Acute Flaccid Paralysis and Enteroviral Infections

  • Ari BitnunEmail author
  • E. Ann Yeh
Neurological Infectious Diseases
Part of the following topical collections:
  1. Topical Collection on Neurological Infectious Diseases


Purpose of Review

The focus of this review is on enterovirus (EV)-associated acute flaccid paralysis (AFP) due to spinal cord anterior horn cell disease. Emphasis is placed on the epidemiology, pathogenesis, diagnosis, treatment, and outcome of AFP caused by polioviruses, vaccine-derived polioviruses, EV-D68, and EV-A71.

Recent Findings

Since the launch of The Global Polio Eradication Initiative in 1988, the worldwide incidence of polio has been reduced by 99.9%, with small numbers of poliomyelitis cases being reported only in Afghanistan, Pakistan, and Nigeria. With the planned phaseout of oral polio vaccine, vaccine-associated poliomyelitis is also expected to be eliminated. In their place, other EVs, chiefly EV-D68 and EV-A71, have emerged as the principal causes of AFP. There is evidence that the emergence of EV-D68 as a cause of severe respiratory disease and AFP was due to recent genetic virus evolution. Antiviral medications targeting EV-D68, EV-A71, and other EVs will likely be available in the near future. An effective EV-A71 vaccine has been developed, and preliminary investigations suggest an EV-D68 vaccine could be on the horizon.


The eradication of poliomyelitis and vaccine-associated poliomyelitis is near, after which other EVs, presently EV-D68 and EV-A71, will be the principle viral causes of AFP. Moving forward, it is essential that EV outbreaks, in particular those associated with neurologic complications, be investigated carefully and the causal strains identified, so that treatment and prevention efforts can be rapidly developed and implemented.


Acute flaccid paralysis Acute flaccid myelitis Enterovirus D68 Enterovirus A71 Poliovirus Poliomyelitis Vaccine-derived poliovirus 


Compliance with Ethical Standards

Conflict of Interest

Drs. Ari Bitnun and E. Ann Yeh declare that they have no conflicts of interest related to this project.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    World Health Organization. Polio Global Eradication Initiative. 2018 [Accessed March 24, 2018]. Available from:
  2. 2.
    World Health Organization. Global Polio Eradication Initiative. Circulating vaccine-derived poliovirus. Geneva, Switzerland 2018 [Accessed: March 24, 2018]. Available from:
  3. 3.
    Marx A, Glass JD, Sutter RW. Differential diagnosis of acute flaccid paralysis and its role in poliomyelitis surveillance. Epidemiol Rev. 2000;22(2):298–316.CrossRefPubMedGoogle Scholar
  4. 4.
    Council of State and Territorial Epidemiologists. Standardized case definition for acute flaccid myelitis: centers for disease Controland Prevention; 2015 [Accessed: April 6, 2018]. Available from:
  5. 5.
    Horstmann DM. Clinical aspects of acute poliomyelitis. Am J Med. 1949;6(5):592–605.CrossRefPubMedGoogle Scholar
  6. 6.
    Romero JR, Dodlin JF. Poliovirus. In: Bennett JE, Dolin R, Blaser MJ, editors. Principles and practive of infectious diseases. Eighth ed. Philadelphia: Elsevier Saunders; 2015. p. 2073–2079.Google Scholar
  7. 7.
    •• Messacar K, Schreiner TL, Van Haren K, Yang M, Glaser CA, Tyler KL, et al. Acute flaccid myelitis: a clinical review of US cases 2012-2015. Ann Neurol. 2016;80(3):326–38. A comprehensive review of U.S. studies on EV-D68 AFP/AFM. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nelson GR, Bonkowsky JL, Doll E, Green M, Hedlund GL, Moore KR, et al. Recognition and management of acute flaccid myelitis in children. Pediatr Neurol. 2016 Feb;55:17–21.Google Scholar
  9. 9.
    •• Sejvar JJ, Lopez AS, Cortese MM, Leshem E, Pastula DM, Miller L, et al. Acute flaccid myelitis in the United States, August-December 2014: results of nationwide surveillance. Clin Infect Dis. 2016;63(6):737–45. The largest single study pertaining to the 2014 EV-D68 outbreak, consisting of 120 cases of AFP/AFM reported to the CDC. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    • Van Haren K, Ayscue P, Waubant E, Clayton A, Sheriff H, Yagi S, et al. Acute flaccid myelitis of unknown etiology in California, 2012-2015. JAMA. 2015;314(24):2663–71. One of the earliest reports of 2014 EV-D68-associated AFP/AFM in the USA. CrossRefPubMedGoogle Scholar
  11. 11.
    • Yea C, Bitnun A, Robinson J, Mineyko A, Barton M, Mah JK, et al. Longitudinal outcomes in the 2014 acute flaccid paralysis cluster in Canada. J Child Neurol. 2017;32(3):301–7. A comprehensive Canada-wide review of EV-D68-associated AFP/AFM cases. Google Scholar
  12. 12.
    •• Greninger AL, Naccache SN, Messacar K, Clayton A, Yu G, Somasekar S, et al. A novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012-14): a retrospective cohort study. Lancet Infect Dis. 2015;15(6):671–82. A retrospective study of EV-D68-associated AFP/AFM cases that included phylogenetic analysis demonstrating that the 2014 outbreak strain was a B1 clade with potentially significant pathogenic nucleotide polymorphisms. Google Scholar
  13. 13.
    Weinstein L, Shelokov A, Seltser R, Winchell GD. A comparison of the clinical features of poliomyelitis in adults and in children. N Engl J Med. 1952 Feb 21;246(8):297–302.CrossRefPubMedGoogle Scholar
  14. 14.
    • Messacar K, Schreiner TL, Maloney JA, Wallace A, Ludke J, Oberste MS, et al. A cluster of acute flaccid paralysis and cranial nerve dysfunction temporally associated with an outbreak of enterovirus D68 in children in Colorado, USA. Lancet. 2015;385(9978):1662–71. One of the earliest reports of 2014 EV-D68-associated AFP/AFM in the USA. Google Scholar
  15. 15.
    Chen CY, Chang YC, Huang CC, Lui CC, Lee KW, Huang SC. Acute flaccid paralysis in infants and young children with enterovirus 71 infection: MR imaging findings and clinical correlates. AJNR Am J Neuroradiol. 2001 Jan;22(1):200–5.PubMedGoogle Scholar
  16. 16.
    • Hu Y, Jiang L, Peng HL. Clinical analysis of 134 children with nervous system damage caused by enterovirus 71 infection. Pediatr Infect Dis J. 2015;34(7):718–23. One of the larger series of EV-A71 neurologic disease in children. CrossRefPubMedGoogle Scholar
  17. 17.
    Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF. Neurologic complications in children with enterovirus 71 infection. N Engl J Med. 1999 Sep 23;341(13):936–42.Google Scholar
  18. 18.
    •• Lee HF, Chi CS. Enterovirus 71 infection-associated acute flaccid paralysis: a case series of long-term neurologic follow-up. J Child Neurol. 2014;29(10):1283–90. A comprehenive case series evaluating the long-term neurologic outcome of EV-A71-associated AFP/AFM. CrossRefPubMedGoogle Scholar
  19. 19.
    Baker AB. Bulbar poliomyelitis; its mechanism and treatment. Am J Med. 1949;6(5):614–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Ho M, Chen ER, Hsu KH, Twu SJ, Chen KT, Tsai SF, et al. An epidemic of enterovirus 71 infection in Taiwan. Taiwan Enterovirus Epidemic Working Group. N Engl J Med. 1999;341(13):929–35.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    • Teoh HL, Mohammad SS, Britton PN, Kandula T, Lorentzos MS, Booy R, et al. Clinical characteristics and functional motor outcomes of enterovirus 71 neurological disease in children. JAMA Neurology. 2016;73(3):300–7. A large case series of EV-A71-associated neurologic disease in Australia. Google Scholar
  22. 22.
    Wadia NH, Irani PF, Katrak SM. Lumbosacral radiculomyelitis associated with pandemic acute haemorrhagic conjunctivitis. Lancet. 1973;1(7799):350–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Wadia NH, Katrak SM, Misra VP, Wadia PN, Miyamura K, Hashimoto K, et al. Polio-like motor paralysis associated with acute hemorrhagic conjunctivitis in an outbreak in 1981 in Bombay, India: clinical and serologic studies. J Infect Dis. 1983;147(4):660–8.Google Scholar
  24. 24.
    Wadia NH, Wadia PN, Katrak SM, Misra VP. A study of the neurological disorder associated with acute haemorrhagic conjunctivitis due to enterovirus 70. J Neurol Neurosurg Psychiatry. 1983;46(7):599–610.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Katiyar BC, Misra S, Singh RB, Singh AK, Gupta S, Gulati AK, et al. Adult polio-like syndrome following enterovirus 70 conjunctivitis (natural history of the disease). Acta Neurol Scand. 1983;67(5):263–74.Google Scholar
  26. 26.
    Yui LA, Gledhill RF. Limb paralysis as a manifestation of Coxsackie B virus infection. Dev Med Child Neurol. 1991;33(5):427–38.CrossRefPubMedGoogle Scholar
  27. 27.
    Grist NR. Type A7 Coxsackie (type 4 poliomyelitis) virus infection in Scotland. J Hyg. 1962;60:323–32.CrossRefPubMedGoogle Scholar
  28. 28.
    Grist NR, Roberts GB. Histological studies of Cox-sackie A7 poliomyelitis in man and monkeys. J Pathol Bacteriol. 1962;84:39–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Horner LM, Poulter MD, Brenton JN, Turner RB. Acute flaccid paralysis associated with novel enterovirus C105. Emerg Infect Dis. 2015;21(10):1858–60.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schuster JE, Selvarangan R, Hassan F, Briggs KB, Hays L, Miller JO, et al. Clinical course of enterovirus D68 in hospitalized children. Pediatr Infect Dis J. 2017;36(3):290–5.Google Scholar
  31. 31.
    Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol. 2010;9(11):1097–105.CrossRefPubMedGoogle Scholar
  32. 32.
    Wiechers D. Electrophysiology of acute polio revisited. Utilizing newer EMG techniques in vaccine-associated disease. Ann N Y Acad Sci. 1995;753:111–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Hovden IA, Pfeiffer HC. Electrodiagnostic findings in acute flaccid myelitis related to enterovirus D68. Muscle Nerve. 2015 Nov;52(5):909–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Choudhary A, Sharma S, Sankhyan N, Gulati S, Kalra V, Banerjee B, et al. Midbrain and spinal cord magnetic resonance imaging (MRI) changes in poliomyelitis. J Child Neurol. 2010;25(4):497–9.Google Scholar
  35. 35.
    Kornreich L, Dagan O, Grunebaum M. MRI in acute poliomyelitis. Neuroradiology. 1996;38(4):371–2.CrossRefPubMedGoogle Scholar
  36. 36.
    Malzberg MS, Rogg JM, Tate CA, Zayas V, Easton JD. Poliomyelitis: hyperintensity of the anterior horn cells on MR images of the spinal cord. AJR Am J Roentgenol. 1993;161(4):863–5.CrossRefPubMedGoogle Scholar
  37. 37.
    •• Maloney JA, Mirsky DM, Messacar K, Dominguez SR, Schreiner T, Stence NV. MRI findings in children with acute flaccid paralysis and cranial nerve dysfunction occurring during the 2014 enterovirus D68 outbreak. Am J Neuroradiol. 2015;36(2):245–50. A review of the neuroimaging findings in EV-D68-associated AFP/AFM. CrossRefPubMedGoogle Scholar
  38. 38.
    Shen WC, Tsai C, Chiu H, Chow K. MRI of enterovirus 71 myelitis with monoplegia. Neuroradiology. 2000;42(2):124–7.CrossRefPubMedGoogle Scholar
  39. 39.
    • Lugo D, Krogstad P. Enteroviruses in the early 21st century: new manifestations and challenges. Curr Opin Pediatr. 2016;28(1):107–13. A brief overview of recent developments regarding emerging enteroviruses, antiviral treatments, and vaccines. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nasri D, Bouslama L, Pillet S, Bourlet T, Aouni M, Pozzetto B. Basic rationale, current methods and future directions for molecular typing of human enterovirus. Expert Rev Mol Diagn. 2007 Jul;7(4):419–34.CrossRefPubMedGoogle Scholar
  41. 41.
    Magoffin RL, Lennette EH. Nonpolioviruses and paralytic disease. California Med. 1962;97:1–7.PubMedGoogle Scholar
  42. 42.
    Grist NR, Bell EJ. Paralytic poliomyelitis and nonpolio enteroviruses: studies in Scotland. Rev Infect Dis. 1984;6(Suppl 2):S385–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Santhanam S, Choudhury DS. Coxsackie A-9 in the etiology of poliomyelitis-like diseases. Indian J Pediatr. 1985;52(417):405–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Chaves SS, Lobo S, Kennett M, Black J. Coxsackie virus A24 infection presenting as acute flaccid paralysis. Lancet. 2001;357(9256):605.CrossRefPubMedGoogle Scholar
  45. 45.
    Laxmivandana R, Yergolkar P, Rajeshwari M, Chitambar SD. Genomic characterization of coxsackievirus type A24 strains associated with acute flaccid paralysis and rarely identified Hopkins syndrome. Arch Virol. 2014;159(11):3125–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Angez M, Shaukat S, Zahra R, Alam MM, Sharif S, Khurshid A, et al. Characterization of group B coxsackieviruses isolated from non-polio acute flaccid paralysis patients in Pakistan: vital assessment before polio eradication. Epidemiol Infect. 2017;145(12):2473–81.CrossRefPubMedGoogle Scholar
  47. 47.
    Tao Z, Wang H, Liu Y, Li Y, Jiang P, Liu G, et al. Non-polio enteroviruses from acute flaccid paralysis surveillance in Shandong Province, China, 1988-2013. Sci Rep. 2014;4:6167.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Dhole TN, Ayyagari A, Chowdhary R, Shakya AK, Shrivastav N, Datta T, et al. Non-polio enteroviruses in acute flaccid paralysis children of India: vital assessment before polio eradication. J Paediatr Child Health. 2009;45(7–8):409–13.Google Scholar
  49. 49.
    Fernandez-Garcia MD, Kebe O, Fall AD, Ndiaye K. Identification and molecular characterization of non-polio enteroviruses from children with acute flaccid paralysis in West Africa, 2013-2014. Sci Rep. 2017;7(1):3808.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    •• Lopalco PL. Wild and vaccine-derived poliovirus circulation, and implications for polio eradication. Epidemiol Infect. 2017;145(3):413–9. A detailed overview of wild and vaccine-derived polioviruses and progress towards polio erradication. CrossRefPubMedGoogle Scholar
  51. 51.
