Advertisement

Health Considerations for HIV-Infected International Travelers

  • Daniel L. BourqueEmail author
  • Daniel A. SolomonEmail author
  • Paul E. SaxEmail author
Tropical, Travel, and Emerging Infections (L Chen and A Boggild, Section Editors)
  • 57 Downloads
Part of the following topical collections:
  1. Topical Collection on Tropical, Travel and Emerging Infections

Abstract

Purpose of the Review

International travel continues to steadily increase, including leisure travel, travel to one’s country of origin to visit friends and relatives, travel for service work, and business travel. Travelers with HIV may have an increased risk for travel-associated infections. The pre-travel medical consultation is an important means of assessing one’s risk for travel-related health issues. The aim of this review is to provide an update on key health considerations for the HIV-infected traveler.

Recent Findings

Like all travelers, the HIV-infected traveler should adhere to behavioral precautions, including safety measures with food and water consumption, safe sexual practices, and arthropod bite avoidance. HIV is a risk factor for venous thromboembolism and patients should be educated regarding this risk. Most pre-travel vaccines are safe and immunogenic in HIV-infected individuals, though live vaccines should be avoided in patients with low CD4 counts. Malaria chemoprophylaxis is strongly recommended in patients with HIV traveling to endemic areas and no significant interactions exist between the commonly used prophylactic anti-malarial agents and anti-retroviral therapy (ART). Travelers with HIV, particularly those who are not on ART or who have low CD4 cell counts, may have increased risk for tuberculosis, malaria, enteric infections, visceral leishmaniasis, American trypanosomiasis, and endemic mycoses such as histoplasmosis, talaromycosis, and coccidioidomycosis.

Summary

The immune status of the HIV-infected traveler should be assessed prior to travel along with the duration, itinerary, and activities planned during travel in order to carefully consider individual risk for travel-related health issues.

