Advertisement

Selective vs. Global Renal Denervation: a Case for Less Is More

  • Marat Fudim
  • Asher A. Sobotka
  • Yue-Hui Yin
  • Joanne W. Wang
  • Howard Levin
  • Murray Esler
  • Jie Wang
  • Paul A. Sobotka
Blood Pressure Monitoring and Management (J Cockcroft, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Blood Pressure Monitoring and Management

Abstract

Purpose of Review

Review the renal nerve anatomy and physiology basics and explore the concept of global vs. selective renal denervation (RDN) to uncover some of the fundamental limitations of non-targeted renal nerve ablation and the potential superiority of selective RDN.

Recent Findings

Recent trials testing the efficacy of RDN showed mixed results. Initial investigations targeted global RDN as a therapeutic goal. The repeat observation of heterogeneous response to RDN including non-responders with lack of a BP reduction, or even more unsettling, BP elevations after RDN has raised concern for the detrimental effects of unselective global RDN. Subsequent studies have suggested the presence of a heterogeneous fiber population and the potential utility of renal nerve stimulation to identify sympatho-stimulatory fibers or “hot spots.”

Summary

The recognition that RDN can produce heterogeneous afferent sympathetic effects both change therapeutic goals and revitalize the potential of therapeutic RDN to provide significant clinical benefits. Renal nerve stimulation has emerged as potential tool to identify sympatho-stimulatory fibers, avoid sympatho-inhibitory fibers, and thus guide selective RDN.

Keywords

Hypertension Renal nerves Nerve stimulation Renal denervation Hot spots 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dr. Fudim is supported by an American Heart Association Grant, 17MCPRP33460225 and NIH T32 grant 5T32HL007101; he consults for Coridea, AxonTherapies, and Galvani. Dr. Sobotka is an employee of ROX Medical, Inc.; is consulting for SyMap. Dr. Yin is a consultant for SyMap. Dr. J. Wang is a co-founder of SyMap Medical Ltd. Dr. Esler is supported by a Senior Principal Research Fellowship of the National Health and Medical Research Council of Australia. The other authors declare no conflict of interest relevant to this manuscript. Paul Sobotka