    Platt LR, Estivariz CF, Sutter RW. Vaccine-associated paralytic poliomyelitis: a review of the epidemiology and estimation of the global burden. J Infect Dis. 2014;210(Suppl 1):S380–9.CrossRefPubMedGoogle Scholar
  52. 52.
    De Jesus NH. Epidemics to eradication: the modern history of poliomyelitis. Virol J. 2007;4:70.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nathanson N, Langmuir AD. The cutter incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States during the spring of 1955. I. Background. Am J Hyg. 1963;78:16–28.PubMedGoogle Scholar
  54. 54.
    Ohka S, Sakai M, Bohnert S, Igarashi H, Deinhardt K, Schiavo G, et al. Receptor-dependent and -independent axonal retrograde transport of poliovirus in motor neurons. J Virol. 2009;83(10):4995–5004.Google Scholar
  55. 55.
    Bodian D. Histopathologic basis of clinical findings in poliomyelitis. Am J Med. 1949;6(5):563–78.CrossRefPubMedGoogle Scholar
  56. 56.
    Strebel PM, Ion-Nedelcu N, Baughman AL, Sutter RW, Cochi SL. Intramuscular injections within 30 days of immunization with oral poliovirus vaccine—a risk factor for vaccine-associated paralytic poliomyelitis. N Engl J Med. 1995 Feb 23;332(8):500–6.CrossRefPubMedGoogle Scholar
  57. 57.
    World Health Organization. Global Polio Eradication Initiative. Polio eradication & endgame strategic plan 2013-2018. Geneva, Switzerland. 2012 [Accessed April 11, 2018]. Available from:
  58. 58.
    Schieble JH, Fox VL, Lennette EH. A probable new human picornavirus associated with respiratory diseases. Am J Epidemiol. 1967;85(2):297–310.CrossRefPubMedGoogle Scholar
  59. 59.
    •• Dyda A, Stelzer-Braid S, Adam D, Chughtai AA, MacIntyre CR. The association between acute flaccid myelitis (AFM) and enterovirus D68 (EV-D68)—what is the evidence for causation? Euro Surveillance: bulletin Europeen sur les maladies transmissibles = European Communicable Disease Bulletin. 2018;23(3) A summary of the evidence for EV-D68 as a cause of AFP/AFM. Google Scholar
  60. 60.
    Khetsuriani N, Lamonte-Fowlkes A, Oberst S, Pallansch MA, Centers for Disease Control and Prevention. Enterovirus surveillance—United States, 1970-2005. Morbidity and mortality weekly report. Surveillance Summaries. 2006;55(8):1–20.PubMedGoogle Scholar
  61. 61.
    Centers for Disease Control and Prevention. Clusters of acute respiratory illness associated with human enterovirus 68—Asia, Europe, and United States, 2008-2010. MMWR Morb Mortal Wkly Rep. 2011;60(38):1301–4.Google Scholar
  62. 62.
    Abedi GR, Watson JT, Pham H, Nix WA, Oberste MS, Gerber SI. Enterovirus and human parechovirus surveillance—United States, 2009-2013. MMWR Morb Mortal Wkly Rep. 2015;64(34):940–3.CrossRefPubMedGoogle Scholar
  63. 63.
    • Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: a systematic review. Lancet Infect Dis. 2016;16(5):e64–75. A review of EV-D68 emergence around the world that includes a summary of all studies to that point. CrossRefPubMedGoogle Scholar
  64. 64.
    Edwin JJ, Reyes Domingo F, Booth TF, Showronski DM, Chambers C, Simmonds K, et al. Surveillance summary of hospitalized pediatric enterovirus D68 cases in Canada, September 2014. Can Commun Dis Rep (CCDR). 2015;41(S-1):2–8.CrossRefGoogle Scholar
  65. 65.
    Oermann CM, Schuster JE, Conners GP, Newland JG, Selvarangan R, Jackson MA. Enterovirus d68. A focused review and clinical highlights from the 2014 U.S. outbreak. Ann Am Thorac Soc. 2015;12(5):775–81.CrossRefPubMedGoogle Scholar
  66. 66.
    Imamura T, Oshitani H. Global reemergence of enterovirus D68 as an important pathogen for acute respiratory infections. Rev Med Virol. 2015;25(2):102–14.CrossRefPubMedGoogle Scholar
  67. 67.
    Wei W, Guo H, Chang J, Yu Y, Liu G, Zhang N, et al. ICAM-5/telencephalin is a functional entry receptor for enterovirus D68. Cell Host Microbe. 2016;20(5):631–41.Google Scholar
  68. 68.
    Meijer A, van der Sanden S, Snijders BE, Jaramillo-Gutierrez G, Bont L, van der Ent CK, et al. Emergence and epidemic occurrence of enterovirus 68 respiratory infections in the Netherlands in 2010. Virology. 2012;423(1):49–57.CrossRefPubMedGoogle Scholar
  69. 69.
