108.
    Rey E, Treluyer JM, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998;35(4):313–29.PubMedGoogle Scholar
  109. 109.
    Lodise TP, Sorgel F, Melnick D, Mason B, Kinzig M, Drusano GL. Penetration of meropenem into epithelial lining fluid of patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2011;55(4):1606–10.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Rizk ML, Rhee EG, Jumes PA, Gotfried MH, Zhao T, Mangin E, et al. Intrapulmonary pharmacokinetics of Relebactam, a novel beta-lactamase inhibitor, dosed in combination with Imipenem-Cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3).Google Scholar
  111. 111.
    Falcone M, Viale P, Tiseo G, Pai M. Pharmacokinetic drug evaluation of avibactam + ceftazidime for the treatment of hospital-acquired pneumonia. Expert Opin Drug Metab Toxicol. 2018;14(3):331–40.PubMedGoogle Scholar
  112. 112.
    Jorgensen SCJ, Rybak MJ. Meropenem and Vaborbactam: stepping up the battle against Carbapenem-resistant Enterobacteriaceae. Pharmacotherapy. 2018;38(4):444–61.PubMedGoogle Scholar
  113. 113.
    Gerard C, Stocco J, Hulin A, et al. Determination of the most influential sources of variability in tacrolimus trough blood concentrations in adult liver transplant recipients: a bottom-up approach. AAPS J. 2014;16(3):379–91.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Greenberg ML, Uretsky BF, Reddy PS, Bernstein RL, Griffith BP, Hardesty RL, et al. Long-term hemodynamic follow-up of cardiac transplant patients treated with cyclosporine and prednisone. Circulation. 1985;71(3):487–94.PubMedGoogle Scholar
  115. 115.
    Czyzewski L, Wyzgal J, Czyzewska E, Sanko-Resmer J, Szarpak L. Assessment of volumetric hemodynamic parameters and body composition in stable renal transplant recipients. Annals of Transplantation. 2017;22:187–98.PubMedGoogle Scholar
  116. 116.
    Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Transplantation. 2014;20(5):640–5.Google Scholar
  117. 117.
    Muggeo A, Guillard T, Barbe C, Thierry A, Bajolet O, Vernet-Garnier V, et al. Factors associated with carriage of carbapenem-non-susceptible Enterobacteriaceae in North-Eastern France and outcomes of infected patients. J Antimicrob Chemother. 2017;72(5):1496–501.PubMedGoogle Scholar
  118. 118.
    Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science (New York, NY). 2016;352(6285):535–8.Google Scholar
  119. 119.
    Lee JR, Magruder M, Zhang L, et al. Gut microbiota dysbiosis and diarrhea in kidney transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2018.Google Scholar
  120. 120.
    Wu ZW, Ling ZX, Lu HF, Zuo J, Sheng JF, Zheng SS, et al. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary & Pancreatic Diseases International: HBPD INT. 2012;11(1):40–50.Google Scholar
  121. 121.
    Herati RS, Blumberg EA. Losing ground: multidrug-resistant bacteria in solid-organ transplantation. Curr Opin Infect Dis. 2012;25(4):445–9.PubMedGoogle Scholar
  122. 122.
    Patolia S, Abate G, Patel N, Patolia S, Frey S. Risk factors and outcomes for multidrug-resistant Gram-negative bacilli bacteremia. Therapeutic Advances in Infectious Disease. 2018;5(1):11–8.PubMedGoogle Scholar
  123. 123.
    Kaleko M, Bristol JA, Hubert S, Parsley T, Widmer G, Tzipori S, et al. Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection. Anaerobe. 2016;41:58–67.PubMedGoogle Scholar
  124. 124.
    Roberts T, Kokai-Kun JF, Coughlin O, Lopez BV, Whalen H, Bristol JA, et al. Tolerability and pharmacokinetics of SYN-004, an orally administered beta-lactamase for the prevention of Clostridium difficile-associated disease and antibiotic-associated diarrhea, in two phase 1 studies. Clinical Drug Investigation. 2016;36(9):725–34.PubMedGoogle Scholar
  125. 125.
    Bristol A, Hubert S, Hofmann F, Baer H. Formulation development of SYN-004 (ribaxamase) oral solid dosage form, a beta-lactamase to prevent intravenous antibiotic-associated dysbiosis of the colon. Int J Pharm. 2017;534(1–2):25–34.PubMedGoogle Scholar
  126. 126.
    • Kokai-Kun JF, Roberts T, Coughlin O, et al. The oral beta-lactamase SYN-004 (Ribaxamase) degrades ceftriaxone excreted into the intestine in phase 2a clinical studies. Antimicrob Agents Chemother 2017;61(3). The drug investigated in the study presents an entirely novel approach to reducing development of resistance in the gastrointestinal tract for patients exposed to broadly acting antibiotics.Google Scholar
  127. 127.
    Wong WF, Santiago M. Microbial approaches for targeting antibiotic-resistant bacteria. Microb Biotechnol. 2017;10(5):1047–53.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Aroniadis OC, Brandt LJ, Greenberg A, Borody T, Kelly CR, Mellow M, et al. Long-term follow-up study of fecal microbiota transplantation for severe and/or complicated Clostridium difficile infection: a multicenter experience. J Clin Gastroenterol. 2016;50(5):398–402.PubMedGoogle Scholar
  129. 129.
    Crum-Cianflone NF, Sullivan E, Ballon-Landa G. Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. J Clin Microbiol. 2015;53(6):1986–9.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Mamo Y, Woodworth MH, Wang T, Dhere T, Durability KCS. Long-term clinical outcomes of fecal microbiota transplant treatment in patients with recurrent Clostridium difficile infection. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2018;66(11):1705–11.Google Scholar
  131. 131.
    Halpin AL, McDonald LC. Editorial commentary: the dawning of microbiome remediation for addressing antibiotic resistance. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2016;62(12):1487–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Olivia Smibert
    • 1
    • 2
  • Michael J. Satlin
    • 3
  • Anoma Nellore
    • 4
  • Anton Y. Peleg
    • 1
    • 5
    Email author
  1. 1.Department of Infectious Diseases, The Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneAustralia
  2. 2.Transplant Infectious Disease and Compromised Host ProgramMassachusetts General HospitalBostonUSA
  3. 3.Division of Infectious DiseasesWeill Cornell MedicineNew YorkUSA
  4. 4.Division of Infectious DiseasesUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of MicrobiologyMonash UniversityClaytonAustralia

Personalised recommendations