Advertisement

Current Hypertension Reports

, 21:72 | Cite as

Investigating Maternal Brain Alterations in Preeclampsia: the Need for a Multidisciplinary Effort

  • Lina BergmanEmail author
  • Pablo Torres-Vergara
  • Jeffrey Penny
  • Johan Wikström
  • Maria Nelander
  • Jose Leon
  • Mary Tolcher
  • James M. Roberts
  • Anna-Karin Wikström
  • Carlos EscuderoEmail author
Preeclampsia (V Garovic, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Preeclampsia

Abstract

Purpose of Review

To provide insight into the mechanisms underlying cerebral pathophysiology and to highlight possible methods for evaluation, screening, and surveillance of cerebral complications in preeclampsia.

Recent Findings

The pathophysiology of eclampsia remains enigmatic. Animal studies show that the cerebral circulation in pregnancy and preeclampsia might be affected with increased permeability over the blood-brain barrier and altered cerebral blood flow due to impaired cerebral autoregulation. The increased blood pressure cannot be the only underlying cause of eclampsia and cerebral edema, since some cases of eclampsia arise without simultaneous hypertension. Findings from animal studies need to be confirmed in human tissues. Evaluation of brain alterations in preeclampsia and eclampsia is challenging and demands a multidisciplinary collaboration, since no single method can accurately and fully describe how preeclampsia affects the brain.

Summary

Cerebral complications of preeclampsia are significant factors in maternal morbidity and mortality worldwide. No single method can accurately describe the full picture of how preeclampsia affects the brain vasculature and parenchyma. We recommend an international and multidisciplinary effort not only to overcome the issue of limited sample availability but also to optimize the quality of research.

Keywords

Preeclampsia Eclampsia Brain complications Blood-brain barrier Preclinical studies Biomarkers Brain imaging 

Abbreviations

BBB

Blood-brain barrier

BP

Blood pressure

CBF

Cerebral blood flow

CVR

Cerebral vascular resistance

CSF

Cerebrospinal fluid

GABA

Gamma amino butyric acid

hPSCs

Human pluripotent stem cells

JAMs

Junctional adhesion molecules

LPS

Lipopolysaccharide

MgSO4

Magnesium sulfate

MRI

Magnetic resonance imaging

MRS

Magnetic resonance spectroscopy

H-MRS

Magnetic resonance spectroscopy focused on hydrogen metabolites

P-MRS

Magnetic resonance spectroscopy focused on phosphorus metabolites

NfL

Neurofilament light chain

NSE

Neuron-specific enolase

PTZ

Pentylenetetrazole

PRES

Posterior reversible encephalopathy syndrome

RUPP

Reduced uteroplacental perfusion pressure

RUPP+HC

Reduced uteroplacental perfusion pressure plus high cholesterol diet

S100B

S100 calcium-binding protein B

TEER

Transendothelial electrical resistance

WML

White matter lesions

Notes

Acknowledgments

The authors would like to thank Emily Gatu for her editorial assistance and the researchers belonging to GRIVAS health for their valuable input.

Funding Disclose

This manuscript was supported by Conicyt grant REDI170373. CE is supported by DIUBB 184309 4/R.

Authors’ Roles

CE and LB: designed and wrote the manuscript. All co-authors included their respective sections according to expertise. JMR, AKW, and JP contributed to the writing of the manuscript and provided a critical revision of its contents. All co-authors approved the final version of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Supplementary material