    Tokarz R, Firth C, Madhi SA, Howie SR, Wu W, Sall AA, et al. Worldwide emergence of multiple clades of enterovirus 68. J Gen Virol. 2012;93(Pt 9):1952–8.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    • Zhang Y, Cao J, Zhang S, Lee AJ, Sun G, Larsen CN, et al. Genetic changes found in a distinct clade of enterovirus D68 associated with paralysis during the 2014 outbreak. Virus Evolution. 2016;2(1):vew015. A genomic analysis study that identified specific nucleotide substitutions that may have contributed to the neurovirulence of EV-D68. Google Scholar
  71. 71.
    Kreuter JD, Barnes A, McCarthy JE, Schwartzman JD, Oberste MS, Rhodes CH, et al. A fatal central nervous system enterovirus 68 infection. Arch Pathol Lab Med. 2011;135(6):793–6.Google Scholar
  72. 72.
    •• Hixon AM, Yu G, Leser JS, Yagi S, Clarke P, Chiu CY, et al. A mouse model of paralytic myelitis caused by enterovirus D68. PLoS Pathog. 2017;13(2):e1006199. A mouse model that demonstrates benefit of human IVIG that contains high anti-EV-D68 titers in reducing severity of paralysis. Google Scholar
  73. 73.
    Xiang Z, Wang J. Enterovirus D68 and human respiratory infections. Semin Respir Crit Care Med. 2016;37(4):578–85.CrossRefPubMedGoogle Scholar
  74. 74.
    Schmidt NJ, Lennette EH, Ho HH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129(3):304–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Melnick JL. Enterovirus type 71 infections: a varied clinical pattern sometimes mimicking paralytic poliomyelitis. Rev Infect Dis. 1984;6(Suppl 2):S387–90.CrossRefPubMedGoogle Scholar
  76. 76.
    Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, Alexander JP, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis. 2000;31(3):678–83.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    •• Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, et al. Hand, foot, and mouth disease in China, 2008-12: an epidemiological study. Lancet Infect Dis. 2014;14(4):308–18. A comprehensive 5-year population-based study of over seven million cases of hand, foot, and mouth disease and its complications in China. Google Scholar
  78. 78.
    Solomon T, Lewthwaite P, Perera D, Cardosa MJ, McMinn P, Ooi MH. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778–90.CrossRefPubMedGoogle Scholar
  79. 79.
    Podin Y, Gias EL, Ong F, Leong YW, Yee SF, Yusof MA, et al. Sentinel surveillance for human enterovirus 71 in Sarawak, Malaysia: lessons from the first 7 years. BMC Public Health. 2006;6:180.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hosoya M, Kawasaki Y, Sato M, Honzumi K, Kato A, Hiroshima T, et al. Genetic diversity of enterovirus 71 associated with hand, foot and mouth disease epidemics in Japan from 1983 to 2003. Pediatr Infect Dis J. 2006;25(8):691–4.Google Scholar
  81. 81.
    Mizuta K, Abiko C, Murata T, Matsuzaki Y, Itagaki T, Sanjoh K, et al. Frequent importation of enterovirus 71 from surrounding countries into the local community of Yamagata, Japan, between 1998 and 2003. J Clin Microbiol. 2005;43(12):6171–5.Google Scholar
  82. 82.
    Chen KT, Chang HL, Wang ST, Cheng YT, Yang JY. Epidemiologic features of hand-foot-mouth disease and herpangina caused by enterovirus 71 in Taiwan, 1998-2005. Pediatrics. 2007;120(2):e244–52.CrossRefPubMedGoogle Scholar
  83. 83.
    Chung PW, Huang YC, Chang LY, Lin TY, Ning HC. Duration of enterovirus shedding in stool. J Microbiol Immunol Infect = Wei mian yu gan ran za zhi. 2001;34(3):167–70.PubMedGoogle Scholar
  84. 84.
    •• Ong KC, Wong KT. Understanding enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathol. 2015 Sep;25(5):614–24. A review of current knowledge regarding the pathogenesis of neurologic complications of EV-A71. Google Scholar
  85. 85.
    • Huang PN, Shih SR. Update on enterovirus 71 infection. Current Opinion in Virology. 2014 Apr;5:98–104. A review of EV-A71 infection with focus on pathogenesis. Google Scholar
  86. 86.
    Shih SR, Ho MS, Lin KH, Wu SL, Chen YT, Wu CN, et al. Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998. Virus Res. 2000;68(2):127–36.Google Scholar
  87. 87.
    Singh S, Poh CL, Chow VT. Complete sequence analyses of enterovirus 71 strains from fatal and non-fatal cases of the hand, foot and mouth disease outbreak in Singapore (2000). Microbiol Immunol. 2002;46(11):801–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Ooi MH, Wong SC, Podin Y, Akin W, del Sel S, Mohan A, et al. Human enterovirus 71 disease in Sarawak, Malaysia: a prospective clinical, virological, and molecular epidemiological study. Clin Infect Dis. 2007;44(5):646–56.CrossRefPubMedGoogle Scholar
  89. 89.
    Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15(7):798–801.Google Scholar
  90. 90.
    Chang LY, Chang IS, Chen WJ, Huang YC, Chen GW, Shih SR, et al. HLA-A33 is associated with susceptibility to enterovirus 71 infection. Pediatrics. 2008;122(6):1271–6.Google Scholar
  91. 91.
    Han ZL, Li JA, Chen ZB. Genetic polymorphism of CCL2-2510 and susceptibility to enterovirus 71 encephalitis in a Chinese population. Arch Virol. 2014;159(9):2503–7.CrossRefPubMedGoogle Scholar
  92. 92.
    Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al. The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. J Neuropathol Exp Neurol. 2008;67(2):162–9.Google Scholar
  93. 93.
    Wong KT, Chua KB, Lam SK. Immunohistochemical detection of infected neurons as a rapid diagnosis of enterovirus 71 encephalomyelitis. Ann Neurol. 1999;45(2):271–2.CrossRefPubMedGoogle Scholar
  94. 94.
    Lum LC, Wong KT, Lam SK, Chua KB, Goh AY, Lim WL, et al. Fatal enterovirus 71 encephalomyelitis. J Pediatr. 1998;133(6):795–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Yang Y, Wang H, Gong E, Du J, Zhao X, McNutt MA, et al. Neuropathology in 2 cases of fatal enterovirus type 71 infection from a recent epidemic in the People’s Republic of China: a histopathologic, immunohistochemical, and reverse transcription polymerase chain reaction study. Hum Pathol. 2009;40(9):1288–95.CrossRefPubMedGoogle Scholar
  96. 96.
    Yan JJ, Wang JR, Liu CC, Yang HB, Su IJ. An outbreak of enterovirus 71 infection in Taiwan 1998: a comprehensive pathological, virological, and molecular study on a case of fulminant encephalitis. J Clin Virol. 2000;17(1):13–22.CrossRefPubMedGoogle Scholar
  97. 97.
    Van Tu P, Thao NTT, Perera D, Truong KH, Tien NTK, Thuong TC, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, Southern Vietnam, 2005. Emerg Infect Dis. 2007;13(11):1733–41.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ooi MH, Wong SC, Mohan A, Podin Y, Perera D, Clear D, et al. Identification and validation of clinical predictors for the risk of neurological involvement in children with hand, foot, and mouth disease in Sarawak. BMC Infect Dis. 2009;9:3.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lee KY, Lee MS, Kim DB. Neurologic manifestations of enterovirus 71 infection in Korea. J Korean Med Sci. 2016;31(4):561–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ooi MH, Solomon T, Podin Y, Mohan A, Akin W, Yusuf MA, et al. Evaluation of different clinical sample types in diagnosis of human enterovirus 71-associated hand-foot-and-mouth disease. J Clin Microbiol. 2007;45(6):1858–66.Google Scholar
  101. 101.
    Tsai JD, Tsai HJ, Lin TH, Chang YY, Yang SH, Kuo HT. Comparison of the detection rates of RT-PCR and virus culture using a combination of specimens from multiple sites for enterovirus-associated encephalomyelitis during enterovirus 71 epidemic. Jpn J Infect Dis. 2014;67(5):333–8.CrossRefPubMedGoogle Scholar
  102. 102.
    Perez-Velez CM, Anderson MS, Robinson CC, McFarland EJ, Nix WA, Pallansch MA, et al. Outbreak of neurologic enterovirus type 71 disease: a diagnostic challenge. Clin Infect Dis. 2007;45(8):950–7.CrossRefPubMedGoogle Scholar
  103. 103.
    Chang LY, Hsia SH, Wu CT, Huang YC, Lin KL, Fang TY, et al. Outcome of enterovirus 71 infections with or without stage-based management: 1998 to 2002. Pediatr Infect Dis J. 2004 Apr;23(4):327–32.CrossRefPubMedGoogle Scholar
  104. 104.
    Cardosa J, Farrar J, Yeng C. A guide to clinical management and public health response to hand, foot and mouth disease (HFMD). 2011.Google Scholar
  105. 105.
    Wang SM, Lei HY, Huang MC, Su LY, Lin HC, Yu CK, et al. Modulation of cytokine production by intravenous immunoglobulin in patients with enterovirus 71-associated brainstem encephalitis. Journal of Clinical Virology: the official publication of the Pan American Society for Clinical Virology 2006;37(1):47–52.Google Scholar
  106. 106.
    Hayward JC, Gillespie SM, Kaplan KM, Packer R, Pallansch M, Plotkin S, et al. Outbreak of poliomyelitis-like paralysis associated with enterovirus 71. Pediatr Infect Dis J. 1989;8(9):611–6.CrossRefPubMedGoogle Scholar
  107. 107.
