Advertisement

Management of Pulmonary Hypertension and Right Heart Failure in the Intensive Care Unit

  • Jonathan Grinstein
  • Mardi Gomberg-MaitlandEmail author
Pulmonary Hypertension (JR Klinger, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pulmonary Hypertension

Abstract

Management of acute right ventricular failure, both with and without coexisting pulmonary hypertension, is a common challenge encountered in the intensive care setting. Both right ventricular dysfunction and pulmonary hypertension portend a poor prognosis, regardless of the underlying cause and are associated with significant morbidity and mortality. The right ventricle is embryologically distinct from the left ventricle and has unique morphologic and functional properties. Management of right ventricular failure and pulmonary hypertension in the intensive care setting requires tailored hemodynamic management, pharmacotherapy, and often mechanical circulatory support. Unfortunately, our understanding of the management of right ventricular failure lags behind that of the left ventricle. In this review, we will explore the underlying pathophysiology of the failing right ventricle and pulmonary vasculature in patients with and without pulmonary hypertension and discuss management strategies based on evidence-based studies as well as our current understanding of the underlying physiology.

Keywords

Right ventricular failure Pulmonary hypertension ICU management 

Abbreviations

RV

Right ventricle

LV

Left ventricle

PH

Pulmonary hypertension

ICU

Intensive care unit

Notes

Compliance with Ethics Guidelines

Conflict of Interest The University of Chicago receives research grant support from Actelion, Gilead, Novartis, Medtronic, Lung Biotechnology, and Reata for Dr. Gomberg-Maitland to be a principal investigator on research grants. Dr. Gomberg-Maitland has served as a consultant for Actelion, Bayer, Gilead, Medtronic, Merck, Bellerophon (formerly known as Ikaria), and United Therapeutics as a member of steering committees and DSMB/event committees. Jonathan Grinstein declares no conflict of interest.

Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115(5):343–9.PubMedGoogle Scholar
  2. 2.•
    Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41. doi: https://doi.org/10.1016/j.jacc.2013.10.029. The Fifth World Symposium on pulmonary hypertension was held in 2013 in Nice, France and is the most current update on the classification of pulmonary hypertension. Compared to prior iterations, this update aimed better define group I pulmonary hypertension and also to create a common, comprehensive classification for both adult and pediatric patients.PubMedGoogle Scholar
  3. 3.
    Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2009;34(6):1219–63. doi: https://doi.org/10.1183/09031936.00139009.PubMedGoogle Scholar
  4. 4.
    Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ. Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified. Br Heart J. 1990;63(1):45–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16(1):13–8.PubMedGoogle Scholar
  6. 6.
    Greyson CR. The right ventricle and pulmonary circulation: basic concepts. Rev Esp Cardiol. 2010;63(1):81–95.PubMedGoogle Scholar
  7. 7.
    Santamore WP, Dell’Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.PubMedGoogle Scholar
  8. 8.
    Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep. 2012;9(3):228–35. doi: https://doi.org/10.1007/s11897-012-0104-x.PubMedGoogle Scholar
  9. 9.
    Matthews JC, McLaughlin V. Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev. 2008;4(1):49–59. doi: https://doi.org/10.2174/157340308783565384.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure—from pathophysiology to new treatments. Intensive Care Med. 2004;30(2):185–96. doi: https://doi.org/10.1007/s00134-003-2025-3.PubMedGoogle Scholar
  11. 11.
    Dias CA, Assad RS, Caneo LF, Abduch MC, Aiello VD, Dias AR, et al. Reversible pulmonary trunk banding. II. An experimental model for rapid pulmonary ventricular hypertrophy. J Thorac Cardiovasc Surg. 2002;124(5):999–1006.PubMedGoogle Scholar
  12. 12.
    Chen EP, Akhter SA, Bittner HB, Koch WJ, Davis RD, Van Trigt P. Molecular and functional mechanisms of right ventricular adaptation in chronic pulmonary hypertension. Ann Thorac Surg. 1999;67(4):1053–8.PubMedGoogle Scholar
  13. 13.
    Hoeper MM, Granton J. Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med. 2011;184(10):1114–24. doi: https://doi.org/10.1164/rccm.201104-0662CI.PubMedGoogle Scholar
  14. 14.
    Sztrymf B, Souza R, Bertoletti L, Jaïs X, Sitbon O, Price LC, et al. Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J. 2010;35(6):1286–93. doi: https://doi.org/10.1183/09031936.00070209.PubMedGoogle Scholar
  15. 15.
    Gille J, Seyfarth HJ, Gerlach S, Malcharek M, Czeslick E, Sablotzki A. Perioperative anesthesiological management of patients with pulmonary hypertension. Anesthesiol Res Pract. 2012;2012:356982. doi: https://doi.org/10.1155/2012/356982.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Naeije R. Physiology of the pulmonary circulation and the right heart. Curr Hypertens Rep. 2013;15(6):623–31. doi: https://doi.org/10.1007/s11906-013-0396-6.PubMedGoogle Scholar
  17. 17.
    Apstein CS, Lorell BH. The physiological basis of left ventricular diastolic dysfunction. J Card Surg. 1988;3(4):475–85.PubMedGoogle Scholar
  18. 18.
    Ruiter G, Lankhorst S, Boonstra A, Postmus PE, Zweegman S, Westerhof N, et al. Iron deficiency is common in idiopathic pulmonary arterial hypertension. Eur Respir J. 2011;37(6):1386–91. doi: https://doi.org/10.1183/09031936.00100510.PubMedGoogle Scholar
  19. 19.
    Myles PS, Hall JL, Berry CB, Esmore DS. Primary pulmonary hypertension: prolonged cardiac arrest and successful resuscitation following induction of anesthesia for heart-lung transplantation. J Cardiothorac Vasc Anesth. 1994;8(6):678–81.PubMedGoogle Scholar
  20. 20.