11906_2019_977_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 28 kb)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Brown MA, Lindheimer MD, de Swiet M, Assche AV, Moutquin J-M. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy. 2001;20:ix–xiv.  https://doi.org/10.3109/10641950109152635.CrossRefPubMedGoogle Scholar
  2. 2.
    ACOG TFoHiP. Hypertension in pregnancy. Washington: 2013.Google Scholar
  3. 3.
    Brown MA, Magee LA, Kenny LC, Karumanchi SA, McCarthy FP, Saito S, et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2018;13:291–310.  https://doi.org/10.1016/j.preghy.2018.05.004.CrossRefPubMedGoogle Scholar
  4. 4.
    Campbell OM, Graham WJ. Strategies for reducing maternal mortality: getting on with what works. Lancet. 2006;368:1284–99.  https://doi.org/10.1016/S0140-6736(06)69381-1.CrossRefPubMedGoogle Scholar
  5. 5.
    Say L, Chou D, Gemmill A, Tuncalp O, Moller AB, Daniels J, et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323–33.  https://doi.org/10.1016/S2214-109X(14)70227-X.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet. 2016;387:999–1011.  https://doi.org/10.1016/S0140-6736(15)00070-7.CrossRefPubMedGoogle Scholar
  7. 7.
    Sibai BM. Magnesium sulfate prophylaxis in preeclampsia: lessons learned from recent trials. Am J Obstet Gynecol. 2004;190:1520–6.  https://doi.org/10.1016/j.ajog.2003.12.057.CrossRefPubMedGoogle Scholar
  8. 8.
    Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet. 2005;365(9461):785–99.  https://doi.org/10.1016/S0140-6736(05)17987-2.CrossRefPubMedGoogle Scholar
  9. 9.
    Duley L. The global impact of pre-eclampsia and eclampsia. Semin Perinatol. 2009;33(3):130–7.  https://doi.org/10.1053/j.semperi.2009.02.010.CrossRefPubMedGoogle Scholar
  10. 10.
    Sibai BM. Diagnosis, prevention, and management of eclampsia. Obstet Gynecol. 2005;105(2):402–10.CrossRefGoogle Scholar
  11. 11.
    Basit S, Wohlfahrt J, Boyd HA. Pre-eclampsia and risk of dementia later in life: nationwide cohort study. Bmj. 2018:k4109.  https://doi.org/10.1136/bmj.k4109.
  12. 12.
    Brussé I, Duvekot J, Jongerling J, Steegers E, De Koning I. Impaired maternal cognitive functioning after pregnancies complicated by severe pre-eclampsia: a pilot case-control study. Acta Obstet Gynecol Scand. 2008;87:408–12.  https://doi.org/10.1080/00016340801915127.CrossRefPubMedGoogle Scholar
  13. 13.
    Duley L. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The magpie trial: a randomised placebo-controlled trial. Lancet. 2002;359:1877–90.  https://doi.org/10.1016/S0140-6736(02)08778-0.CrossRefPubMedGoogle Scholar
  14. 14.
    •• Johnson AC, Tremble SM, Chan SL, Moseley J, LaMarca B, Nagle KJ, et al. Magnesium sulfate treatment reverses seizure susceptibility and decreases neuroinflammation in a rat model of severe preeclampsia. PLoS One. 2014;9(11):e113670.  https://doi.org/10.1371/journal.pone.0113670 One of the few animal models for cerebral injury and blood brain barrier alteration in preeclampsia. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Andolf EG, Sydsjo GC, Bladh MK, Berg G, Sharma S. Hypertensive disorders in pregnancy and later dementia: a Swedish National Register Study. Acta Obstet Gynecol Scand. 2017;96(4):464–71.  https://doi.org/10.1111/aogs.13096.CrossRefPubMedGoogle Scholar
  16. 16.
    Nerenberg KA, Park AL, Vigod SN, Saposnik G, Berger H, Hladunewich MA, et al. Long-term risk of a seizure disorder after eclampsia. Obstet Gynecol. 2017;130(6):1327–33.  https://doi.org/10.1097/AOG.0000000000002364.CrossRefPubMedGoogle Scholar
  17. 17.
