Advertisement

Recent Advances in Imaging of Hypertensive Heart Disease

  • Christopher L. Schumann
  • Nicholas R. Jaeger
  • Christopher M. KramerEmail author
Hypertension and the Heart (Bharathi Upadhya, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hypertension and the Heart

Abstract

Purpose of Review

To review recent advances in the imaging of hypertensive heart disease (HHD) with an emphasis on developments in the imaging of diffuse myocardial fibrosis using cardiac magnetic resonance (CMR).

Recent Findings

HHD results from long-standing hypertension and is characterized by the development of left ventricular hypertrophy and diffuse interstitial fibrosis. Diffuse fibrosis traditionally required endomyocardial biopsy to diagnose, but recent developments using T1 mapping in CMR allow for noninvasive assessment. Studies using T1 mapping have shown an increase in extracellular volume fraction (ECV) in patients with HHD compared to normal controls, suggesting ECV can be used as a noninvasive marker for fibrosis in HHD. In addition to T1 mapping, other recent advances in HHD imaging include improvements in three-dimensional echocardiography, allowing for accurate real-time volumetric measurements, and the use of speckle tracking echocardiography to detect subclinical systolic dysfunction.

Summary

Measurement of ECV using T1 mapping in CMR can be used as a noninvasive marker of diffuse myocardial fibrosis in HHD. While further studies are needed to validate this approach with larger patient cohorts, ECV can potentially be used to both monitor disease progression and assess therapeutic interventions in HHD.

Keywords

Hypertensive heart disease Cardiac magnetic resonance T1 mapping Three-dimensional echocardiography Speckle tracking echocardiography 