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.CrossRefPubMedGoogle Scholar
  2. 2.
    Symplicity HTNI, Esler MD, Krum H, et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Simplicity HTN-2 Trial): a randomised controlled trial. Lancet. 2010;376:1903–9.CrossRefGoogle Scholar
  3. 3.
    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370:1393–401.CrossRefPubMedGoogle Scholar
  4. 4.
    Mathiassen ON, Vase H, Bech JN, Christensen KL, Buus NH, Schroeder AP, et al. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24-h blood pressure-based trial. J Hypertens. 2016;34:1639–47.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. 2017;390:2160–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Mitchell GAG. Anatomy of the autonomic nervous system. Edinburgh: E. & S. Living-stone Ltd.; 1953.Google Scholar
  7. 7.
    Mompeo B, Maranillo E, Garcia-Touchard A, Larkin T, Sanudo J. The gross anatomy of the renal sympathetic nerves revisited. Clin Anat. 2016;29:660–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Chevendra V, Weaver LC. Distribution of splenic, mesenteric and renal neurons in sympathetic ganglia in rats. J Auton Nerv Syst. 1991;33:47–53.CrossRefPubMedGoogle Scholar
  9. 9.
    Drukker J, Groen GJ, Boekelaar AB, Baljet B. The extrinsic innervation of the rat kidney. Clin Exp Hypertens A. 1987;9(Suppl 1):15–31.PubMedGoogle Scholar
  10. 10.
    •• van Amsterdam WA, Blankestijn PJ, Goldschmeding R, Bleys RL. The morphological substrate for renal denervation: nerve distribution patterns and parasympathetic nerves. A post-mortem histological study. Ann Anat. 2016;204:71–9. Detailed anatomical study of renal nerve fiber types and location. CrossRefPubMedGoogle Scholar
  11. 11.
    Rauck RL. Sympathetic nerve blocks. In: Raj PP, editor. Practical management of pain. St. Louis: Mosby; 1992. p. 2.Google Scholar
  12. 12.
    Kopp UC, Cicha MZ, Smith LA, Mulder J, Hokfelt T. Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of alpha1- and alpha2-adrenoceptors on renal sensory nerve fibers. Am J Physiol Regul Integ Comp Physiol. 2007;293:R1561–72.CrossRefGoogle Scholar
  13. 13.
    Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Bohm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100:1049–57.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    •• Sakakura K, Ladich E, Cheng Q, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64:635–43. Detailed anatomical study of renal nerve fiber types and location. CrossRefPubMedGoogle Scholar
  15. 15.
    DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77:75–197.CrossRefPubMedGoogle Scholar
  16. 16.
    Kopp UC, Smith LA, DiBona GF. Renorenal reflex: neural components of ipsilateral and contralateral renal response. Am J Phys. 1985;249:F507–17.Google Scholar
  17. 17.
    Heuser R, Schlaich M, Sievert H. Renal denervation: a new approach to treatment of resistant hypertension. Nov 2014. Spring. Google Scholar
  18. 18.
    Knuepfer MM, Schramm LP. The conduction velocities and spinal projections of single renal afferent fibers in the rat. Brain Res. 1987;435:167–73.CrossRefPubMedGoogle Scholar
  19. 19.
    Barajas L, Wang P. Myelinated nerves of the rat kidney. A light and electron microscopic autoradiographic study. J Ultrastruct Res. 1978;65:148–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Astrom A, Crafoord J. Afferent and efferent activity in the renal nerves of cats. Acta Physiol Scand. 1968;74:69–78.CrossRefPubMedGoogle Scholar
  21. 21.
    Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol Regul Integ Comp Physiol. 2015;308:R79–95.CrossRefGoogle Scholar
  22. 22.
    Ueda H, Uchida Y, Kamisaka K. Mechanism of the reflex depressor effect by the kidney in dog. Jpn Heart J. 1967;8:597–606.CrossRefPubMedGoogle Scholar
  23. 23.
    Aars H, Akre S. Reflex changes in sympathetic activity and arterial blood pressure evoked by afferent stimulation of the renal nerve. Acta Physiol Scand. 1970;78:184–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Beacham WS, Kunze DL. Renal receptors evoking a spinal vasometer reflex. J Physiol. 1969;201:73–85.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lu M, Wei SG, Chai XS. Effect of electrical stimulation of afferent renal nerve on arterial blood pressure, heart rate and vasopressin in rabbits. Sheng Li Xue Bao. 1995;47:471–7.PubMedGoogle Scholar
  26. 26.