    Aukes AM, De Groot JC, Wiegman MJ, Aarnoudse JG, Sanwikarja GS, Zeeman GG. Long-term cerebral imaging after pre-eclampsia. BJOG. 2012;119(9):1117–22.  https://doi.org/10.1111/j.1471-0528.2012.03406.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Aukes AM, de Groot JC, Aarnoudse JG, Zeeman GG. Brain lesions several years after eclampsia. Am J Obstet Gynecol. 2009;200(5):504 e1–5.  https://doi.org/10.1016/j.ajog.2008.12.033S0002-9378(08)02439-3.
  19. 19.
    Enzinger C, Fazekas F, Ropele S, Schmidt R. Progression of cerebral white matter lesions - clinical and radiological considerations. J Neurol Sci. 2007;257:5–10.  https://doi.org/10.1016/j.jns.2007.01.018.CrossRefPubMedGoogle Scholar
  20. 20.
    Prins ND vDE, den Heijer T, et al. Cerebral white matter lesions and the risk of dementia. Arch Neurol. 2004;61:1531–4.CrossRefGoogle Scholar
  21. 21.
    Wiegman MJ, Zeeman GG, Aukes AM, Bolte AC, Faas MM, Aarnoudse JG, et al. Regional distribution of cerebral white matter lesions years after preeclampsia and eclampsia. Obstet Gynecol. 2014;123(4):790–5.  https://doi.org/10.1097/AOG.0000000000000162.CrossRefPubMedGoogle Scholar
  22. 22.
    Raman MR, Tosakulwong N, Zuk SM, Senjem ML, White WM, Fields JA, et al. Influence of preeclampsia and late-life hypertension on MRI measures of cortical atrophy. J Hypertens. 2017;35:2479–85.  https://doi.org/10.1097/HJH.0000000000001492.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    • Brewer J, Owens MY, Wallace K, Reeves AA, Morris R, Khan M, et al. Posterior reversible encephalopathy syndrome in 46 of 47 patients with eclampsia. Am J Obstet Gynecol. 2013;208(6):468 e1-6.  https://doi.org/10.1016/j.ajog.2013.02.015 One of the largest studies characterizing cerebral edema in eclampsia. CrossRefPubMedGoogle Scholar
  24. 24.
    Mielke MM, Milic NM, Weissgerber TL, White WM, Kantarci K, Mosley TH, et al. Impaired cognition and brain atrophy decades after hypertensive pregnancy disorders. Circ Cardiovasc Qual Outcomes. 2016;9:S70–S6.  https://doi.org/10.1161/CIRCOUTCOMES.115.002461.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Siepmann T, Boardman H, Bilderbeck A, Griffanti L, Kenworthy Y, Zwager C, et al. Long-term cerebral white and gray matter changes after preeclampsia. Neurology. 2017;88:1256–64.  https://doi.org/10.1212/WNL.0000000000003765.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Elharram M, Dayan N, Kaur A, Landry T, Pilote L. Long-term cognitive impairment after preeclampsia: a systematic review and meta-analysis. Obstet Gynecol. 2018;132(2):355–64.  https://doi.org/10.1097/AOG.0000000000002686.CrossRefPubMedGoogle Scholar
  27. 27.
    Cipolla MJ. Cerebrovascular function in pregnancy and eclampsia. Hypertension. 2007;50:14–24.  https://doi.org/10.1161/HYPERTENSIONAHA.106.079442.CrossRefPubMedGoogle Scholar
  28. 28.
    Johnson AC, Nagle KJ, Tremble SM, Cipolla MJ. The contribution of normal pregnancy to eclampsia. PLoS One. 2015;10(7):e0133953.  https://doi.org/10.1371/journal.pone.0133953.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Cipolla MJ, Kraig RP. Seizures in women with preeclampsia: mechanisms and management. Fetal Matern Med Rev. 2011;22(2):91–108.  https://doi.org/10.1017/S0965539511000040.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Coughlin WF, McMurdo SK, Reeves T. MR imaging of postpartum cortical blindness. J Comput Assist Tomogr. 1989;13(4):572–6.CrossRefGoogle Scholar
  31. 31.
    Trommer BL, Homer D, Mikhael MA. Cerebral vasospasm and eclampsia. Stroke. 1988;19(3):326–9.CrossRefGoogle Scholar
  32. 32.
    Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol. 1984;101:161–211.CrossRefGoogle Scholar
  33. 33.
    Donaldson JO. Eclamptic hypertensive encephalopathy. Semin Neurol. 1988;8:230–3.  https://doi.org/10.1055/s-2008-1041383.CrossRefPubMedGoogle Scholar