    Grard G, Drexler JF, Lekana-Douki S, Caron M, Lukashev A, Nkoghe D, et al. Type 1 wild poliovirus and putative enterovirus 109 in an outbreak of acute flaccid paralysis in Congo, October-November 2010. Euro Surveillance: bulletin Europeen sur les maladies transmissibles = European Communicable Disease Bulletin. 2010;15(47)Google Scholar
  108. 108.
    Lukashev AN, Drexler JF, Kotova VO, Amjaga EN, Reznik VI, Gmyl AP, et al. Novel serotypes 105 and 116 are members of distinct subgroups of human enterovirus C. The Journal of General Virology. 2012;93(Pt 11):2357–62.Google Scholar
  109. 109.
    Goto K, Sanefuji M, Kusuhara K, Nishimura Y, Shimizu H, Kira R, et al. Rhombencephalitis and coxsackievirus A16. Emerg Infect Dis. 2009;15(10):1689–91.Google Scholar
  110. 110.
    Solomon T, Kneen R, Dung NM, Khanh VC, Thuy TT, Ha DQ, et al. Poliomyelitis-like illness due to Japanese encephalitis virus. Lancet. 1998;351(9109):1094–7.CrossRefPubMedGoogle Scholar
  111. 111.
    Li J, Loeb JA, Shy ME, Shah AK, Tselis AC, Kupski WJ, et al. Asymmetric flaccid paralysis: a neuromuscular presentation of West Nile virus infection. Ann Neurol. 2003 Jun;53(6):703–10.Google Scholar
  112. 112.
    Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Ewing D, Mazowiecki M, et al. West Nile virus-associated flaccid paralysis. Emerg Infect Dis. 2005;11(7):1021–7.Google Scholar
  113. 113.
    Sejvar JJ, Bode AV, Marfin AA, Campbell GL, Pape J, Biggerstaff BJ, et al. West Nile virus-associated flaccid paralysis outcome. Emerg Infect Dis. 2006;12(3):514–6.Google Scholar
  114. 114.
    Schellinger PD, Schmutzhard E, Fiebach JB, Pfausler B, Maier H, Schwab S. Poliomyelitic-like illness in central European encephalitis. Neurology. 2000;55(2):299–302.CrossRefPubMedGoogle Scholar
  115. 115.
    Bender A, Schulte-Altedorneburg G, Walther EU, Pfister HW. Severe tick borne encephalitis with simultaneous brain stem, bithalamic, and spinal cord involvement documented by MRI. J Neurol Neurosurg Psychiatry. 2005;76(1):135–7.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Lindsey NP, Hayes EB, Staples JE, Fischer M. West Nile virus disease in children, United States, 1999-2007. Pediatrics. 2009;123(6):e1084–9.CrossRefPubMedGoogle Scholar
  117. 117.
    • Abzug MJ. The enteroviruses: problems in need of treatments. J Infect. 2014 Jan;68(Suppl 1):S108–14. A review of emerging antiviral compounds for the treatment of enterovirus infections (including EV-D68 and EV-A71). Google Scholar
  118. 118.
    Rhoden E, Zhang M, Nix WA, Oberste MS. In vitro efficacy of antiviral compounds against enterovirus D68. Antimicrob Agents Chemother. 2015 Dec;59(12):7779–81.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    • Smee DF, Evans WJ, Nicolaou KC, Tarbet EB, Day CW. Susceptibilities of enterovirus D68, enterovirus 71, and rhinovirus 87 strains to various antiviral compounds. Antivir Res. 2016;131:61–5. A study of in vitro efficacy of emerging antiviral compounds for EV-D68 and EV-A71. CrossRefPubMedGoogle Scholar
  120. 120.
    Abzug MJ, Michaels MG, Wald E, Jacobs RF, Romero JR, Sanchez PJ, et al. A randomized, double-blind, placebo-controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. J Pediatr Infect Dis Soc. 2016;5(1):53–62.CrossRefGoogle Scholar
  121. 121.
    • Collett MS, Hincks JR, Benschop K, Duizer E, van der Avoort H, Rhoden E, et al. Antiviral activity of pocapavir in a randomized, blinded, placebo-controlled human oral poliovirus vaccine challenge model. J Infect Dis. 2017;215(3):335–43. A study that lays the groundwork for the possible use of pocapavir in global polio erradication efforts. PubMedGoogle Scholar
  122. 122.
    Torres-Torres S, Myers AL, Klatte JM, Rhoden EE, Oberste MS, Collett MS, et al. First use of investigational antiviral drug pocapavir (v-073) for treating neonatal enteroviral sepsis. Pediatr Infect Dis J. 2015 Jan;34(1):52–4.Google Scholar
  123. 123.
    Binford SL, Maldonado F, Brothers MA, Weady PT, Zalman LS, Meador JW 3rd, et al. Conservation of amino acids in human rhinovirus 3C protease correlates with broad-spectrum antiviral activity of rupintrivir, a novel human rhinovirus 3C protease inhibitor. Antimicrob Agents Chemother. 2005;49(2):619–26.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Zhang X, Song Z, Qin B, Zhang X, Chen L, Hu Y, et al. Rupintrivir is a promising candidate for treating severe cases of enterovirus-71 infection: evaluation of antiviral efficacy in a murine infection model. Antivir Res. 2013;97(3):264–9.Google Scholar
  125. 125.
    Hayden FG, Turner RB, Gwaltney JM, Chi-Burris K, Gersten M, Hsyu P, et al. Phase II, randomized, double-blind, placebo-controlled studies of ruprintrivir nasal spray 2-percent suspension for prevention and treatment of experimentally induced rhinovirus colds in healthy volunteers. Antimicrob Agents Chemother. 2003;47(12):3907–16.Google Scholar
  126. 126.
    Patick AK, Brothers MA, Maldonado F, Binford S, Maldonado O, Fuhrman S, et al. In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother. 2005;49(6):2267–75.Google Scholar
  127. 127.
    Zuo J, Quinn KK, Kye S, Cooper P, Damoiseaux R, Krogstad P. Fluoxetine is a potent inhibitor of coxsackievirus replication. Antimicrob Agents Chemother. 2012;56(9):4838–44.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Ulferts R, van der Linden L, Thibaut HJ, Lanke KH, Leyssen P, Coutard B, et al. Selective serotonin reuptake inhibitor fluoxetine inhibits replication of human enteroviruses B and D by targeting viral protein 2C. Antimicrob Agents Chemother. 2013;57(4):1952–6.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Tyler KL. Rationale for the evaluation of fluoxetine in the treatment of enterovirus D68-associated acute flaccid myelitis. JAMA Neurol. 2015;72(5):493–4.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Gofshteyn J, Cardenas AM, Bearden D. Treatment of chronic enterovirus encephalitis with fluoxetine in a patient with X-linked agammaglobulinemia. Pediatr Neurol. 2016;64:94–8.CrossRefPubMedGoogle Scholar
  131. 131.
    Li ZH, Li CM, Ling P, Shen FH, Chen SH, Liu CC, et al. Ribavirin reduces mortality in enterovirus 71-infected mice by decreasing viral replication. J Infect Dis. 2008;197(6):854–7.Google Scholar
  132. 132.
    Kang H, Kim C, Kim DE, Song JH, Choi M, Choi K, et al. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses. Antivir Res. 2015 Dec;124:1–10.Google Scholar
  133. 133.
    •• Zhu F, Xu W, Xia J, Liang Z, Liu Y, Zhang X, et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N Engl J Med. 2014;370(9):818–28. A study demonstrating vaccine efficacy in the prevention of EV-A71-associated hand, foot, and mouth disease as well as neurologic complications. CrossRefPubMedGoogle Scholar
  134. 134.
    •• Li R, Liu L, Mo Z, Wang X, Xia J, Liang Z, et al. An inactivated enterovirus 71 vaccine in healthy children. N Engl J Med. 2014;370(9):829–37. A study demonstrating vaccine efficacy in the prevention of EV-A71-associated hand, foot, and mouth disease. CrossRefPubMedGoogle Scholar
  135. 135.
    •• Zhu FC, Meng FY, Li JX, Li XL, Mao QY, Tao H, et al. Efficacy, safety, and immunology of an inactivated alum-adjuvant enterovirus 71 vaccine in children in China: a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2013;381(9882):2024–32. A study demonstrating vaccine efficacy in the prevention of EV-A71-associated hand, foot, and mouth disease as well as neurologic complications. Google Scholar
  136. 136.
    • Wei M, Meng F, Wang S, Li J, Zhang Y, Mao Q, et al. 2-year efficacy, immunogenicity, and safety of Vigoo enterovirus 71 vaccine in healthy Chinese children: a randomized open-label study. J Infect Dis. 2017;215(1):56–63. A follow-up study demonstrating sustained immunogenicity and protection from EV-A71 disease for the second year post vaccination. CrossRefPubMedGoogle Scholar
  137. 137.
    Yi EJ, Shin YJ, Kim JH, Kim TG, Chang SY. Enterovirus 71 infection and vaccines. Clin Exp Vaccine Res. 2017;6(1):4–14.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Wang W, Song J, Wang J, Li Y, Deng H, Li M, et al. Cost-effectiveness of a national enterovirus 71 vaccination program in China. PLoS Negl Trop Dis. 2017;11(9):e0005899.Google Scholar
  139. 139.
    Zhang C, Zhang X, Zhang W, Dai W, Xie J, Ye L, et al. Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerg Microbes Infect. 2018;7(1):3.Google Scholar
  140. 140.
    Dai W, Zhang C, Zhang X, Xiong P, Liu Q, Gong S, et al. A virus-like particle vaccine confers protection against enterovirus D68 lethal challenge in mice. Vaccine. 2018;36(5):653–9.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Infectious Diseases, The Hospital for Sick Children and Department of PediatricsUniversity of TorontoTorontoCanada
  2. 2.Division of Neurology, The Hospital for Sick Children and Department of Pediatrics, Division of Neurosciences and Mental Health, SickKids Research InstituteUniversity of TorontoTorontoCanada

Personalised recommendations