Advertisement

Adipose Tissue and Modulation of Hypertension

  • Eashita Das
  • Joon Ho Moon
  • Ju Hee Lee
  • Nikita Thakkar
  • Zdenka Pausova
  • Hoon-Ki Sung
Hypertension and Metabolic Syndrome (J Sperati, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hypertension and Metabolic Syndrome

Abstract

Purpose of Review

Obesity is a major risk factor for the development of hypertension (HTN), a leading cause of cardiovascular morbidity and mortality. Growing body of research suggests that adipose tissue function is directly associated with the pathogenesis of obesity-related HTN. In this review, we will discuss recent research on the role of adipose tissue in blood pressure (BP) regulation and activation of brown adipose tissue (BAT) as a potentially new therapeutic means for obesity-related HTN.

Recent Findings

Adipose tissue provides mechanical protection of the blood vessels and plays a role in regulation of vascular tone. Exercise and fasting activate BAT and induce browning of white adipose tissue (WAT). BAT-secreted FGF21 lowers BP and protects against HTN. Browning of perivascular WAT improves HTN.

Summary

New insights on WAT browning and BAT activation can open new avenues of potential therapeutic interventions to treat obesity-related HTN.

Keywords

Brown adipose tissue Hypertension Obesity Batokine Blood pressure and endothelial cells 

Notes

Acknowledgements

This work was supported by grants from Pilot and Feasibility Study Grant of Banting & Best Diabetes Centre (BBDC) and The Hospital for Sick Children Start-up fund (H.K.S), and the Heart and Stroke Foundation (K.H.K). J.H.L is supported by the Restracomp scholarship from The Hospital for Sick Children and Ontario Graduate Scholarship (2018-2020).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet. 2016;388(10060):2665–712.  https://doi.org/10.1016/S0140-6736(16)31134-5.CrossRefPubMedGoogle Scholar
  2. 2.
    Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23.  https://doi.org/10.1016/S0140-6736(05)17741-1.CrossRefGoogle Scholar
  3. 3.
    MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–74.CrossRefGoogle Scholar
  4. 4.
    Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation. 1994;90(1):583–612.CrossRefGoogle Scholar
  5. 5.
    Richards RJ, Thakur V, Reisin E. Obesity-related hypertension: its physiological basis and pharmacological approaches to its treatment. J Hum Hypertens. 1996;10(Suppl 3):S59–64.PubMedGoogle Scholar
  6. 6.
    Pausova Z. From big fat cells to high blood pressure: a pathway to obesity-associated hypertension. Curr Opin Nephrol Hypertens. 2006;15(2):173–8.  https://doi.org/10.1097/01.mnh.0000214775.42103.a5.CrossRefPubMedGoogle Scholar
  7. 7.
    Garrison RJ, Kannel WB, Stokes J 3rd, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16(2):235–51.CrossRefGoogle Scholar
  8. 8.
    Higgins M, Kannel W, Garrison R, Pinsky J, Stokes J 3rd. Hazards of obesity—the Framingham experience. Acta Med Scand Suppl. 1988;723:23–36.PubMedGoogle Scholar
  9. 9.
    Mertens IL, Van Gaal LF. Overweight, obesity, and blood pressure: the effects of modest weight reduction. Obes Res. 2000;8(3):270–8.  https://doi.org/10.1038/oby.2000.32.CrossRefGoogle Scholar
  10. 10.
    Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. JAMA. 1999;282(16):1523–9.CrossRefGoogle Scholar
  11. 11.
    Hruby A, Hu FB. The epidemiology of obesity: a big picture. PharmacoEconomics. 2015;33(7):673–89.  https://doi.org/10.1007/s40273-014-0243-x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Muntner P, He J, Cutler JA, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291(17):2107–13.CrossRefGoogle Scholar
  13. 13.
    Sorof J, Daniels S. Obesity hypertension in children: a problem of epidemic proportions. Hypertension. 2002;40(4):441–7.CrossRefGoogle Scholar
  14. 14.
    Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337(13):869–73.CrossRefGoogle Scholar
  15. 15.
    Bao W, Threefoot SA, Srinivasan SR, Berenson GS. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study. Am J Hypertens. 1995;8(7):657–65.CrossRefGoogle Scholar
  16. 16.
    Zhou MS, Wang A, Yu H. Link between insulin resistance and hypertension: what is the evidence from evolutionary biology? Diabetol Metab Syndr. 2014;6(1):12.  https://doi.org/10.1186/1758-5996-6-12.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48(5):787–96.  https://doi.org/10.1161/01.HYP.0000242642.42177.49.CrossRefPubMedGoogle Scholar
  18. 18.
    Jiang SZ, Lu W, Zong XF, Ruan HY, Liu Y. Obesity and hypertension. Exp Ther Med. 2016;12(4):2395–9.  https://doi.org/10.3892/etm.2016.3667.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Leggio M, Lombardi M, Caldarone E, Severi P, D'Emidio S, Armeni M, et al. The relationship between obesity and hypertension: an updated comprehensive overview on vicious twins. Hypertens Res. 2017;40(12):947–63.  https://doi.org/10.1038/hr.2017.75.CrossRefPubMedGoogle Scholar
  20. 20.
    Gohlke P, Lamberty V, Kuwer I, Bartenbach S, Schnell A, Unger T. Vascular remodeling in systemic hypertension. Am J Cardiol. 1993;71(17):2E–7E.CrossRefGoogle Scholar
  21. 21.
    •• Kong LR, Zhou YP, Chen DR, Ruan CC, Gao PJ. Decrease of perivascular adipose tissue browning is associated with vascular dysfunction in spontaneous hypertensive rats during aging. Front Physiol. 2018;9:400.  https://doi.org/10.3389/fphys.2018.00400. The study describes that perivascular adipose tissue browning is required to reduce hypertension with ageing. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci U S A. 2007;104(7):2366–71.  https://doi.org/10.1073/pnas.0610416104.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143–9.  https://doi.org/10.1097/MED.0b013e328337a81f.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cypess AM, Kahn CR. The role and importance of brown adipose tissue in energy homeostasis. Curr Opin Pediatr. 2010;22(4):478–84.  https://doi.org/10.1097/MOP.0b013e32833a8d6e.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sung HK, Doh KO, Son JE, Park JG, Bae Y, Choi S, et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab. 2013;17(1):61–72.  https://doi.org/10.1016/j.cmet.2012.12.010.CrossRefPubMedGoogle Scholar
  26. 26.
    Sung HK, Michael IP, Nagy A. Multifaceted role of vascular endothelial growth factor signaling in adult tissue physiology: an emerging concept with clinical implications. Curr Opin Hematol. 2010;17(3):206–12.  https://doi.org/10.1097/MOH.0b013e32833865e6. This study shows that intermittent fasting induces browning of adipose tissue by upregulation of VEGF. CrossRefPubMedGoogle Scholar
  27. 27.
    •• Kim KH, Kim YH, Son JE, Lee JH, Kim S, Choe MS, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 2017;27(11):1309–26.  https://doi.org/10.1038/cr.2017.126. This study shows that intermittent fasting induces browning of adipose tissue by upregulation of VEGF. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Victorio JA, Fontes MT, Rossoni LV, Davel AP. Different anti-contractile function and nitric oxide production of thoracic and abdominal perivascular adipose tissues. Front Physiol. 2016;7:295.  https://doi.org/10.3389/fphys.2016.00295.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol. 2014;34(8):1621–30.  https://doi.org/10.1161/ATVBAHA.114.303029.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126(9):1067–78.  https://doi.org/10.1161/CIRCULATIONAHA.112.104489.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37.  https://doi.org/10.1152/ajpheart.00376.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    van Dam AD, Boon MR, Berbee JFP, Rensen PCN, van Harmelen V. Targeting white, brown and perivascular adipose tissue in atherosclerosis development. Eur J Pharmacol. 2017;816:82–92.  https://doi.org/10.1016/j.ejphar.2017.03.051.CrossRefPubMedGoogle Scholar
  33. 33.
    Shen FM, Su DF. The effect of adenosine on blood pressure variability in sinoaortic denervated rats is mediated by adenosine A2a-receptor. J Cardiovasc Pharmacol. 2000;36(5):681–6.CrossRefGoogle Scholar
  34. 34.
    Than A, Xu S, Li R, Leow MS, Sun L, Chen P. Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis. Signal Transduct Target Ther. 2017;2:17022.  https://doi.org/10.1038/sigtrans.2017.22.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zou L, Wang W, Liu S, Zhao X, Lyv Y, Du C, et al. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice. Biochim Biophys Acta. 2016;1862(2):182–91.  https://doi.org/10.1016/j.bbadis.2015.10.024.CrossRefPubMedGoogle Scholar
  36. 36.
    Asano A, Irie Y, Saito M. Isoform-specific regulation of vascular endothelial growth factor (VEGF) family mRNA expression in cultured mouse brown adipocytes. Mol Cell Endocrinol. 2001;174(1–2):71–6.CrossRefGoogle Scholar
  37. 37.
    Maharaj AS, D'Amore PA. Roles for VEGF in the adult. Microvasc Res. 2007;74(2–3):100–13.  https://doi.org/10.1016/j.mvr.2007.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.CrossRefGoogle Scholar
  39. 39.
    Bates DO. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res. 2010;87(2):262–71.  https://doi.org/10.1093/cvr/cvq105.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bagchi M, Kim LA, Boucher J, Walshe TE, Kahn CR, D'Amore PA. Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB J. 2013;27(8):3257–71.  https://doi.org/10.1096/fj.12-221812.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science. 1989;246(4935):1306–9.CrossRefGoogle Scholar
  42. 42.
    Wang GX, Zhao XY, Lin JD. The brown fat secretome: metabolic functions beyond thermogenesis. Trends Endocrinol Metab. 2015;26(5):231–7.  https://doi.org/10.1016/j.tem.2015.03.002.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA, et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab. 2014;3(4):474–83.  https://doi.org/10.1016/j.molmet.2014.03.010.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD. Hypertension induced by vascular endothelial growth factor signaling pathway inhibition: mechanisms and potential use as a biomarker. Semin Nephrol. 2010;30(6):591–601.  https://doi.org/10.1016/j.semnephrol.2010.09.007.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    LaMarca BD, Gilbert J, Granger JP. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension. 2008;51(4):982–8.  https://doi.org/10.1161/HYPERTENSIONAHA.107.108837.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dhaun N, Goddard J, Kohan DE, Pollock DM, Schiffrin EL, Webb DJ. Role of endothelin-1 in clinical hypertension: 20 years on. Hypertension. 2008;52(3):452–9.  https://doi.org/10.1161/HYPERTENSIONAHA.108.117366.CrossRefPubMedGoogle Scholar
  47. 47.
    Tang EH, Vanhoutte PM. Prostanoids and reactive oxygen species: team players in endothelium-dependent contractions. Pharmacol Ther. 2009;122(2):140–9.  https://doi.org/10.1016/j.pharmthera.2009.02.006.CrossRefPubMedGoogle Scholar
  48. 48.
    Granger JP. Vascular endothelial growth factor inhibitors and hypertension: a central role for the kidney and endothelial factors? Hypertension. 2009;54(3):465–7.  https://doi.org/10.1161/HYPERTENSIONAHA.109.132274.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Facemire CS, Nixon AB, Griffiths R, Hurwitz H, Coffman TM. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54(3):652–8.  https://doi.org/10.1161/HYPERTENSIONAHA.109.129973.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Hood JD, Meininger CJ, Ziche M, Granger HJ. VEGF upregulates ecNOS message, protein, and NO production in human endothelial cells. Am J Phys. 1998;274(3 Pt 2):H1054–8.Google Scholar
  51. 51.
    Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35.  https://doi.org/10.1038/nrendo.2016.136.CrossRefGoogle Scholar
  52. 52.
    Prisant LM, Gujral JS, Mulloy AL. Hyperthyroidism: a secondary cause of isolated systolic hypertension. J Clin Hypertens (Greenwich). 2006;8(8):596–9.CrossRefGoogle Scholar
  53. 53.
    Stabouli S, Papakatsika S, Kotsis V. Hypothyroidism and hypertension. Expert Rev Cardiovasc Ther. 2010;8(11):1559–65.  https://doi.org/10.1586/erc.10.141.CrossRefPubMedGoogle Scholar
  54. 54.
    Bianco AC, McAninch EA. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol. 2013;1(3):250–8.  https://doi.org/10.1016/S2213-8587(13)70069-X.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Silva JE, Larsen PR. Potential of brown adipose tissue type II thyroxine 5′-deiodinase as a local and systemic source of triiodothyronine in rats. J Clin Invest. 1985;76(6):2296–305.  https://doi.org/10.1172/JCI112239.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cvoro A, Bajic A, Zhang A, Simon M, Golic I, Sieglaff DH, et al. Ligand independent and subtype-selective actions of thyroid hormone receptors in human adipose derived stem cells. PLoS One. 2016;11(10):e0164407.  https://doi.org/10.1371/journal.pone.0164407.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Broeders EP, Vijgen GH, Havekes B, Bouvy ND, Mottaghy FM, Kars M, et al. Thyroid hormone activates Brown adipose tissue and increases non-shivering thermogenesis—a cohort study in a group of thyroid carcinoma patients. PLoS One. 2016;11(1):e0145049.  https://doi.org/10.1371/journal.pone.0145049.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286(15):12983–90.  https://doi.org/10.1074/jbc.M110.215889.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    •• Ruan CC, Kong LR, Chen XH, Ma Y, Pan XX, Zhang ZB, et al. A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metab. 2018;  https://doi.org/10.1016/j.cmet.2018.06.013. This study shows that BAT-secreted FGF21 regulates hypertension. CrossRefGoogle Scholar
  60. 60.
    Planavila A, Redondo I, Hondares E, Vinciguerra M, Munts C, Iglesias R, et al. Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat Commun. 2013;4:2019.  https://doi.org/10.1038/ncomms3019.CrossRefPubMedGoogle Scholar
  61. 61.
    Liu SQ, Roberts D, Kharitonenkov A, Zhang B, Hanson SM, Li YC, et al. Endocrine protection of ischemic myocardium by FGF21 from the liver and adipose tissue. Sci Rep. 2013;3:2767.  https://doi.org/10.1038/srep02767.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kikai M, Yamada H, Wakana N, Terada K, Yamamoto K, Wada N, et al. Adrenergic receptor-mediated activation of FGF-21-adiponectin axis exerts atheroprotective effects in brown adipose tissue-transplanted apoE(−/−) mice. Biochem Biophys Res Commun. 2018;497(4):1097–103.  https://doi.org/10.1016/j.bbrc.2018.02.185.CrossRefPubMedGoogle Scholar
  63. 63.
    He JL, Zhao M, Xia JJ, Guan J, Liu Y, Wang LQ, et al. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats. Sci Rep. 2016;6:29582.  https://doi.org/10.1038/srep29582.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, et al. Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol. 2011;75(4):464–9.  https://doi.org/10.1111/j.1365-2265.2011.04078.x.CrossRefGoogle Scholar
  65. 65.
    Semba RD, Crasto C, Strait J, Sun K, Schaumberg DA, Ferrucci L. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. J Hum Hypertens. 2013;27(6):397–9.  https://doi.org/10.1038/jhh.2012.52.CrossRefPubMedGoogle Scholar
  66. 66.
    Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol. 2004;24(3):435–44.  https://doi.org/10.1161/01.ATV.0000105902.89459.09.CrossRefPubMedGoogle Scholar
  67. 67.
    •• Cirrik S, Schmid-Schonbein GW. IGF-1 receptor cleavage in hypertension. Hypertens Res. 2018;41(6):406–13.  https://doi.org/10.1038/s41440-018-0023-7. This study describes how IGF-1 receptor secretion and cleavage regulate hypertension. CrossRefPubMedGoogle Scholar
  68. 68.
    Hasdai D, Rizza RA, Holmes DR Jr, Richardson DM, Cohen P, Lerman A. Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro. Hypertension. 1998;32(2):228–34.CrossRefGoogle Scholar
  69. 69.
    Pendergrass M, Fazioni E, Collins D, DeFronzo RA. IGF-I increases forearm blood flow without increasing forearm glucose uptake. Am J Phys. 1998;275(2 Pt 1):E345–50.Google Scholar
  70. 70.
    Walsh MF, Barazi M, Pete G, Muniyappa R, Dunbar JC, Sowers JR. Insulin-like growth factor I diminishes in vivo and in vitro vascular contractility: role of vascular nitric oxide. Endocrinology. 1996;137(5):1798–803.  https://doi.org/10.1210/endo.137.5.8612517.CrossRefPubMedGoogle Scholar
  71. 71.
    Marczin N, Papapetropoulos A, Catravas JD. Tyrosine kinase inhibitors suppress endotoxin- and IL-1 beta-induced NO synthesis in aortic smooth muscle cells. Am J Phys. 1993;265(3 Pt 2):H1014–8.  https://doi.org/10.1152/ajpheart.1993.265.3.H1014.CrossRefGoogle Scholar
  72. 72.
    Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes. 2012;61(3):674–82.  https://doi.org/10.2337/db11-0510.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Gunawardana SC, Piston DW. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab. 2015;308(12):E1043–55.  https://doi.org/10.1152/ajpendo.00570.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Dimeo F, Pagonas N, Seibert F, Arndt R, Zidek W, Westhoff TH. Aerobic exercise reduces blood pressure in resistant hypertension. Hypertension. 2012;60(3):653–8.  https://doi.org/10.1161/HYPERTENSIONAHA.112.197780.CrossRefPubMedGoogle Scholar
  75. 75.
    Aldiss P, Davies G, Woods R, Budge H, Sacks HS, Symonds ME. ‘Browning’ the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol. 2017;228:265–74.  https://doi.org/10.1016/j.ijcard.2016.11.074.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8.  https://doi.org/10.1038/nature10777.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157(6):1279–91.  https://doi.org/10.1016/j.cell.2014.03.065.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78•.
    . Erdem Y, Ozkan G, Ulusoy S, Arici M, Derici U, Sengul S, et al. The effect of intermittent fasting on blood pressure variability in patients with newly diagnosed hypertension or prehypertension. J Am Soc Hypertens. 2018;12(1):42–9.  https://doi.org/10.1016/j.jash.2017.11.008. This study shows that intermittent fasting regulates blood pressure. CrossRefPubMedGoogle Scholar
  79. 79.
    Rachid TL, Penna-de-Carvalho A, Bringhenti I, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. Fenofibrate (PPARalpha agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol Cell Endocrinol. 2015;402:86–94.  https://doi.org/10.1016/j.mce.2014.12.027.CrossRefPubMedGoogle Scholar
  80. 80.
    Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395–404.  https://doi.org/10.1016/j.cmet.2012.01.019.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Raji A, Seely EW, Bekins SA, Williams GH, Simonson DC. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care. 2003;26(1):172–8.CrossRefGoogle Scholar
  82. 82.
    Gilbert K, Nian H, Yu C, Luther JM, Brown NJ. Fenofibrate lowers blood pressure in salt-sensitive but not salt-resistant hypertension. J Hypertens. 2013;31(4):820–9.  https://doi.org/10.1097/HJH.0b013e32835e8227.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang Y, He Z, Li X. Chronic rapamycin treatment improved metabolic phenotype but inhibited adipose tissue browning in high-fat diet-fed C57BL/6J mice. Biol Pharm Bull. 2017;40(9):1352–60.  https://doi.org/10.1248/bpb.b16-00946.CrossRefPubMedGoogle Scholar
  84. 84.
    Tran CM, Mukherjee S, Ye L, Frederick DW, Kissig M, Davis JG, et al. Rapamycin blocks induction of the thermogenic program in white adipose tissue. Diabetes. 2016;65(4):927–41.  https://doi.org/10.2337/db15-0502.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Ma X, Yao J, Yue Y, Du S, Qin H, Hou J, et al. Rapamycin reduced pulmonary vascular remodelling by inhibiting cell proliferation via Akt/mTOR signalling pathway down-regulation in the carotid artery-jugular vein shunt pulmonary hypertension rat model. Interact Cardiovasc Thorac Surg. 2017;25(2):206–11.  https://doi.org/10.1093/icvts/ivx053.CrossRefPubMedGoogle Scholar
  86. 86.
    Feng RN, Zhao C, Wang C, Niu YC, Li K, Guo FC, et al. BMI is strongly associated with hypertension, and waist circumference is strongly associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. J Epidemiol. 2012;22(4):317–23.CrossRefGoogle Scholar
  87. 87.
    Ni J, Ma KL, Wang CX, Liu J, Zhang Y, Lv LL, et al. Activation of renin-angiotensin system is involved in dyslipidemia-mediated renal injuries in apolipoprotein E knockout mice and HK-2 cells. Lipids Health Dis. 2013;12:49.  https://doi.org/10.1186/1476-511X-12-49.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Nickenig G, Sachinidis A, Seewald S, Bohm M, Vetter H. Influence of oxidized low-density lipoprotein on vascular angiotensin II receptor expression. J Hypertens Suppl. 1997;15(6):S27–30.CrossRefGoogle Scholar
  89. 89.
    Thethi T, Kamiyama M, Kobori H. The link between the renin-angiotensin-aldosterone system and renal injury in obesity and the metabolic syndrome. Curr Hypertens Rep. 2012;14(2):160–9.  https://doi.org/10.1007/s11906-012-0245-z.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356.  https://doi.org/10.1038/ncomms7356.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    • Kishida T, Ejima A, Yamamoto K, Tanaka S, Yamamoto T, Mazda O. Reprogrammed functional Brown adipocytes ameliorate insulin resistance and dyslipidemia in diet-induced obesity and type 2 diabetes. Stem Cell Reports. 2015;5(4):569–81.  https://doi.org/10.1016/j.stemcr.2015.08.007. This study describes how brown fat regulates dyslipidemia. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eashita Das
    • 1
    • 2
  • Joon Ho Moon
    • 1
  • Ju Hee Lee
    • 1
    • 3
  • Nikita Thakkar
    • 1
  • Zdenka Pausova
    • 1
    • 4
  • Hoon-Ki Sung
    • 1
    • 3
    • 5
  1. 1.Translational Medicine ProgramThe Hospital for Sick Children Research InstituteTorontoCanada
  2. 2.Department of Microbiology, Siliguri CollegeNorth Bengal UniversitySiliguriIndia
  3. 3.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  4. 4.Department of PhysiologyUniversity of TorontoTorontoCanada
  5. 5.Banting and Best Diabetes CentreUniversity of TorontoTorontoCanada

Personalised recommendations