  34. 34.
    Zeeman GG, Cipolla MJ, Cunningham FG. Cerebrovascular (patho)physiology in preeclampsia/eclampsia. Chesley’s Hypertensive Disorders in Pregnancy. 2009:227–47.  https://doi.org/10.1016/B978-0-12-374213-1.00013-6.CrossRefGoogle Scholar
  35. 35.
    Aagaard-Tillery KM, Belfort MA. Eclampsia: morbidity, mortality, and management. Clin Obstet Gynecol. 2005;48:12–23.  https://doi.org/10.1097/01.grf.0000153882.58132.ba.CrossRefPubMedGoogle Scholar
  36. 36.
    •• van Veen TR, Panerai RB, Haeri S, Griffioen AC, Zeeman GG, Belfort MA. Cerebral autoregulation in normal pregnancy and preeclampsia. Obstet Gynecol. 2013;122:1064–9.  https://doi.org/10.1097/AOG.0b013e3182a93fb5 The first study to describe the dynamic cerebral autoregulation in preeclampsia. CrossRefPubMedGoogle Scholar
  37. 37.
    Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, et al. Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23(2):233–46.CrossRefGoogle Scholar
  38. 38.
    Roberts JM. Endothelial dysfunction in preeclampsia. Semin Reprod Endocrinol. 1998;16(1):5–15.  https://doi.org/10.1055/s-2007-1016248.CrossRefPubMedGoogle Scholar
  39. 39.
    Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45:545–52.  https://doi.org/10.1016/j.neuint.2003.11.006.CrossRefPubMedGoogle Scholar
  40. 40.
    Haseloff RF, Dithmer S, Winkler L, Wolburg H, Blasig IE. Transmembrane proteins of the tight junctions at the blood-brain barrier: structural and functional aspects. Semin Cell Dev Biol. 2015;38:16–25.  https://doi.org/10.1016/j.semcdb.2014.11.004.CrossRefPubMedGoogle Scholar
  41. 41.
    Keaney J, Campbell M. The dynamic blood-brain barrier. FEBS J. 2015;282:4067–79.  https://doi.org/10.1111/febs.13412.CrossRefPubMedGoogle Scholar
  42. 42.
    Daneman R, Prat A. The blood - brain barrier. Dev Med Child Neurol. 2015;3:311–4.  https://doi.org/10.1111/j.1469-8749.1961.tb15323.x.CrossRefGoogle Scholar
  43. 43.
    Decleves X, Jacob A, Yousif S, Shawahna R, Potin S, Scherrmann J-M. Interplay of drug metabolizing CYP450 enzymes and ABC transporters in the blood-brain barrier. Curr Drug Metab. 2011;12:732–41.  https://doi.org/10.2174/138920011798357024.CrossRefPubMedGoogle Scholar
  44. 44.
    Liao MZ, Gao C, Shireman LM, Phillips B, Risler LJ, Neradugomma NK, et al. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine. Pharmacol Res. 2017;119:61–71.  https://doi.org/10.1016/j.phrs.2017.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    •• Warrington JP, Fan F, Murphy SR, Roman RJ, Drummond HA, Granger JP, et al. Placental ischemia in pregnant rats impairs cerebral blood flow autoregulation and increases blood-brain barrier permeability. Physiol Rep. 2014;2(8).  https://doi.org/10.14814/phy2.12134 This manuscript shown evidences of placental-derived moleculas that impairs brain circulation. CrossRefGoogle Scholar
  46. 46.
    Clayton AM, Shao Q, Paauw ND, Giambrone AB, Granger JP, Warrington JP. Postpartum increases in cerebral edema and inflammation in response to placental ischemia during pregnancy. Brain Behav Immun. 2018;70:376–89.  https://doi.org/10.1016/j.bbi.2018.03.028.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Black KD, Horowitz JA. Inflammatory markers and preeclampsia: a systematic review. Nurs Res. 2018;67:242–51.  https://doi.org/10.1097/NNR.0000000000000285.CrossRefPubMedGoogle Scholar
  48. 48.
    LaMarca BD, Ryan MJ, Gilbert JS, Murphy SR, Granger JP. Inflammatory cytokines in the pathophysiology of hypertension during preeclampsia. Curr Hypertens Rep. 2007;9:480–5.  https://doi.org/10.1007/s11906-007-0088-1.CrossRefPubMedGoogle Scholar
  49. 49.