    • Pokushalov E, Romanov A, Corbucci G, et al. A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension. J Am Coll Cardiol. 2012;60:1163–70. Study testing the effects of renal nerve stimulation on blood pressure. CrossRefPubMedGoogle Scholar
  27. 27.
    Gal P, de Jong MR, Smit JJ, Adiyaman A, Staessen JA, Elvan A. Blood pressure response to renal nerve stimulation in patients undergoing renal denervation: a feasibility study. J Hum Hypertens. 2015;29(5):292–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, et al. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61:450–6.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu J, Wang Z, Zhou T, Chen S, Chen W, du H, et al. Selective proximal renal denervation guided by autonomic responses evoked via high-frequency stimulation in a preclinical canine model. Circ Cardiovasc interv. 2015;8:e001847.CrossRefPubMedGoogle Scholar
  30. 30.
    Hilbert S, Kosiuk J, Hindricks G, Bollmann A. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Int J Cardiol. 2014;177:669–71.CrossRefPubMedGoogle Scholar
  31. 31.
    de Jong MR, Hoogerwaard AF, Gal P, et al. Persistent increase in blood pressure after renal nerve stimulation in accessory renal arteries after sympathetic renal denervation. Hypertension. 2016;67:1211–7.CrossRefPubMedGoogle Scholar
  32. 32.
    • de Jong MR, Adiyaman A, Gal P, et al. Renal nerve stimulation-induced blood pressure changes predict ambulatory blood pressure response after renal denervation. Hypertension. 2016;68:707–14. Study testing the effects of renal nerve stimulation on blood pressure in patients with resistant hypertension. CrossRefPubMedGoogle Scholar
  33. 33.
    Madhavan M, Desimone CV, Ebrille E, et al. Transvenous stimulation of the renal sympathetic nerves increases systemic blood pressure: a potential new treatment option for neurocardiogenic syncope. J Cardiovasc Electrophysiol. 2014;25:1115–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tsiachris D, Tsioufis C, Dimitriadis K, Kordalis A, Thomopoulos C, Kasiakogias A, et al. Electrical stimulation of the renal arterial nerves does not unmask the blindness of renal denervation procedure in swine. Int J Cardiol. 2014;176(3):1061–3.CrossRefPubMedGoogle Scholar
  35. 35.
    •• Sobotka PAEM, Levin H, Yin YH, Wang J. Renal afferent nerve mapping and selective denervation. CRT 2017. Early experience with renal nerve stimulation guided renal denervation. Google Scholar
  36. 36.
    Handa RK, Johns EJ. Interaction of the renin-angiotensin system and renal nerves in the regulation of rat kidney function. The. J Physiol. 1985;369:311–21.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    DiBona GF. Physiology in perspective: the wisdom of the body. Neural control of the kidney. Am J Physiol Regul Integ Comp Physiol. 2005;289:R633–41.CrossRefGoogle Scholar
  38. 38.
    Johns EJ, Lewis BA, Singer B. The sodium-retaining effect of renal nerve activity in the cat: role of angiotensin formation. Clin Sci Mol Med. 1976;51:93–102.PubMedGoogle Scholar
  39. 39.
    Yoshimoto T, Sakagami T, Nagura S, Miki K. Relationship between renal sympathetic nerve activity and renal blood flow during natural behavior in rats. Am J Physiol Regul Integ Comp Physiol. 2004;286:R881–7.CrossRefGoogle Scholar
  40. 40.
    Fudim M, Hernandez AF, Felker GM. Role of volume redistribution in the congestion of heart failure. J Am Heart Assoc. 2017;6:e006817.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Barajas L, Sokolski KN, Lechago J. Vasoactive intestinal polypeptide-immunoreactive nerves in the kidney. Neurosci Lett. 1983;43:263–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Knight DS, Beal JA, Yuan ZP, Fournet TS. Vasoactive intestinal peptide-immunoreactive nerves in the rat kidney. Anat Rec. 1987;219:193–203.CrossRefPubMedGoogle Scholar
  43. 43.
    Norvell JE, Anderson JM. Assessment of possible parasympathetic innervation of the kidney. J Auton Nerv Syst. 1983;8:291–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Page IH, Heuer GJ. The effect of renal denervation on patients suffering from nephritis. J Clin Invest. 1935;14:443–58.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kottke FJ, Kubicek WG, Visscher MB. The production of arterial hypertension by chronic renal artery-nerve stimulation. Am J Phys. 1945;145:38–47.Google Scholar
  46. 46.
    Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26:861–5.CrossRefPubMedGoogle Scholar
  47. 47.