    Pritts CD, Pearl RG. Anesthesia for patients with pulmonary hypertension. Curr Opin Anaesthesiol. 2010;23(3):411–6. doi: https://doi.org/10.1097/ACO.0b013e32833953fb.PubMedGoogle Scholar
  21. 21.
    Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol (1985). 2003;94(4):1543–51. doi: https://doi.org/10.1152/japplphysiol.00890.2002.Google Scholar
  22. 22.
    Jardin F, Vieillard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29(9):1426–34. doi: https://doi.org/10.1007/s00134-003-1873-1.PubMedGoogle Scholar
  23. 23.
    Sarnoff SJ. Myocardial contractility as described by ventricular function curves; observations on Starling’s law of the heart. Physiol Rev. 1955;35(1):107–22.PubMedGoogle Scholar
  24. 24.
    Cohn JN, Guiha NH, Broder MI, Limas CJ. Right ventricular infarction. Clinical and hemodynamic features. Am J Cardiol. 1974;33(2):209–14.PubMedGoogle Scholar
  25. 25.
    Mercat A, Diehl JL, Meyer G, Teboul JL, Sors H. Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Crit Care Med. 1999;27(3):540–4.PubMedGoogle Scholar
  26. 26.
    Piazza G, Goldhaber SZ. The acutely decompensated right ventricle: pathways for diagnosis and management. Chest. 2005;128(3):1836–52. doi: https://doi.org/10.1378/chest.128.3.1836.PubMedGoogle Scholar
  27. 27.
    Evans DC, Doraiswamy VA, Prosciak MP, Silviera M, Seamon MJ, Rodriguez Funes V, et al. Complications associated with pulmonary artery catheters: a comprehensive clinical review. Scand J Surg. 2009;98(4):199–208.PubMedGoogle Scholar
  28. 28.
    Price LC, Wort SJ, Finney SJ, Marino PS, Brett SJ. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review. Crit Care. 2010;14(5):R169. doi: https://doi.org/10.1186/cc9264.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Overgaard CB, Dzavík V. Inotropes and vasopressors: review of physiology and clinical use in cardiovascular disease. Circulation. 2008;118(10):1047–56. doi: https://doi.org/10.1161/CIRCULATIONAHA.107.728840.PubMedGoogle Scholar
  30. 30.
    Kwak YL, Lee CS, Park YH, Hong YW. The effect of phenylephrine and norepinephrine in patients with chronic pulmonary hypertension*. Anaesthesia. 2002;57(1):9–14.PubMedGoogle Scholar
  31. 31.
    Russ RD, Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol. 1992;262(3 Pt 2):H743–7.PubMedGoogle Scholar
  32. 32.
    Vlahakes GJ, Turley K, Hoffman JI. The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation. 1981;63(1):87–95.PubMedGoogle Scholar
  33. 33.
    Rich S, Gubin S, Hart K. The effects of phenylephrine on right ventricular performance in patients with pulmonary hypertension. Chest. 1990;98(5):1102–6.PubMedGoogle Scholar
  34. 34.
    D’Armini AM, Zanotti G, Ghio S, Magrini G, Pozzi M, Scelsi L, et al. Reverse right ventricular remodeling after pulmonary endarterectomy. J Thorac Cardiovasc Surg. 2007;133(1):162–8. doi: https://doi.org/10.1016/j.jtcvs.2006.08.059.PubMedGoogle Scholar
  35. 35.
    Kramer MR, Valantine HA, Marshall SE, Starnes VA, Theodore J. Recovery of the right ventricle after single-lung transplantation in pulmonary hypertension. Am J Cardiol. 1994;73(7):494–500.PubMedGoogle Scholar
  36. 36.
    Griffiths MJ, Evans TW. Inhaled nitric oxide therapy in adults. N Engl J Med. 2005;353(25):2683–95. doi: https://doi.org/10.1056/NEJMra051884.PubMedGoogle Scholar
  37. 37.
    Inglessis I, Shin JT, Lepore JJ, Palacios IF, Zapol WM, Bloch KD, et al. Hemodynamic effects of inhaled nitric oxide in right ventricular myocardial infarction and cardiogenic shock. J Am Coll Cardiol. 2004;44(4):793–8. doi: https://doi.org/10.1016/j.jacc.2004.05.047.PubMedGoogle Scholar
  38. 38.
    Rich GF, Murphy GD, Roos CM, Johns RA. Inhaled nitric oxide. Selective pulmonary vasodilation in cardiac surgical patients. Anesthesiology. 1993;78(6):1028–35.PubMedGoogle Scholar
  39. 39.
    Schenk P, Mittermayer C, Ratheiser K. Inhaled nitric oxide in a patient with severe pulmonary embolism. Ann Emerg Med. 1999;33(6):710–4.PubMedGoogle Scholar
  40. 40.
    Macdonald PS, Keogh A, Mundy J, Rogers P, Nicholson A, Harrison G, et al. Adjunctive use of inhaled nitric oxide during implantation of a left ventricular assist device. J Heart Lung Transplant. 1998;17(3):312–6.PubMedGoogle Scholar
  41. 41.
    Carrier M, Blaise G, Bélisle S, Perrault LP, Pellerin M, Petitclerc R, et al. Nitric oxide inhalation in the treatment of primary graft failure following heart transplantation. J Heart Lung Transplant. 1999;18(7):664–7.PubMedGoogle Scholar
  42. 42.
    Christenson J, Lavoie A, O’Connor M, Bhorade S, Pohlman A, Hall JB. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med. 2000;161(5):1443–9. doi: https://doi.org/10.1164/ajrccm.161.5.9806138.PubMedGoogle Scholar
  43. 43.
    Channick RN, Hoch RC, Newhart JW, Johnson FW, Smith CM. Improvement in pulmonary hypertension and hypoxemia during nitric oxide inhalation in a patient with end-stage pulmonary fibrosis. Am J Respir Crit Care Med. 1994;149(3 Pt 1):811–4. doi: https://doi.org/10.1164/ajrccm.149.3.8118653.PubMedGoogle Scholar
  44. 44.
    Khan TA, Schnickel G, Ross D, Bastani S, Laks H, Esmailian F, et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg. 2009;138(6):1417–24. doi: https://doi.org/10.1016/j.jtcvs.2009.04.063.PubMedGoogle Scholar
  45. 45.
    Hoeper MM, Olschewski H, Ghofrani HA, Wilkens H, Winkler J, Borst MM, et al. A comparison of the acute hemodynamic effects of inhaled nitric oxide and aerosolized iloprost in primary pulmonary hypertension. German PPH study group. J Am Coll Cardiol. 2000;35(1):176–82.PubMedGoogle Scholar
  46. 46.
    Hoeper MM, Schwarze M, Ehlerding S, Adler-Schuermeyer A, Spiekerkoetter E, Niedermeyer J, et al. Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med. 2000;342(25):1866–70. doi: https://doi.org/10.1056/NEJM200006223422503.PubMedGoogle Scholar
  47. 47.
    Sastry BK, Narasimhan C, Reddy NK, Raju BS. Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J Am Coll Cardiol. 2004;43(7):1149–53. doi: https://doi.org/10.1016/j.jacc.2003.10.056.PubMedGoogle Scholar
  48. 48.
    Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF, et al. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358(9288):1119–23. doi: https://doi.org/10.1016/S0140-6736(01)06250-X.PubMedGoogle Scholar
  49. 49.
    Ghofrani HA, Simonneau G, Rubin LJ. PATENT-1 AoC-a. Riociguat for pulmonary hypertension. N Engl J Med. 2013;369(23):2268. doi: https://doi.org/10.1056/NEJMc1312903.PubMedGoogle Scholar
  50. 50.•
    Ghofrani HA, D’Armini AM, Grimminger F, Hoeper MM, Jansa P, Kim NH, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369(4):319–29. doi: https://doi.org/10.1056/NEJMoa1209657. Riociguat represents a new class of drugs, the soluble guanylate cyclase stimulators, which was shown to be beneficial in patients with chronic thromboembolic pulmonary hypertension. In patients with inoperable chronic thromboembolic pulmonary hypertension or persistent pulmonary hypertension after pulmonary embolectomy, riociguat led to a significant improvement in 6-minute walk distance, decrease in pulmonary vascular resistance, improvement in NT-proBNP and imrovement in WHO functional class.PubMedGoogle Scholar
  51. 51.•
    Ghofrani HA, Galiè N, Grimminger F, Grünig E, Humbert M, Jing ZC, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(4):330–40. doi: https://doi.org/10.1056/NEJMoa1209655. In this randomized, double-blind study, compared to placebo, patients with pulmonary arterial hypertension treated with riociguat had improved 6-minute walk distance, pulmonary vascular resistance, NT-proBNP, WHO functional class, time to clinical worsening and Borg dyspnea score.PubMedGoogle Scholar
  52. 52.
    Trachte AL, Lobato EB, Urdaneta F, Hess PJ, Klodell CT, Martin TD, et al. Oral sildenafil reduces pulmonary hypertension after cardiac surgery. Ann Thorac Surg. 2005;79(1):194–7. doi: https://doi.org/10.1016/j.athoracsur.2004.06.086. discussion −7.PubMedGoogle Scholar