    Warrington JP, Drummond HA, Granger JP, Ryan MJ. Placental ischemia-induced increases in brain water content and cerebrovascular permeability: role of TNFα. Am J Physiol Regul Integr Comp Physiol. 2015:ajpregu.00372.2015.  https://doi.org/10.1152/ajpregu.00372.2015.CrossRefGoogle Scholar
  50. 50.
    •• Amburgey OA, Chapman AC, May V, Bernstein IM, Cipolla MJ. Plasma from preeclamptic women increases blood-brain barrier permeability: role of vascular endothelial growth factor signaling. Hypertension. 2010;56(5):1003–8.  https://doi.org/10.1161/HYPERTENSIONAHA.110.158931 This manuscript shown evidences of involvment of VEGFR2 in the blood brain barrier alterations induced by plasma from preeclampsia. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Li X, Han X, Bao J, Liu Y, Ye A, Thakur M, et al. Nicotine increases eclampsia-like seizure threshold and attenuates microglial activity in rat hippocampus through the alpha7 nicotinic acetylcholine receptor. Brain Res. 1642;2016:487–96.  https://doi.org/10.1016/j.brainres.2016.04.043.CrossRefGoogle Scholar
  52. 52.
    Huang Q, Liu L, Hu B, Di X, Brennecke SP, Liu H. Decreased seizure threshold in an eclampsia-like model induced in pregnant rats with lipopolysaccharide and pentylenetetrazol treatments. PLoS One. 2014;9(2):e89333.  https://doi.org/10.1371/journal.pone.0089333.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies. Fluids Barriers CNS. 2013:1–17.Google Scholar
  54. 54.
    Rahman NA, ANaHM R, Meyding-Lamade U, Craemer EM, Diah S, Tuah AA, et al. Immortalized endothelial cell lines for in vitro blood–brain barrier models: a systematic review. Brain Res. 1642;2016:532–45.  https://doi.org/10.1016/j.brainres.2016.04.024.CrossRefGoogle Scholar
  55. 55.
    Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, et al. ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem. 2008;107(6):1518–28.  https://doi.org/10.1111/j.1471-4159.2008.05720.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Dutheil F, Jacob A, Dauchy S, Beaune P, Scherrmann JM, Decleves X, et al. ABC transporters and cytochromes P450 in the human central nervous system: influence on brain pharmacokinetics and contribution to neurodegenerative disorders. Expert Opin Drug Metab Toxicol. 2010;6(10):1161–74.  https://doi.org/10.1517/17425255.2010.510832.CrossRefPubMedGoogle Scholar
  57. 57.
    Ohtsuki S, Ikeda C, Uchida Y, Sakamoto Y, Miller F, Glacial F, et al. Quantitative targeted absolute proteomic analysis of transporters, receptors and junction proteins for validation of human cerebral microvascular endothelial cell line hCMEC/D3 as a human blood-brain barrier model. Mol Pharm. 2013;10(1):289–96.  https://doi.org/10.1021/mp3004308.CrossRefPubMedGoogle Scholar
  58. 58.
    Bosworth AM, Faley SL, Bellan LM, Lippmann ES. Modeling neurovascular disorders and therapeutic outcomes with human-induced pluripotent stem cells. Front Bioeng Biotechnol. 2017;5:87.  https://doi.org/10.3389/fbioe.2017.00087.CrossRefPubMedGoogle Scholar
  59. 59.
    • Nielsen SSE, Siupka P, Georgian A, Preston JE, Tóth AE, Yusof SR, et al. Improved method for the establishment of an in vitro blood-brain barrier model based on porcine brain endothelial cells. J Vis Exp. 2017.  https://doi.org/10.3791/56277 Key paper for understanding characteristics of in vitro model of brain blood barrier based in porcine endothelial cells.
  60. 60.
    Smith M, Omidi Y, Gumbleton M. Primary porcine brain microvascular endothelial cells: biochemical and functional characterisation as a model for drug transport and targeting. J Drug Target. 2007;15:253–68.  https://doi.org/10.1080/10611860701288539.CrossRefPubMedGoogle Scholar
  61. 61.
    Zhang Y, Li CSW, Ye Y, Johnson K, Poe J, Johnson S, et al. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood-brain barrier permeability. Drug Metab Dispos. 2006;34:1–15.  https://doi.org/10.1124/dmd.105.006437.which.CrossRefGoogle Scholar
  62. 62.
    Culot M, Lundquist S, Vanuxeem D, Nion S, Landry C, Delplace Y, et al. An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Toxicol in Vitro. 2008;22(3):799–811.  https://doi.org/10.1016/j.tiv.2007.12.016.CrossRefPubMedGoogle Scholar
  63. 63.
    Helms HC, Hersom M, Kuhlmann LB, Badolo L, Nielsen CU, Brodin B. An electrically tight in vitro blood-brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. AAPS J. 2014;16(5):1046–55.  https://doi.org/10.1208/s12248-014-9628-1.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Thomsen LB, Burkhart A, Moos T. A triple culture model of the blood-brain barrier using porcine brain endothelial cells, Astrocytes and Pericytes. PLOS ONE. 2015;10:e0134765.  https://doi.org/10.1371/journal.pone.0134765.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Helms HC, Waagepetersen HS, Nielsen CU, Brodin B. Paracellular tightness and claudin-5 expression is increased in the BCEC/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010;12(4):759–70.  https://doi.org/10.1208/s12248-010-9237-6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Torres-Vergara P, Penny J. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells. J Pharm Pharmacol. 2018;70(6):713–22.  https://doi.org/10.1111/jphp.12893.CrossRefPubMedGoogle Scholar
  67. 67.
    Salmeri M, Motta C, Anfuso CD, Amodeo A, Scalia M, Toscano MA, et al. VEGF receptor-1 involvement in pericyte loss induced by Escherichia coli in an in vitro model of blood brain barrier. Cell Microbiol. 2013;15(8):1367–84.  https://doi.org/10.1111/cmi.12121.CrossRefPubMedGoogle Scholar
  68. 68.
    Perriere N, Yousif S, Cazaubon S, Chaverot N, Bourasset F, Cisternino S, et al. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res. 2007;1150:1–13.  https://doi.org/10.1016/j.brainres.2007.02.091.CrossRefPubMedGoogle Scholar
  69. 69.
    Forster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, et al. Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol. 2005;565(Pt 2):475–86.  https://doi.org/10.1113/jphysiol.2005.084038.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Alms D, Fedrowitz M, Romermann K, Noack A, Loscher W. Marked differences in the effect of antiepileptic and cytostatic drugs on the functionality of p-glycoprotein in human and rat brain capillary endothelial cell lines. Pharm Res. 2014;31(6):1588–604.  https://doi.org/10.1007/s11095-013-1264-4.CrossRefPubMedGoogle Scholar
  71. 71.
    Neuhaus W, Stessl M, Strizsik E, Bennani-Baiti B, Wirth M, Toegel S, et al. Blood-brain barrier cell line PBMEC/C1-2 possesses functionally active P-glycoprotein. Neurosci Lett. 2010;469(2):224–8.  https://doi.org/10.1016/j.neulet.2009.11.079.CrossRefPubMedGoogle Scholar
  72. 72.
    Neuhaus W, Plattner VE, Wirth M, Germann B, Lachmann B, Gabor F, et al. Validation of in vitro cell culture models of the blood-brain barrier: tightness characterization of two promising cell lines. J Pharm Sci. 2008;97(12):5158–75.  https://doi.org/10.1002/jps.21371.CrossRefPubMedGoogle Scholar
  73. 73.
    Belfort MA, Saade GR, Yared M, Grunewald C, Herd JA, Varner MA, et al. Change in estimated cerebral perfusion pressure after treatment with nimodipine or magnesium sulfate in patients with preeclampsia. Am J Obstet Gynecol. 1999;181:402–7.  https://doi.org/10.1016/S0002-9378(99)70569-7.CrossRefPubMedGoogle Scholar
  74. 74.