    Ye S, Zhong H, Yanamadala S, Campese VM. Renal injury caused by intrarenal injection of phenol increases afferent and efferent renal sympathetic nerve activity. Am J Hypertens. 2002;2002:717–24.CrossRefGoogle Scholar
  48. 48.
    Abramczyk P, Zwolinska A, Oficjalski P, Przybylski J. Kidney denervation combined with elimination of adrenal-renal portal circulation prevents the development of hypertension in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 1999;26:32–4.CrossRefPubMedGoogle Scholar
  49. 49.
    Villarreal D, Freeman RH, Johnson RA, Simmons JC. Effects of renal denervation on postprandial sodium excretion in experimental heart failure. Am J Phys. 1994;266:R1599–604.Google Scholar
  50. 50.
    Grimson KS. Total thoracic and partial to total lumbar sympathectomy and celiac ganglionectomy in the treatment of hypertension. Ann Surg. 1941;114:753–75.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Peet M, Woods W, Braden S. The surgical treatment of hypertension: results in 350 consecutive cases treated by bilateral supradiaphragmatic splanchnicectomy and lower dorsal sympathetic gangliectomy. Clinical lecture at New York session. JAMA. 1940;115:1875–85.CrossRefGoogle Scholar
  52. 52.
    Smithwick RH, Thompson JE. Splanchnicectomy for essential hypertension; results in 1,266 cases. J Am Med Assoc. 1953;152:1501–4.CrossRefPubMedGoogle Scholar
  53. 53.
    Grimson KS, Orgain ES, Anderson B, Broome RA, Longino FH. Results of treatment of patients with hypertension by total thoracic and partial to total lumbar sympathectomy, splanchnicectomy and celiac ganglionectomy. Ann Surg. 1949;129:850–71.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Smithwick RH. Surgery in hypertension. Lancet. 1948;2:65.PubMedGoogle Scholar
  55. 55.
    Converse RL Jr, Jacobsen TN, Toto RD, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Linz D, Hohl M, Schutze J, Mahfoud F, Speer T, Linz B, et al. Progression of kidney injury and cardiac remodeling in obese spontaneously hypertensive rats: the role of renal sympathetic innervation. Am J Hypertens. 2015;28:256–65.CrossRefPubMedGoogle Scholar
  58. 58.
    Hohl M, Linz D, Fries P, Müller A, Stroeder J, Urban D, et al. Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats. J Transl Med. 2016;14:167.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Fischell TA, Vega F, Raju N, Johnson ET, Kent DJ, Ragland RR, et al. Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention. 2013;9:140–7.CrossRefPubMedGoogle Scholar
  60. 60.
    Fischell TA, Fischell DR, Ghazarossian VE, Vega F, Ebner A. Next generation renal denervation: chemical “perivascular” renal denervation with alcohol using a novel drug infusion catheter. Cardiovasc Revasc Med. 2015;16:221–7.CrossRefPubMedGoogle Scholar
  61. 61.
    Bertog S, Fischel TA, Vega F, et al. Randomised, blinded and controlled comparative study of chemical and radiofrequency-based renal denervation in a porcine model. EuroIntervention. 2017;12:e1898-e1906.CrossRefPubMedGoogle Scholar
  62. 62.
    Bonan R. PARADISE: first in man results of a novel circumferential catheter-based ultrasound technology for renal denervation. Annual Scientific Sessions of the European Association for Percutaneous Cardiovascular Interventions. Paris, 2012.Google Scholar
  63. 63.
    Mauri L, Kario K, Basile J, Daemen J, Davies J, Kirtane AJ, et al. A multinational clinical approach to assessing the effectiveness of catheter-based ultrasound renal denervation: the RADIANCE-HTN and REQUIRE clinical study designs. Am Heart J. 2018;195:115–29.CrossRefPubMedGoogle Scholar
  64. 64.
    Kandzari DE, Bhatt DL, Sobotka P, et al. Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 trial. Clin Cardiol. 2012;35:528–35.CrossRefPubMedGoogle Scholar
  65. 65.
    Pekarskiy SE, Baev AE, Mordovin VF, Semke GV, Ripp TM, Falkovskaya AU, et al. Denervation of the distal renal arterial branches vs. conventional main renal artery treatment: a randomized controlled trial for treatment of resistant hypertension. J Hypertens. 2017;35:369–75.CrossRefPubMedGoogle Scholar
  66. 66.
    Mahfoud F, Tunev S, Ewen S, Cremers B, Ruwart J, Schulz-Jander D, et al. Impact of lesion placement on efficacy and safety of catheter-based radiofrequency renal denervation. J Am Coll Cardiol. 2015;66:1766–75.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen W, Ling Z, Du H, et al. The effect of two different renal denervation strategies on blood pressure in resistant hypertension: comparison of full-length versus proximal renal artery ablation. Catheter Cardiovasc Interv. 2016;88:786–95.CrossRefPubMedGoogle Scholar