Notes

Compliance with Ethics Guidelines

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2016 update. Circulation. 2016;133.Google Scholar
  2. 2.
    Díez J, González A, López B, Querejeta R. Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med. 2005;2:209–16.CrossRefGoogle Scholar
  3. 3.
    Georgiopoulou VV, Kalogeropoulos AP, Raggi P, Butler J. Prevention, diagnosis, and treatment of hypertensive heart disease. Cardiol Clin. 2010;28:675–91.CrossRefGoogle Scholar
  4. 4.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322:1561–6.CrossRefGoogle Scholar
  5. 5.
    Schillaci G, Verdecchia P, Porcellati C, Cuccurullo O, Cosco C, Perticone F. Continuous relation between left ventricular mass and cardiovascular risk in essential hypertension. Hypertension. 2000;35:580–6.CrossRefGoogle Scholar
  6. 6.
    Wachtell K, Bella JN, Rokkedal J, Palmieri V, Papademetriou V, Dahlöf B, et al. Change in diastolic left ventricular filling after one year of antihypertensive treatment: the Losartan Intervention For Endpoint Reduction in Hypertension (LIFE) Study. Circulation. 2002;105:1071–6.CrossRefGoogle Scholar
  7. 7.
    Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.CrossRefGoogle Scholar
  8. 8.
    Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16:1031–41.CrossRefGoogle Scholar
  9. 9.
    Querejeta R, Varo N, López B, Larman M, Artiñano E, Etayo JC, et al. Serum carboxy-terminal propeptide of procollagen type I is a marker of myocardial fibrosis in hypertensive heart disease. Circulation. 2000;101:1729–35.CrossRefGoogle Scholar
  10. 10.
    Mundhenke M, Schwartzkopff B, Strauer BE. Structural analysis of arteriolar and myocardial remodelling in the subendocardial region of patients with hypertensive heart disease and hypertrophic cardiomyopathy. Virchows Arch. 1997;431:265–73.CrossRefGoogle Scholar
  11. 11.
    McLenachan JM, Dargie HJ. Ventricular arrhythmias in hypertensive left ventricular hypertrophy. Relationship to coronary artery disease, left ventricular dysfunction, and myocardial fibrosis. Am J Hypertens. 1990;3:735–40.CrossRefGoogle Scholar
  12. 12.
    Díez J, Querejeta R, López B, González A, Larman M, Martínez Ubago JL. Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation. 2002;105:2512–7.CrossRefGoogle Scholar
  13. 13.
    Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102:1388–93.CrossRefGoogle Scholar
  14. 14.
    Alfakih K, Reid S, Jones T, Sivananthan M. Assessment of ventricular function and mass by cardiac magnetic resonance imaging. Eur Radiol. 2004;14:1813–22.CrossRefGoogle Scholar
  15. 15.
    Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ. Three-dimensional echocardiography. J Am Coll Cardiol. 2006;48:2053–69.CrossRefGoogle Scholar
  16. 16.
    • Ayoub AM, Keddeas VW, Ali YA, El Okl RA. Subclinical LV dysfunction detection using speckle tracking echocardiography in hypertensive patients with preserved LV ejection fraction. Clin Med Insights Cardiol. 2016;10:85–90 This study demonstrates the utility of speckle tracking echocardiography in imaging of HHD, as it can be used to detect subclinical systolic function in these patients. CrossRefGoogle Scholar
  17. 17.
    Mavrogeni S, Katsi V, Vartela V, Noutsias M, Markousis-Mavrogenis G, Kolovou G, et al. The emerging role of cardiovascular magnetic resonance in the evaluation of hypertensive heart disease. BMC Cardiovasc Disord. 2017;17:132.CrossRefGoogle Scholar
  18. 18.
    Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol. 2000;15:264–72.CrossRefGoogle Scholar
  19. 19.
    Shahbaz AU, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Mcgee JE, et al. Fibrosis in hypertensive heart disease: molecular pathways and cardioprotective strategies. J Hypertens. 2010;28(Suppl 1):S25–32.CrossRefGoogle Scholar
  20. 20.
    Weber KT. Are myocardial fibrosis and diastolic dysfunction reversible in hypertensive heart disease? Congest Heart Fail. 2005;11:322–4; quiz 325.CrossRefGoogle Scholar
  21. 21.
    Ohsato K, Shimizu M, Sugihara N, Konishi K, Takeda R. Histopathological factors related to diastolic function in myocardial hypertrophy. Jpn Circ J. 1992;56:325–33.CrossRefGoogle Scholar
  22. 22.
    Querejeta R, López B, González A, Sánchez E, Larman M, Martínez Ubago JL, et al. Increased collagen type I synthesis in patients with heart failure of hypertensive origin. Circulation. 2004;110:1263–8.CrossRefGoogle Scholar
  23. 23.
    From AM, Maleszewski JJ, Rihal CS. Current status of endomyocardial biopsy. Mayo Clin Proc. 2011;86:1095–102.CrossRefGoogle Scholar
  24. 24.
    Mizuno R, Fujimoto S, Saito Y, Nakamura S. Non-invasive quantitation of myocardial fibrosis using combined tissue harmonic imaging and integrated backscatter analysis in dilated cardiomyopathy. Cardiology. 2007;108:11–7.CrossRefGoogle Scholar
  25. 25.
    Raman SV. The hypertensive heart. J Am Coll Cardiol. 2010;55:91–6.CrossRefGoogle Scholar
  26. 26.
    Nordin S, Dancy L, Moon JC, Sado DM. Clinical applications of multiparametric CMR in left ventricular hypertrophy. Int J Cardiovasc Imaging. 2018;34:577–85.CrossRefGoogle Scholar
  27. 27.
    Rudolph A, Abdel-Aty H, Bohl S, Boyé P, Zagrosek A, Dietz R, et al. Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy. J Am Coll Cardiol. 2009;53:284–91.CrossRefGoogle Scholar
  28. 28.
    Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F, et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging. 2009;2:437–43.CrossRefGoogle Scholar
  29. 29.
    Janardhanan R, Kramer CM. Imaging in hypertensive heart disease. Expert Rev Cardiovasc Ther. 2011;9:199–209.CrossRefGoogle Scholar
  30. 30.
    Radenkovic D, Weingärtner S, Ricketts L, Moon JC, Captur G. T1 mapping in cardiac MRI. Heart Fail Rev. 2017;22:415–30.CrossRefGoogle Scholar
  31. 31.
    •• Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 Mapping. JACC Cardiovasc Imaging. 2016;9:67–81 Comprehensive review of T1 mapping techniques and clinical applications. CrossRefGoogle Scholar
  32. 32.
    Neilan TG, Coelho-Filho OR, Shah RV, Abbasi SA, Heydari B, Watanabe E, et al. Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice. JACC Cardiovasc Imaging. 2013;6:672–83.CrossRefGoogle Scholar
  33. 33.
    Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6:373–83.CrossRefGoogle Scholar
  34. 34.
    Coelho-Filho OR, Shah RV, Mitchell R, Neilan TG, Moreno H, Simonson B, et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation. 2013;128:1225–33.CrossRefGoogle Scholar
  35. 35.
    Coelho-Filho OR, Shah RV, Neilan TG, Mitchell R, Moreno H, Kwong R, et al. Cardiac magnetic resonance assessment of interstitial myocardial fibrosis and cardiomyocyte hypertrophy in hypertensive mice treated with spironolactone. J Am Heart Assoc. 2014;3:e000790.CrossRefGoogle Scholar
  36. 36.
    •• Kuruvilla S, Janardhanan R, Antkowiak P, Keeley EC, Adenaw N, Brooks J, et al. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc Imaging. 2015;8(2):172–80 First study to demonstrate the use of ECV to detect fibrosis in HHD patients.CrossRefGoogle Scholar
  37. 37.
    Treibel TA, Zemrak F, Sado DM, Banypersad SM, White SK, Maestrini V, et al. Extracellular volume quantification in isolated hypertension - changes at the detectable limits? J Cardiovasc Magn Reson. 2015;17:74.CrossRefGoogle Scholar
  38. 38.
    Rodrigues JCL, Amadu AM, Dastidar AG, Szantho GV, Lyen SM, Godsave C, et al. Comprehensive characterisation of hypertensive heart disease left ventricular phenotypes. Heart. 2016;102:1671–9.CrossRefGoogle Scholar
  39. 39.
    Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart. 2012;98:1436–41.CrossRefGoogle Scholar
  40. 40.
    • Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, et al. T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international T1 multicenter cardiovascular magnetic resonance study. Circ Cardiovasc Imaging. 2015;8:e003285 This study demonstrated that T1 mapping can be used to distinguish HHD from HCM. CrossRefGoogle Scholar
  41. 41.
    • Lurz JA, Luecke C, Lang D, Besler C, Rommel K-P, Klingel K, et al. CMR–derived extracellular volume fraction as a marker for myocardial fibrosis. JACC Cardiovasc Imaging. 2018;11:38–45 This study illustrates an important limitation of the use of T1 mapping in HHD, as ECV can be affected by myocardial inflammation. CrossRefGoogle Scholar
  42. 42.
    Shimada YJ, Shiota T. A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol. 2011;107:126–38.CrossRefGoogle Scholar
  43. 43.
    Lee J-H, Park J-H. Role of echocardiography in clinical hypertension. Clin Hypertens. 2015;21:9.CrossRefGoogle Scholar
  44. 44.
    Ali SI, Li Y, Adam M, Xie M. Evaluation of left ventricular systolic function and mass in primary hypertensive patients by echocardiography. J Ultrasound Med. 2018.Google Scholar
  45. 45.
    Palmon LC, Reichek N, Yeon SB, Clark NR, Brownson D, Hoffman E, et al. Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation. 1994;89:122–31.CrossRefGoogle Scholar
  46. 46.
    Ahmed MI, Desai RV, Gaddam KK, Venkatesh BA, Agarwal S, Inusah S, et al. Relation of torsion and myocardial strains to LV ejection fraction in hypertension. JACC Cardiovasc Imaging. 2012;5:273–81.CrossRefGoogle Scholar
  47. 47.
    Kouzu H, Yuda S, Muranaka A, Doi T, Yamamoto H, Shimoshige S, et al. Left ventricular hypertrophy causes different changes in longitudinal, radial, and circumferential mechanics in patients with hypertension: a two-dimensional speckle tracking study. J Am Soc Echocardiogr. 2011;24:192–9.CrossRefGoogle Scholar
  48. 48.
    Sun JP, Xu T, Yang Y, Yang XS, Shang Q, Li Y, et al. Layer-specific quantification of myocardial deformation may disclose the subclinical systolic dysfunction and the mechanism of preserved ejection fraction in patients with hypertension. Int J Cardiol. 2016;219:172–6.CrossRefGoogle Scholar
  49. 49.
    Lindsay MM, Maxwell P, Dunn FG. TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension. 2002;40:136–41.CrossRefGoogle Scholar
  50. 50.
    Kang S-J, Lim H-S, Choi B-J, Choi S-Y, Hwang G-S, Yoon M-H, et al. Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J Am Soc Echocardiogr. 2008;21:907–11.4.CrossRefGoogle Scholar
  51. 51.
    Afonso L, Kondur A, Simegn M, Niraj A, Hari P, Kaur R, et al. Two-dimensional strain profiles in patients with physiological and pathological hypertrophy and preserved left ventricular systolic function: a comparative analyses. BMJ Open. 2012;2:e001390.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyUniversity of VirginiaCharlottesvilleUSA
  2. 2.Department of PathologyUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of RadiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations