Mineralocorticoids and Cardiovascular Disease in Females with Insulin Resistance and Obesity

  • Manav Nayyar
  • Guido Lastra
  • Camila Manrique AcevedoEmail author
Hypertension and Obesity (E Reisin, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Hypertension and Obesity


Purpose of the Review

In the present review, we will discuss the evidence and the mechanisms underlying the complex interplay between obesity, mineralocorticoid receptor activation, and cardiovascular dysfunction with special emphasis on the pathogenesis of cardiovascular disease (CVD) in obese and insulin-resistant females.

Recent Findings

Since the initial isolation of aldosterone in 1953 and the cloning of the mineralocorticoid receptor (MR) decades later, our understanding has expanded tremendously regarding their involvement in the pathogenesis of CVD. Recent results from both pre-clinical and clinical studies support a close correlation between increase adiposity and enhanced aldosterone production (MR activation).


Importantly, insulin resistance and obese females are more prone to the deleterious cardiovascular effects of MR activation, and enhanced MR activation in females has emerged as an important causative event in the genesis of a more severe CVD in diabetic women. Different clinical trials have been completed examining the effect of MR blockade in subjects with CVD. Despite its important beneficial mortality impact, side effects are frequent and a newer MR antagonist, finerenone, with less risk of hyperkalemia is currently being tested in large clinical trials.


Obesity Females Cardiovascular disease Aldosterone Mineralocorticoid receptor 


Compliance with Ethics Standards

Conflict of Interest

The authors declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Air EL, Kissela BM. Diabetes, the metabolic syndrome, and ischemic stroke: epidemiology and possible mechanisms. Diabetes Care. 2007;30(12):3131–40.CrossRefPubMedGoogle Scholar
  2. 2.
    Ballantyne CM, Hoogeveen RC, McNeill AM, Heiss G, Schmidt MI, Duncan BB, et al. Metabolic syndrome risk for cardiovascular disease and diabetes in the ARIC study. Int J Obes. 2008;32:S21–4.CrossRefGoogle Scholar
  3. 3.
    Cavender MA, Steg PG, Smith SC Jr, Eagle K, Ohman EM, Goto S, et al. Impact of diabetes mellitus on hospitalization for heart failure, cardiovascular events, and death: outcomes at 4 years from the Reduction of Atherothrombosis for Continued Health (REACH) Registry. Circulation. 2015;132(10):923–31.CrossRefPubMedGoogle Scholar
  4. 4.
    George J, Rapsomaniki E, Pujades-Rodriguez M, Shah AD, Denaxas S, Herrett E, et al. How does cardiovascular disease first present in women and men? Incidence of 12 cardiovascular diseases in a contemporary cohort of 1,937,360 people. Circulation. 2015;132(14):1320–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. Jama. 2016;315(21):2284–91.CrossRefPubMedGoogle Scholar
  6. 6.
    Gregg, E.W. et al. Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: a modelling study. Lancet Diabetes Endocrinol 2014.Google Scholar
  7. 7.
    Fox CS, Coady S, Sorlie PD, D’Agostino RB, Pencina MJ, Vasan RS, et al. Increasing cardiovascular disease burden due to diabetes mellitus. The Framingham Heart Study. 2007;115(12):1544–50.CrossRefGoogle Scholar
  8. 8.
    Orchard TJ. The impact of gender and general risk factors on the occurrence of atherosclerotic vascular disease in non-insulin-dependent diabetes mellitus. Ann Med. 1996;28(4):323–33.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee WL, Cheung AM, Cape D, Zinman B. Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care. 2000;23(7):962–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH, et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab. 2007;92(11):4472–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Goodfriend TL, Kelley DE, Goodpaster BH, Winters SJ. Visceral obesity and insulin resistance are associated with plasma aldosterone levels in women. Obes Res. 1999;7(4):355–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Buglioni A, Cannone V, Cataliotti A, Sangaralingham SJ, Heublein DM, Scott CG, et al. Circulating aldosterone and natriuretic peptides in the general community: relationship to cardiorenal and metabolic disease. Hypertension. 2015;65(1):45–53.CrossRefPubMedGoogle Scholar
  13. 13.
    Tuck ML, Sowers J, Dornfeld L, Kledzik G, Maxwell M. The effect of weight reduction on blood pressure, plasma renin activity, and plasma aldosterone levels in obese patients. N Engl J Med. 1981;304(16):930–3.CrossRefPubMedGoogle Scholar
  14. 14.
    Rocchini AP, Katch VL, Grekin R, Moorehead C, Anderson J. Role for aldosterone in blood pressure regulation of obese adolescents. Am J Cardiol. 1986;57(8):613–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Rossi GP, Sacchetto A, Pavan E, Scognamiglio R, Pietra M, Pessina C. Left ventricular systolic function in primary aldosteronism and hypertension. J Hypertens. 1998;16(12 Pt 2):2075–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Garg R, Hurwitz S, Williams GH, Hopkins PN, Adler GK. Aldosterone production and insulin resistance in healthy adults. J Clin Endocrinol Metab. 2010;95(4):1986–90.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi GL, Novello M, et al. Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J Clin Endocrinol Metab. 2006;91(9):3457–63.CrossRefPubMedGoogle Scholar
  18. 18.
    Santilli F, D'Ardes D, Guagnano MT, Davi G. Metabolic syndrome: sex-related cardiovascular risk and therapeutic approach. Curr Med Chem. 2017;24(24):2602–27.CrossRefPubMedGoogle Scholar
  19. 19.
    Murphy MO, Loria AS. Sex-specific effects of stress on metabolic and cardiovascular disease: are women at higher risk? Am J Physiol Regul Integr Comp Physiol. 2017;313(1):R1–r9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pucci G, Alcidi R, Tap L, Battista F, Mattace-Raso F, Schillaci G. Sex- and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: a review of the literature. Pharmacol Res. 2017;120:34–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Barrett-Connor E, Wingard DL. Sex differential in ischemic heart disease mortality in diabetics: a prospective population-based study. Am J Epidemiol. 1983;118(4):489–96.CrossRefPubMedGoogle Scholar
  22. 22.
    Kannel WB, Wilson PW. Risk factors that attenuate the female coronary disease advantage. Arch Intern Med. 1995;155(1):57–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Roche MM, Wang PP. Sex differences in all-cause and cardiovascular mortality, hospitalization for individuals with and without diabetes, and patients with diabetes diagnosed early and late. Diabetes Care. 2013;36(9):2582–90.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ayuzawa N, Nagase M, Ueda K, Nishimoto M, Kawarazaki W, Marumo T, et al. Rac1-mediated activation of mineralocorticoid receptor in pressure overload–induced cardiac injury. Hypertension. 2016;67(1):99–106.CrossRefPubMedGoogle Scholar
  25. 25.
    Hu FB, Stampfer MJ, Solomon CG, Liu S, Willett WC, Speizer FE, et al. The impact of diabetes mellitus on mortality from all causes and coronary heart disease in women: 20 years of follow-up. Arch Intern Med. 2001;161(14):1717–23.CrossRefPubMedGoogle Scholar
  26. 26.
    Williams JS, Williams GH. 50th anniversary of aldosterone. J Clin Endocrinol Metab. 2003;88(6):2364–72.CrossRefPubMedGoogle Scholar
  27. 27.
    V BK, McCurley A, Jaffe IZ. Direct contribution of vascular mineralocorticoid receptors to blood pressure regulation. Clin Exp Pharmacol Physiol. 2013;40(12):902–9.CrossRefGoogle Scholar
  28. 28.
    Tarjus A, Amador C, Michea L, Jaisser F. Vascular mineralocorticoid receptor and blood pressure regulation. Curr Opin Pharmacol. 2015;21:138–44.CrossRefPubMedGoogle Scholar
  29. 29.
    Lombès M, et al. Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11β-hydroxysteroid dehydrogenase in the human heart. Circulation. 1995;92(2):175–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Arriza J, Weinberger C, Cerelli G, Glaser T, Handelin B, Housman D, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237(4812):268–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Funder J, Pearce P, Smith R, Smith A. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242(4878):583–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res. 2005;96(6):643–50.CrossRefPubMedGoogle Scholar
  33. 33.
    Newfell BG, Iyer LK, Mohammad NN, McGraw AP, Ehsan A, Rosano G, et al. Aldosterone regulates vascular gene transcription via oxidative stress–dependent and –independent pathways. Arterioscler Thromb Vasc Biol. 2011;31(8):1871–80.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    •• DuPont JJ, Jaffe IZ. 30 Years of the mineralocorticoid receptor: the role of the mineralocorticoid receptor in the vasculature. J Endocrinol. 2017;234(1):T67–t82. Comprehensive review of the action of MR activation in the vasculature. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bretschneider M, Busch B, Mueller D, Nolze A, Schreier B, Gekle M, et al. Activated mineralocorticoid receptor regulates micro-RNA-29b in vascular smooth muscle cells. FASEB J. 2016;30(4):1610–22.CrossRefPubMedGoogle Scholar
  36. 36.
    Fiebeler A, Schmidt F, Muller DN, Park JK, Dechend R, Bieringer M, et al. Mineralocorticoid receptor affects AP-1 and nuclear factor-κB activation in angiotensin II–induced cardiac injury. Hypertension. 2001;37(2):787–93.CrossRefPubMedGoogle Scholar
  37. 37.
    Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 2008;70:165–90.CrossRefPubMedGoogle Scholar
  38. 38.
    Haas E, Bhattacharya I, Brailoiu E, Damjanovic M, Brailoiu GC, Gao X, et al. Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res. 2009;104(3):288–91.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Meyer MR, Amann K, Field AS, Hu C, Hathaway HJ, Kanagy NL, et al. Deletion of G protein–coupled estrogen receptor increases endothelial vasoconstriction. Hypertension. 2012;59(2):507–12.CrossRefPubMedGoogle Scholar
  40. 40.
    Meyer MR, Field AS, Kanagy NL, Barton M, Prossnitz ER. GPER regulates endothelin-dependent vascular tone and intracellular calcium. Life Sci. 2012;91(13–14):623–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, et al. GPR30 expression is required for the mineralocorticoid receptor–independent rapid vascular effects of aldosterone. Hypertension. 2011;57(3):442–51.CrossRefPubMedGoogle Scholar
  42. 42.
    Gros R, Ding Q, Liu B, Chorazyczewski J, Feldman RD. Aldosterone mediates its rapid effects in vascular endothelial cells through GPER activation. Am J Physiol Cell Physiol. 2013;304(6):C532–40.CrossRefPubMedGoogle Scholar
  43. 43.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics—2017 Update: a report from the American Heart Association. Circulation. 2017;135:e146–603.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Selye H. The evolution of the stress concept. Stress and cardiovascular disease. Am J Cardiol. 1970;26(3):289–99.CrossRefPubMedGoogle Scholar
  45. 45.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.CrossRefPubMedGoogle Scholar
  46. 46.
    Fuster D, Frey FJ, Ferrari P. Dangerous hyperkalemia as sequelae of new treatment strategies of heart failure. Praxis (Bern 1994). 2000;89(49):2073–6.Google Scholar
  47. 47.
    Tamirisa KP, Aaronson KD, Koelling TM. Spironolactone-induced renal insufficiency and hyperkalemia in patients with heart failure. Am Heart J. 2004;148(6):971–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Bellati G, Ideo G. Gynaecomastia after spironolactone and potassium canrenoate. Lancet. 1986;1(8481):626.CrossRefPubMedGoogle Scholar
  49. 49.
    Hugues FC, Gourlot C, Le Jeunne C. Drug-induced gynecomastia. Ann Med Interne (Paris). 2000;151(1):10–7.Google Scholar
  50. 50.
    Weber MA. Clinical implications of aldosterone blockade. Am Heart J. 2002;144(5 Suppl):S12–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–21.CrossRefPubMedGoogle Scholar
  52. 52.
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration with the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009;53(15):e1–e90.CrossRefPubMedGoogle Scholar
  53. 53.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62(16):e147–239.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Cooper LB, et al. Use of mineralocorticoid receptor antagonists in patients with heart failure and comorbid diabetes mellitus or chronic kidney disease. J Am Heart Assoc. 2017;6(12)Google Scholar
  55. 55.
    Ruilope LM, Tamargo J. Renin-angiotensin system blockade: finerenone. Nephrol Ther. 2017;13(Suppl 1):S47–s53.CrossRefPubMedGoogle Scholar
  56. 56.
    Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Bärfacker L, et al. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol. 2014;64(1):69–78.CrossRefPubMedGoogle Scholar
  57. 57.
    Grune J, Benz V, Brix S, Salatzki J, Blumrich A, Höft B, et al. Steroidal and nonsteroidal mineralocorticoid receptor antagonists cause differential cardiac gene expression in pressure overload-induced cardiac hypertrophy. J Cardiovasc Pharmacol. 2016;67(5):402–11.CrossRefPubMedGoogle Scholar
  58. 58.
    • Grune J, et al. Selective mineralocorticoid receptor cofactor modulation as molecular basis for finerenon’s antifibrotic activity. Hypertension. 2018;71(4):599–608. This investigation examines the antifibrotic role of finerenone in a rodent model of heart failure via inhibition of TNX expression. CrossRefPubMedGoogle Scholar
  59. 59.
    Barfacker L, et al. Discovery of BAY 94-8862: a nonsteroidal antagonist of the mineralocorticoid receptor for the treatment of cardiorenal diseases. ChemMedChem. 2012;7(8):1385–403.CrossRefPubMedGoogle Scholar
  60. 60.
    Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34(31):2453–63.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Filippatos G, Anker SD, Böhm M, Gheorghiade M, Køber L, Krum H, et al. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J. 2016;37(27):2105–14.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hammer F, Krane V, Stork S, Roser C, Hofmann K, Pollak N, et al. Rationale and design of the Mineralocorticoid Receptor Antagonists in End-Stage Renal Disease Study (MiREnDa). Nephrol Dial Transplant. 2014;29(2):400–5.CrossRefPubMedGoogle Scholar
  63. 63.
    Lopes LR, Ribeiro SMLT, Figueiredo VP, Leite ALJ, Nicolato RLC, Gomes JAE, et al. The overweight increases circulating inflammatory mediators commonly associated with obesity in young individuals. Cytokine. 2018;110:169–73.CrossRefPubMedGoogle Scholar
  64. 64.
    Kathiresan S, et al. Clinical and genetic correlates of serum aldosterone in the community: the Framingham heart study. Am J Hypertens. 2005;18(5 Pt 1):657–65.CrossRefPubMedGoogle Scholar
  65. 65.
    Engeli S, Bohnke J, Gorzelniak K, Janke J, Schling P, Bader M, et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension. 2005;45(3):356–62.CrossRefPubMedGoogle Scholar
  66. 66.
    Shukri MZ, Tan JW, Manosroi W, Pojoga LH, Rivera A, Williams JS, et al. Biological sex modulates the adrenal and blood pressure responses to angiotensin II. Hypertension. 2018;71:1083–90.CrossRefPubMedGoogle Scholar
  67. 67.
    Bender SB, DeMarco VG, Padilla J, Jenkins NT, Habibi J, Garro M, et al. Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction. Hypertension. 2015;65(5):1082–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Briones AM, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways. Implications in Diabetes Mellitus–Associated Obesity and Vascular Dysfunction. Hypertension. 2012;59(5):1069–78.CrossRefPubMedGoogle Scholar
  69. 69.
    •• Huby A-C, et al. Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation. 2015;132(22):2134–45. This investigation elegantly dsecribes how leptin regulates aldosterone synthesis and how leptin-mediated increased aldosterone secretion results in endothelial dysfunction and cardiac fibrosis. CrossRefPubMedGoogle Scholar
  70. 70.
    • Huby AC, Otvos L Jr, Belin de Chantemele EJ. Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension. 2016;67(5):1020–8. The investigation shows that that leptin results in hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    DeMarco VG, Habibi J, Jia G, Aroor AR, Ramirez-Perez FI, Martinez-Lemus LA, et al. Low-dose mineralocorticoid receptor blockade prevents Western diet-induced arterial stiffening in female mice. Hypertension. 2015;66(1):99–107.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Jia G, Habibi J, Aroor AR, Martinez-Lemus LA, DeMarco VG, Ramirez-Perez FI, et al. Endothelial mineralocorticoid receptor mediates diet induced aortic stiffness in females. Circ Res. 2016;118:935–43.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Manrique C, DeMarco VG, Aroor AR, Mugerfeld I, Garro M, Habibi J, et al. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a Western diet. Endocrinology. 2013;154(10):3632–42.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Bostick B, Habibi J, DeMarco VG, Jia G, Domeier TL, Lambert MD, et al. Mineralocorticoid receptor blockade prevents Western diet-induced diastolic dysfunction in female mice. Am J Physiol Heart Circ Physiol. 2015;308(9):H1126–35.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    •• Davel AP, et al. Sex-specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J Am Heart Assoc. 2018;7(4):e007675. This paper examines the differential role of endothelial cell mineralocortidoid receptor activation in the genesis of endothelial dysfunction in obese and hyperlipidemic female mice when compared with males. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Davel AP, et al. Sex-specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J Am Heart Assoc. 2018;7(4)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Manav Nayyar
    • 1
  • Guido Lastra
    • 1
    • 2
  • Camila Manrique Acevedo
    • 1
    • 2
    Email author
  1. 1.Department of Medicine, Division of EndocrinologyUniversity of MissouriColumbiaUSA
  2. 2.Research Service Harry S. Truman Memorial Veterans HospitalColumbiaUSA

Personalised recommendations