Keywords

HIV-international travel-infection 

Notes

Compliance with Ethical Standards

Conflict of Interest

Daniel L. Bourque, Daniel A. Solomon, and Paul E. Sax declare no conflict of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Crotti R, Misrahi T. The Travel & Tourism Competitiveness Report 2017. Paving the way for a more sustainable and inclusive future. World Economic Forum: Geneva, Switzerland. p. 2017.Google Scholar
  2. 2.
    Hill DR. The burden of illness in international travelers. N Engl J Med. 2006;354:115–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Angell SY, Cetron MS. Health disparities among travelers visiting friends and relatives abroad. Ann Intern Med. 2005;142:67–72.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Elfrink F, van den Hoek A, Sonder GJB. Trends and characteristics among HIV-infected and diabetic travelers seeking pre-travel advice. Travel Med Infect Dis. 2014;12:79–83.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Salit IE, Sano M, Boggild AK, Kain KC. Travel patterns and risk behaviour of HIV-positive people travelling internationally. CMAJ. 2005;172:884–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sherrard AW, McCarthy AE. Travel patterns and health risks for patients infected with HIV. Travel Med Infect Dis. 2009;7:291–5.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bibas M, Biava G, Antinori A. HIV-associated venous thromboembolism. Mediterr J Hematol Infect Dis. 2011;3:e2011030.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dooley KE, Flexner C, Andrade AS. Drug interactions involving combination antiretroviral therapy and other anti-infective agents: repercussions for resource-limited countries. J Infect Dis. 2008;198:948–61.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    • Ippolito MM, Jacobson JM, Lederman MM, Winterberg M, Tarning J, Shapiro TA, et al. Effect of antiretroviral therapy on plasma concentrations of chloroquine and desethyl-chloroquine. Clin Infect Dis. 2018; doi: https://doi.org/10.1093/cid/ciy405. An important study assessing the impact of antiretroviral therapy on commonly used antimalarial medications.
  10. 10.
    Khaliq Y, Gallicano K, Tisdale C, Carignan G, Cooper C, McCarthy A. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol. 2001;51:591–600.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kroon FP, van Dissel JT, de Jong JC, van Furth R. Antibody response to influenza, tetanus and pneumococcal vaccines in HIV-seropositive individuals in relation to the number of CD4+ lymphocytes. AIDS. 1994;8:469–76.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Fuller JD, Craven DE, Steger KA, Cox N, Heeren TC, Chernoff D. Influenza vaccination of human immunodeficiency virus (HIV)-infected adults: impact on plasma levels of HIV type 1 RNA and determinants of antibody response. Clin Infect Dis. 1999;28:541–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mehta N, Cunningham CK, Flynn P, Pepe J, Obaro S, Kapogiannis BG, et al. Impaired generation of hepatitis B virus-specific memory B cells in HIV infected individuals following vaccination. Vaccine. 2010;28:3672–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Levin MJ, Gershon AA, Weinberg A, Song L-Y, Fentin T, Nowak B, et al. Administration of live varicella vaccine to HIV-infected children with current or past significant depression of CD4(+) T cells. J Infect Dis. 2006;194:247–55.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Glesby MJ, Hoover DR, Farzadegan H, Margolick JB, Saah AJ. The effect of influenza vaccination on human immunodeficiency virus type 1 load: a randomized, double-blind, placebo-controlled study. J Infect Dis. 1996;174:1332–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Staprans SI, Hamilton BL, Follansbee SE, Elbeik T, Barbosa P, Grant RM, et al. Activation of virus replication after vaccination of HIV-1-infected individuals. J Exp Med. 1995;182:1727–37.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Beck CR, McKenzie BC, Hashim AB, Harris RC. University of Nottingham Influenza and the ImmunoCompromised (UNIIC) Study Group, Nguyen-Van-Tam JS. Influenza vaccination for immunocompromised patients: systematic review and meta-analysis by etiology. J Infect Dis, 2012;206:1250–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
  19. 19.
    •• Barte H, Horvath TH, Rutherford GW. Yellow fever vaccine for patients with HIV infection. Cochrane Database Syst Rev. 2014; CD010929. An extensive meta-analysis summarizing the key data regarding the safety and immunogenicity of yellow fever vaccine in HIV-infected patients. Google Scholar
  20. 20.
    Stermole BM, Grandits GA, Roediger MP, Clark BM, Ganesan A, Weintrob AC, et al. Long-term safety and serologic response to measles, mumps, and rubella vaccination in HIV-1 infected adults. Vaccine. 2011;29:2874–80.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Son M, Shapiro ED, LaRussa P, Neu N, Michalik DE, Meglin M, et al. Effectiveness of varicella vaccine in children infected with HIV. J Infect Dis. 2010;201:1806–10.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bekker V, Westerlaken GHA, Scherpbier H, Alders S, Zaaijer H, van Baarle D, et al. Varicella vaccination in HIV-1-infected children after immune reconstitution. AIDS. 2006;20:2321–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014;58:e44–100.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Banda R, Yambayamba V, Lalusha BD, Sinkala E, Kapulu MC, Kelly P. Safety of live, attenuated oral vaccines in HIV-infected Zambian adults: oral vaccines in HIV. Vaccine. 2012;30:5656–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Matteelli A, Schlagenhauf P, Carvalho AC, Weld L, Davis XM, Wilder-Smith A, et al. Travel-associated sexually transmitted infections: an observational cross-sectional study of the GeoSentinel surveillance database. Lancet Infect Dis. 2013;13:205–13.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Ward BJ, Plourde P. Travel and sexually transmitted infections. J Travel Med. 2006;13:300–17.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Carr N. Sex in tourism: reflections and potential future research directions. Tourism Recreation Res Routledge. 2016;41:188–98.CrossRefGoogle Scholar
  28. 28.
    Updated Guidelines for Antiretroviral Postexposure Prophylaxis After Sexual, Injection-Drug Use, or Other Nonoccupational Exposure to HIV—United States, 2016. Available: https://www.cdc.gov/hiv/pdf/programresources/cdc-hiv-npep-guidelines.pdf
  29. 29.
    Brett-Major DM, Scott PT, Crowell TA, Polyak CS, Modjarrad K, Robb ML, et al. Are you PEPped and PrEPped for travel? Risk mitigation of HIV infection for travelers. Trop Dis Travel Med Vaccines. 2016;2:25.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Freedman DO, Chen LH, Kozarsky PE. Medical considerations before international travel. N Engl J Med. 2016;375:247–60.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    World Health Organization World malaria report 2017. World Health Organization; 2018.Google Scholar
  32. 32.
    Whitworth J, Morgan D, Quigley M, Smith A, Mayanja B, Eotu H, et al. Effect of HIV-1 and increasing immunosuppression on malaria parasitaemia and clinical episodes in adults in rural Uganda: a cohort study. Lancet. 2000;356:1051–6.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    French N, Nakiyingi J, Lugada E, Watera C, Whitworth JA, Gilks CF. Increasing rates of malarial fever with deteriorating immune status in HIV-1-infected Ugandan adults. AIDS. 2001;15:899–906.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Mermin J, Lule JR, Ekwaru JP. Association between malaria and CD4 cell count decline among persons with HIV. J Acquir Immune Defic Syndr. 2006;41:129–30.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Kublin JG, Patnaik P, Jere CS, Miller WC, Hoffman IF, Chimbiya N, et al. Effect of plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet. 2005;365:233–40.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Skinner-Adams TS, McCarthy JS, Gardiner DL, Hilton PM, Andrews KT. Antiretrovirals as antimalarial agents. J Infect Dis. 2004;190:1998–2000.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nsanzabana C, Rosenthal PJ. In vitro activity of antiretroviral drugs against plasmodium falciparum. Antimicrob Agents Chemother. 2011;55:5073–7.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Parikh S, Gut J, Istvan E, Goldberg DE, Havlir DV, Rosenthal PJ. Antimalarial activity of human immunodeficiency virus type 1 protease inhibitors. Antimicrob Agents Chemother. 2005;49:2983–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Achan J, Kakuru A, Ikilezi G, Ruel T, Clark TD, Nsanzabana C, et al. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med. 2012;367:2110–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Parikh S, Kajubi R, Huang L, Ssebuliba J, Kiconco S, Gao Q, et al. Antiretroviral choice for HIV impacts antimalarial exposure and treatment outcomes in Ugandan children. Clin Infect Dis. 2016;63:414–22.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G, et al. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr. 2012;61:310–6.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67:2213–21.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Kakuda TN, DeMasi R, van Delft Y, Mohammed P. Pharmacokinetic interaction between etravirine or darunavir/ritonavir and artemether/lumefantrine in healthy volunteers: a two-panel, two-way, two-period, randomized trial. HIV Med. 2013;14:421–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Taylor WRJ, White NJ. Antimalarial drug toxicity: a review. Drug Saf. 2004;27:25–61.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Steffen R, Hill DR, DuPont HL. Traveler’s diarrhea: a clinical review. JAMA. 2015;313:71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Angulo FJ, Swerdlow DL. Bacterial enteric infections in persons infected with human immunodeficiency virus. Clin Infect Dis. 1995;21(Suppl 1):S84–93.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Stark D, Barratt JLN, van Hal S, Marriott D, Harkness J, Ellis JT. Clinical significance of enteric protozoa in the immunosuppressed human population. Clin Microbiol Rev. 2009;22:634–50.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Sanchez TH, Brooks JT, Sullivan PS, Juhasz M, Mintz E, Dworkin MS, et al. Bacterial diarrhea in persons with HIV infection, United States, 1992–2002. Clin Infect Dis. 2005;41:1621–7.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kownhar H, Shankar EM, Rajan R, Vengatesan A, Rao UA. Prevalence of Campylobacter jejuni and enteric bacterial pathogens among hospitalized HIV infected versus non-HIV infected patients with diarrhoea in southern India. Scand J Infect Dis. 2007;39:862–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tee W, Mijch A. Campylobacter jejuni bacteremia in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients: comparison of clinical features and review. Clin Infect Dis. 1998;26:91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Gordon MA, Banda HT, Gondwe M, Gordon SB, Boeree MJ, Walsh AL, et al. Non-typhoidal salmonella bacteraemia among HIV-infected Malawian adults: high mortality and frequent recrudescence. AIDS. 2002;16:1633–41.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Dhanoa A, Fatt QK. Non-typhoidal Salmonella bacteraemia: epidemiology, clinical characteristics and its’ association with severe immunosuppression. Ann Clin Microbiol Antimicrob. 2009;8:15.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Preziosi MJ, Kandel SM, Guiney DG, Browne SH. Microbiological analysis of nontyphoidal Salmonella strains causing distinct syndromes of bacteremia or enteritis in HIV/AIDS patients in San Diego, California. J Clin Microbiol. 2012;50:3598–603.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Mohan K, Hibbert M, Rooney G, Canvin M, Childs T, Jenkins C, et al. What is the overlap between HIV and shigellosis epidemics in England: further evidence of MSM transmission? Sex Transm Infect. 2018;94:67–71.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Baer JT, Vugia DJ, Reingold AL, Aragon T, Angulo FJ, Bradford WZ. HIV infection as a risk factor for shigellosis. Emerg Infect Dis. 1999;5:820–3.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Toro C, Arroyo A, Sarria A, Iglesias N, Enríquez A, Baquero M, et al. Shigellosis in subjects with traveler’s diarrhea versus domestically acquired diarrhea: implications for antimicrobial therapy and human immunodeficiency virus surveillance. Am J Trop Med Hyg. 2015;93:491–6.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Riddle MS, Connor BA, Beeching NJ, DuPont HL, Hamer DH, Kozarsky P, et al. Guidelines for the prevention and treatment of travelers’ diarrhea: a graded expert panel report. J Travel Med. 2017;24:S57–74.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Richterman A, Cheung HC, Meiselbach MK, Jerome G, Ternier R, Ivers LC. Risk factors for self-reported cholera within hiv-affected households in rural Haiti. Open Forum Infect Dis. 2018;5:ofy127.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Cabrera A, Lepage JE, Sullivan KM, Seed SM. Vaxchora: a single-dose oral cholera vaccine. Ann Pharmacother. 2017;51:584–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Perry RT, Plowe CV, Koumaré B, Bougoudogo F, Kotloff KL, Losonsky GA, et al. A single dose of live oral cholera vaccine CVD 103-HgR is safe and immunogenic in HIV-infected and HIV-noninfected adults in Mali. Bull World Health Organ. 1998;76:63–71.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Wittlinger F, Steffen R, Watanabe H, Handszuh H. Risk of cholera among Western and Japanese travelers. J Travel Med. 1995;2:154–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Harvey K, Esposito DH, Han P, Kozarsky P, Freedman DO, Plier DA, et al. Surveillance for travel-related disease—GeoSentinel surveillance system, United States, 1997–2011. Morb Mortal Wkly Rep Surveill Summ. JSTOR. 2013;62:1–23.Google Scholar
  63. 63.
    Crump JA, Ramadhani HO, Morrissey AB, Saganda W, Mwako MS, Yang L-Y, et al. Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected adults and adolescents in northern Tanzania. Clin Infect Dis. 2011;52:341–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gotuzzo E, Frisancho O, Sanchez J, Liendo G, Carrillo C, Black RE, et al. Association between the acquired immunodeficiency syndrome and infection with Salmonella typhi or Salmonella paratyphi in an endemic typhoid area. Arch Intern Med. 1991;151:381–2.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chalya PL, Mabula JB, Koy M, Kataraihya JB, Jaka H, Mshana SE, et al. Typhoid intestinal perforations at a university teaching hospital in Northwestern Tanzania: a surgical experience of 104 cases in a resource-limited setting. World J Emerg Surg. 2012;7:4.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Keddy KH, Sooka A, Smith AM, Musekiwa A, Tau NP, Klugman KP, et al. Typhoid fever in South Africa in an endemic HIV setting. PLoS One. 2016;11:e0164939.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Okhuysen PC. Traveler’s diarrhea due to intestinal protozoa. Clin Infect Dis. 2001;33:110–4.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Freedman DO, Weld LH, Kozarsky PE, Fisk T, Robins R, von Sonnenburg F, et al. Spectrum of disease and relation to place of exposure among ill returned travelers. N Engl J Med. 2006;354:119–30.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Assefa S, Erko B, Medhin G, Assefa Z, Shimelis T. Intestinal parasitic infections in relation to HIV/AIDS status, diarrhea and CD4 T-cell count. BMC Infect Dis. 2009;9:155.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Feitosa G, Bandeira AC, Sampaio DP, Badaró R, Brites C. High prevalence of giardiasis and stronglyloidiasis among HIV-infected patients in Bahia, Brazil. Braz J Infect Dis. 2001;5:339–44.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Morawski BM, Yunus M, Kerukadho E, Turyasingura G, Barbra L, Ojok AM, et al. Hookworm infection is associated with decreased CD4+ T cell counts in HIV-infected adult Ugandans. PLoS Negl Trop Dis. 2017;11:e0005634.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Blish CA, Sangaré L, Herrin BR, Richardson BA, John-Stewart G, Walson JL. Changes in plasma cytokines after treatment of ascaris lumbricoides infection in individuals with HIV-1 infection. J Infect Dis. 2010;201:1816–21.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Walson JL, Otieno PA, Mbuchi M, Richardson BA, Lohman-Payne B, Macharia SW, et al. Albendazole treatment of HIV-1 and helminth co-infection: a randomized, double-blind, placebo-controlled trial. AIDS. 2008;22:1601–9.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Walson JL, Herrin BR, John-Stewart G. Deworming helminth co-infected individuals for delaying HIV disease progression. Cochrane Database Syst Rev. 2009; CD006419.Google Scholar
  75. 75.
    Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection—associated tuberculosis: the epidemiology and the response. Clin Infect Dis Oxford University Press. 2010;50:S201–7.CrossRefGoogle Scholar
  76. 76.
    Pawlowski A, Jansson M, Sköld M, Rottenberg ME, Källenius G. Tuberculosis and HIV co-infection. PLoS Pathog. 2012;8:e1002464.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    WHO|Global tuberculosis report 2018. World Health Organization; 2018; Available: https://www.who.int/tb/publications/global_report/en/
  78. 78.
    Jung P, Banks RH. Tuberculosis risk in US Peace Corps Volunteers, 1996 to 2005. J Travel Med. 2008;15:87–94.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Cobelens FG, van Deutekom H, Draayer-Jansen IW, Schepp-Beelen AC, van Gerven PJ, van Kessel RP, et al. Risk of infection with Mycobacterium tuberculosis in travellers to areas of high tuberculosis endemicity. Lancet. 2000;356:461–5.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Leder K, Torresi J, Libman MD, Cramer JP, Castelli F, Schlagenhauf P, et al. GeoSentinel surveillance of illness in returned travelers, 2007–2011. Ann Intern Med. 2013;158:456–68.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Nicolás M, Gimenez-Arnau A, Camarasa JG. Cutaneous leishmaniasis in AIDS. Dermatology. 1995;190:255–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lartey M, Adusei L, Hanson-Nortey L, Addy J. Coinfection of cutaneous Leishmaniasis and HIV infection. Ghana Med J. 2006;40:110–2.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Alvar J, Aparicio P, Aseffa A, Den Boer M, Cañavate C, Dedet J-P, et al. The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21:334–59 table of contents.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lopez-Velez R, Perez-Molina JA, Guerrero A, Baquero F, Villarrubia J, Escribano L, et al. Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients coinfected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am J Trop Med Hyg. 1998;58:436–43.