    Belfort MA, Tooke-Miller C, Allen JC, Dizon-Townson D, Varner MA. Labetalol decreases cerebral perfusion pressure without negatively affecting cerebral blood flow in hypertensive gravidas. Hypertens Pregnancy. 2002;21:185–97.  https://doi.org/10.1081/PRG-120015845.CrossRefPubMedGoogle Scholar
  75. 75.
    Belfort MA, Varner MW, Dizon-Townson DS, Grunewald C, Nisell H. Cerebral perfusion pressure, and not cerebral blood flow, may be the critical determinant of intracranial injury in preeclampsia: a new hypothesis. Am J Obstet Gynecol. 2002;187:626–34.  https://doi.org/10.1067/mob.2002.125241.CrossRefPubMedGoogle Scholar
  76. 76.
    Van Veen TR, Panerai RB, Haeri S, Singh J, Adusumalli JA, Zeeman GG, et al. Cerebral autoregulation in different hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2015;212:513.e1-.e7.  https://doi.org/10.1016/j.ajog.2014.11.003.CrossRefGoogle Scholar
  77. 77.
    Valdueza JM, Balzer JO, Villringer A, Vogl TJ, Kutter R, Einhaupl KM. Changes in blood flow velocity and diameter of the middle cerebral artery during hyperventilation: assessment with MR and transcranial Doppler sonography. AJNR Am J Neuroradiol. 1997;18(10):1929–34.PubMedGoogle Scholar
  78. 78.
    Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992;89(1):212–6.CrossRefGoogle Scholar
  79. 79.
    Le Bihan D. Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med. 1988;7(3):346–51.CrossRefGoogle Scholar
  80. 80.
    Nelander M, Hannsberger D, Sundstrom-Poromaa I, Bergman L, Weis J, Akerud H, et al. Assessment of cerebral perfusion and edema in preeclampsia with intravoxel incoherent motion MRI. Acta Obstet Gynecol Scand. 2018;97(10):1212–8.  https://doi.org/10.1111/aogs.13383.CrossRefPubMedGoogle Scholar
  81. 81.
    Jansen JF, Backes WH, Nicolay K, Kooi ME. 1H MR spectroscopy of the brain: absolute quantification of metabolites. Radiology. 2006;240(2):318–32.  https://doi.org/10.1148/radiol.2402050314.CrossRefPubMedGoogle Scholar
  82. 82.
    Oberhaensli RD, Galloway GJ, Hilton-Jones D, Bore PJ, Styles P, Rajagopalan B, et al. The study of human organs by phosphorus-31 topical magnetic resonance spectroscopy. Br J Radiol. 1987;60(712):367–73.  https://doi.org/10.1259/0007-1285-60-712-367.CrossRefPubMedGoogle Scholar
  83. 83.
    Nelander M, Weis J, Bergman L, Larsson A, Wikstrom AK, Wikstrom J. Cerebral magnesium levels in preeclampsia; a phosphorus magnetic resonance spectroscopy study. Am J Hypertens. 2017;30(7):667–72.  https://doi.org/10.1093/ajh/hpx022.CrossRefPubMedGoogle Scholar
  84. 84.
    Nelander M, Wikstrom AK, Weis J, Bergman L, Larsson A, Sundstrom-Poromaa I, et al. Cerebral osmolytes and plasma osmolality in pregnancy and preeclampsia: a proton magnetic resonance spectroscopy study. Am J Hypertens. 2018;31(7):847–53.  https://doi.org/10.1093/ajh/hpy019.CrossRefPubMedGoogle Scholar
  85. 85.
    Rutherford JM, Moody A, Crawshaw S, Rubin PC. Magnetic resonance spectroscopy in pre-eclampsia: evidence of cerebral ischaemia. BJOG. 2003;110(4):416–23.CrossRefGoogle Scholar
  86. 86.
    Sengar AR, Gupta RK, Dhanuka AK, Roy R, Das K. MR imaging, MR angiography, and MR spectroscopy of the brain in eclampsia. AJNR Am J Neuroradiol. 1997;18(8):1485–90.PubMedGoogle Scholar
  87. 87.
    Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. Peripheral markers of blood-brain barrier damage. Clin Chim Acta. 2004;342(1–2):1–12.  https://doi.org/10.1016/j.cccn.2003.12.008.CrossRefPubMedGoogle Scholar
  88. 88.
    Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100β: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;97:2806–13.  https://doi.org/10.1002/cncr.11409.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Schmidt A, Tort A, Amaral O, Schmidt A, Walz R, Vettorazzi-Stuckzynski J, et al. Serum S100B in pregnancy-related hypertensive dis- orders: a case–control study. Clin Chem. 2004;50:435–8.  https://doi.org/10.1373/clinchem.2003.027391.CrossRefPubMedGoogle Scholar
  90. 90.
    Vettorazzi J, Torres FV, de Avila TT, Martins-Costa SH, Souza DO, Portela LV, et al. Serum S100B in pregnancy complicated by preeclampsia: a case-control study. Pregnancy Hypertens. 2012;2(2):101–5.  https://doi.org/10.1016/j.preghy.2011.11.004.CrossRefPubMedGoogle Scholar
  91. 91.
    Bergman L, Akhter T, Wikstrom AK, Wikstrom J, Naessen T, Akerud H. Plasma levels of S100B in preeclampsia and association with possible central nervous system effects. Am J Hypertens. 2014;27(8):1105–11.  https://doi.org/10.1093/ajh/hpu020.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Artunc-Ulkumen B, Guvenc Y, Goker A, Gozukara C. Maternal serum S100-B, PAPP-A and IL-6 levels in severe preeclampsia. Arch Gynecol Obstet. 2015;292:97–102.  https://doi.org/10.1007/s00404-014-3610-0.CrossRefPubMedGoogle Scholar
  93. 93.
    Chou SHY, Robertson CS. Monitoring biomarkers of cellular injury and death in acute brain injury. Neurocrit Care. 2014;21:187–214.  https://doi.org/10.1007/s12028-014-0039-z.CrossRefGoogle Scholar
  94. 94.
    Bergman L, Akerud H. Plasma levels of the cerebral biomarker, neuron-specific enolase, are elevated during pregnancy in women developing preeclampsia. Reprod Sci. 2016;23(3):395–400.  https://doi.org/10.1177/1933719115604732.CrossRefPubMedGoogle Scholar
  95. 95.
    Bergman L, Akerud H, Wikström AK, Larsson M, Naessen T, Akhter T. Cerebral biomarkers in women with preeclampsia are still elevated 1 year postpartum. Am J Hypertens. 2016;29:1374–9.  https://doi.org/10.1093/ajh/hpw097.CrossRefPubMedGoogle Scholar
  96. 96.
    Bogoslovsky T, Gill J, Jeromin A, Davis C, Diaz-Arrastia R. Fluid biomarkers of traumatic brain injury and intended context of use. Diagnostics. 2016;6:1–22.  https://doi.org/10.3390/diagnostics6040037.CrossRefGoogle Scholar
  97. 97.
    Randall J, Mörtberg E, Provuncher GK, Fournier DR, Duffy DC, Rubertsson S, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013;84:351–6.  https://doi.org/10.1016/j.resuscitation.2012.07.027.CrossRefPubMedGoogle Scholar
  98. 98.
    Evers KS, Atkinson A, Barro C, Fisch U, Pfister M, Huhn EA, et al. Neurofilament as neuronal injury blood marker in preeclampsia. Hypertension. 2018;71(6):1178–84.  https://doi.org/10.1161/HYPERTENSIONAHA.117.10314.CrossRefPubMedGoogle Scholar
  99. 99.
    • Bergman L, Zetterberg H, Kaihola H, Hagberg H, Blennow K, Akerud H. Blood-based cerebral biomarkers in preeclampsia: plasma concentrations of NfL, tau, S100B and NSE during pregnancy in women who later develop preeclampsia - A nested case control study. PLoS One. 2018;13(5):e0196025.  https://doi.org/10.1371/journal.pone.0196025 Cerebral biomarkers are increased in preeclampsia, reinforcing cerebral involvement. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Women’s and Children’s HealthUppsala UniversityUppsalaSweden
  2. 2.Center for Clinical Research DalarnaFalunSweden
  3. 3.Pharmacy Department, Faculty of PharmacyUniversidad de ConcepciónConcepciónChile
  4. 4.Group of Research and Innovation in Vascular Health (GRIVAS Health)ChillánChile
  5. 5.Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
  6. 6.Department of RadiologyUppsala UniversityUppsalaSweden
  7. 7.Vascular Physiology Laboratory, Group of Investigation in Tumor Angiogenesis, (LFV-GIANT), Department of Basic Sciences, Faculty of SciencesUniversidad del Bío-BíoChillánChile
  8. 8.Magee Womens Research Institute, Dept of Obstetrics Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational ResearchUniversity of PittsburghPittsburghUSA

Personalised recommendations