  68. 68.
    Azizi M, Sapoval M, Gosse P, Monge M, Bobrie G, Delsart P, et al. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet. 2015;385:1957–65.CrossRefPubMedGoogle Scholar
  69. 69.
    Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108:227–37.CrossRefPubMedGoogle Scholar
  70. 70.
    Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.CrossRefPubMedGoogle Scholar
  71. 71.
    Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.CrossRefPubMedGoogle Scholar
  72. 72.
    Ewen S, Cremers B, Meyer MR, Donazzan L, Kindermann I, Ukena C, et al. Blood pressure changes after catheter-based renal denervation are related to reductions in total peripheral resistance. J Hypertens. 2015;33:2519–25.CrossRefPubMedGoogle Scholar
  73. 73.
    Ezzahti M, Moelker A, Friesema EC, van der Linde NA, Krestin GP, van den Meiracker AH. Blood pressure and neurohormonal responses to renal nerve ablation in treatment-resistant hypertension. J Hypertens. 2014;32:135–41.CrossRefPubMedGoogle Scholar
  74. 74.
    Vink EE, Verloop WL, Siddiqi L, van Schelven LJ, Liam Oey P, Blankestijn PJ. The effect of percutaneous renal denervation on muscle sympathetic nerve activity in hypertensive patients. Int J Cardiol. 2014;176:8–12.CrossRefPubMedGoogle Scholar
  75. 75.
    Dobrowolski LC, Eeftinck Schattenkerk DW, Paul Krediet CT, van Brussel PM, Vogt L, Bemelman FJ, et al. Renal sympathetic nerve activity after catheter-based renal denervation. EJNMMI Res. 2018;8:8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    van Brussel PM, Eeftinck Schattenkerk DW, Dobrowolski LC, de Winter RJ, Reekers JA, Verberne HJ, et al. Effects of renal sympathetic denervation on cardiac sympathetic activity and function in patients with therapy resistant hypertension. Int J Cardiol. 2016;202:609–14.CrossRefPubMedGoogle Scholar
  77. 77.
    Morlin C, Wallin BG, Eriksson BM. Muscle sympathetic activity and plasma noradrenaline in normotensive and hypertensive man. Acta Physiol Scand. 1983;119:117–21.CrossRefPubMedGoogle Scholar
  78. 78.
    Hart EC, McBryde FD, Burchell AE, et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension. 2013;62:533–41.CrossRefPubMedGoogle Scholar
  79. 79.
    Schirmer SH, Sayed MM, Reil JC, et al. Improvements of left-ventricular hypertrophy and diastolic function following renal denervation—effects beyond blood pressure and heart rate reduction. J Am Coll Cardiol. 2013;Google Scholar
  80. 80.
    Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60:1485–90.CrossRefPubMedGoogle Scholar
  81. 81.
    Jie Wang. Mapping sympathetic nerve distribution for renal ablation and catheters for same. US Patent 8702619, published on Dec 15, 2011 and issued on April 22, 2014.Google Scholar
  82. 82.
    •• Tsioufis C. ConfidentHT system safety and performance of diagnostic electrical mapping of renal nerves in hypertensive patients and/or potential candidates for a renal sympathetic denervation (RDN) procedure. PCR 2017. Early experience with renal nerve stimulation guided renal denervation. Google Scholar
  83. 83.
    Huang BZX, Wang M, Li X, Zhou L, Meng G, Wang Y, Wang Z, Wang S, Yu L, Jiang H. Electrical stimulation based renal nerves mapping exacerbates ventricular arrhythmias during acute myocardial ischaemia. Journal of Hypertension 2018.Google Scholar
  84. 84.
    Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, et al. Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension. 2012;60:172–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Hering D, Mahfoud F, Walton AS, Krum H, Lambert GW, Lambert EA, et al. Renal denervation in moderate to severe CKD. J Am Soc Nephrol. 2012;23:1250–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Marat Fudim
    • 1
    • 2
  • Asher A. Sobotka
    • 3
  • Yue-Hui Yin
    • 4
  • Joanne W. Wang
    • 5
  • Howard Levin
    • 6
  • Murray Esler
    • 7
  • Jie Wang
    • 8
    • 9
  • Paul A. Sobotka
    • 10
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Duke Clinical Research InstituteDurhamUSA
  3. 3.St. Paul Academy and Summit SchoolSt. PaulUSA
  4. 4.The 2nd Affiliated Hospital of Chongqing Medical UniversityChongqinChina
  5. 5.Horace MannBronxUSA
  6. 6.CorideaNew YorkUSA
  7. 7.Baker Heart and Diabetes InstituteMelbourneAustralia
  8. 8.Columbia UniversityNew YorkUSA
  9. 9.SyMap Medical Ltd.SuzhouChina
  10. 10.Rox Medical, Inc.San ClementeUSA

Personalised recommendations