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Gil-Prieto R, Walter S, Alvar J, de Miguel AG. Epidemiology of leishmaniasis in Spain based on hospitalization records (1997–2008). Am J Trop Med Hyg. 2011;85:820–5.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Diro E, Lynen L, Ritmeijer K, Boelaert M, Hailu A, van Griensven J. Visceral Leishmaniasis and HIV coinfection in East Africa. PLoS Negl Trop Dis. 2014;8:e2869.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet. 2018;392:951–70.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Pérez-Molina JA, Molina I. Chagas disease. Lancet. 2018;391:82–94.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bern C. Chagas disease in the immunosuppressed host. Curr Opin Infect Dis. 2012;25:450–7.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Diaz JH. Recognizing and reducing the risks of Chagas disease (American trypanosomiasis) in travelers. J Travel Med. 2008;15:184–95.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Meda HA, Doua F, Laveissière C, Miezan TW, Gaens E, Brattegaard K, et al. Human immunodeficiency virus infection and human African trypanosomiasis: a case-control study in Côte d’Ivoire. Trans R Soc Trop Med Hyg. 1995;89:639–43.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kjetland EF, Ndhlovu PD, Gomo E, Mduluza T, Midzi N, Gwanzura L, et al. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS. 2006;20:593–600.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Downs JA, Dupnik KM, van Dam GJ, Urassa M, Lutonja P, Kornelis D, et al. Effects of schistosomiasis on susceptibility to HIV-1 infection and HIV-1 viral load at HIV-1 seroconversion: a nested case-control study. PLoS Negl Trop Dis. 2017;11:e0005968.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Brodish PH, Singh K. Association between Schistosoma haematobium exposure and human immunodeficiency virus infection among females in Mozambique. Am J Trop Med Hyg. 2016;94:1040–4.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Dengue vaccine: WHO position paper, September 2018 - Recommendations. Vaccine. 2018; doi: https://doi.org/10.1016/j.vaccine.2018.09.063
  96. 96.
    João EC, da Ferreira O, C Jr, Gouvêa MI, de Teixeira M, LB, Tanuri A, Higa LM, et al. Pregnant women co-infected with HIV and Zika: outcomes and birth defects in infants according to maternal symptomatology. PLoS One. 2018;13:e0200168.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Kositpantawong N, Charoenmak B, Siripaitoon P, Silpapojakul K. 1724 Clinical presentations and interactions of the Chikungunya viral infection in HIV patients during the Chikungunya epidemic in Southern Thailand. Open forum infectious diseases. Oxford University Press; 2014;1: S462.Google Scholar
  98. 98.
    Pang J, Thein T-L, Lye DC, Leo Y-S. Differential clinical outcome of dengue infection among patients with and without HIV infection: a matched case-control study. Am J Trop Med Hyg. 2015;92:1156–62.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Espinoza-Gómez F, Delgado-Enciso I, Valle-Reyes S, Ochoa-Jiménez R, Arechiga-Ramírez C, Gámez-Arroyo JL, et al. Dengue virus coinfection in human immunodeficiency virus-1-infected patients on the West Coast of Mexico. Am J Trop Med Hyg. 2017;97:927–30.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Adenis AA, Valdes A, Cropet C, McCotter OZ, Derado G, Couppie P, et al. Burden of HIV-associated histoplasmosis compared with tuberculosis in Latin America: a modelling study. Lancet Infect Dis. 2018;18:1150–9.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sarosi GA, Johnson PC. Disseminated histoplasmosis in patients infected with human immunodeficiency virus. Clin Infect Dis. 1992;14(Suppl 1):S60–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Vanittanakom N, Cooper CR Jr, Fisher MC, Sirisanthana T. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin Microbiol Rev. 2006;19:95–110.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Castro-Lainez MT, Sierra-Hoffman M, LLompart-Zeno J, Adams R, Howell A, Hoffman-Roberts H, et al. Talaromyces marneffei infection in a non-HIV non-endemic population. IDCases. 2018;12: 21–24.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Walsh TJ, Groll A, Hiemenz J, Fleming R, Roilides E, Anaissie E. Infections due to emerging and uncommon medically important fungal pathogens. Clin Microbiol Infect. 2004;10(Suppl 1):48–66.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Brown J, Benedict K, Park BJ, Thompson GR 3rd. Coccidioidomycosis: epidemiology. Clin Epidemiol. 2013;5:185–97.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Infectious Diseases and Travel MedicineMount Auburn HospitalCambridgeUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Division of Infectious DiseasesBrigham and Women’s HospitalBostonUSA

Personalised recommendations