  53. 53.
    Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9. doi: https://doi.org/10.1161/CIRCHEARTFAILURE.108.796789.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL. Hemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular synchrony in acute right ventricular dysfunction. J Am Coll Cardiol. 1990;16(1):181–9.PubMedGoogle Scholar
  55. 55.
    Love JC, Haffajee CI, Gore JM, Alpert JS. Reversibility of hypotension and shock by atrial or atrioventricular sequential pacing in patients with right ventricular infarction. Am Heart J. 1984;108(1):5–13.PubMedGoogle Scholar
  56. 56.
    Topol EJ, Goldschlager N, Ports TA, Dicarlo LA, Schiller NB, Botvinick EH, et al. Hemodynamic benefit of atrial pacing in right ventricular myocardial infarction. Ann Intern Med. 1982;96(5):594–7.PubMedGoogle Scholar
  57. 57.
    Bradfield J, Shapiro S, Finch W, Tung R, Boyle NG, Buch E, et al. Catheter ablation of typical atrial flutter in severe pulmonary hypertension. J Cardiovasc Electrophysiol. 2012;23(11):1185–90. doi: https://doi.org/10.1111/j.1540-8167.2012.02387.x.PubMedGoogle Scholar
  58. 58.
    Garlitski AC, Mark Estes NA. Ablation of atrial flutter in severe pulmonary hypertension: pushing the outside of the envelope. J Cardiovasc Electrophysiol. 2012;23(11):1191–2. doi: https://doi.org/10.1111/j.1540-8167.2012.02401.x.PubMedGoogle Scholar
  59. 59.
    Fang JC, DeMarco T, Givertz MM, Borlaug BA, Lewis GD, Rame JE, et al. World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult—a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2012;31(9):913–33. doi: https://doi.org/10.1016/j.healun.2012.06.002.PubMedGoogle Scholar
  60. 60.
    Vonk-Noordegraaf A, Haddad F, Chin KM, Forfia PR, Kawut SM, Lumens J, et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–33. doi: https://doi.org/10.1016/j.jacc.2013.10.027.PubMedGoogle Scholar
  61. 61.
    Rozkovec A, Montanes P, Oakley CM. Factors that influence the outcome of primary pulmonary hypertension. Br Heart J. 1986;55(5):449–58.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Sandoval J, Gaspar J, Pulido T, Bautista E, Martínez-Guerra ML, Zeballos M, et al. Graded balloon dilation atrial septostomy in severe primary pulmonary hypertension. A therapeutic alternative for patients nonresponsive to vasodilator treatment. J Am Coll Cardiol. 1998;32(2):297–304.PubMedGoogle Scholar
  63. 63.
    Reichenberger F, Pepke-Zaba J, McNeil K, Parameshwar J, Shapiro LM. Atrial septostomy in the treatment of severe pulmonary arterial hypertension. Thorax. 2003;58(9):797–800.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Rich S, Dodin E, McLaughlin VV. Usefulness of atrial septostomy as a treatment for primary pulmonary hypertension and guidelines for its application. Am J Cardiol. 1997;80(3):369–71.PubMedGoogle Scholar
  65. 65.
    Blanc J, Vouhé P, Bonnet D. Potts shunt in patients with pulmonary hypertension. N Engl J Med. 2004;350(6):623. doi: https://doi.org/10.1056/NEJM200402053500623.PubMedGoogle Scholar
  66. 66.
    Baruteau AE, Serraf A, Lévy M, Petit J, Bonnet D, Jais X, et al. Potts shunt in children with idiopathic pulmonary arterial hypertension: long-term results. Ann Thorac Surg. 2012;94(3):817–24. doi: https://doi.org/10.1016/j.athoracsur.2012.03.099.PubMedGoogle Scholar
  67. 67.
    Esch JJ, Shah PB, Cockrill BA, Farber HW, Landzberg MJ, Mehra MR, et al. Transcatheter Potts shunt creation in patients with severe pulmonary arterial hypertension: initial clinical experience. J Heart Lung Transplant. 2013;32(4):381–7. doi: https://doi.org/10.1016/j.healun.2013.01.1049.PubMedGoogle Scholar
  68. 68.
    Kaul TK, Kahn DR. Postinfarct refractory right ventricle: right ventricular exclusion. A possible option to mechanical cardiac support, in patients unsuitable for heart transplant. J Cardiovasc Surg (Torino). 2000;41(3):349–55.Google Scholar
  69. 69.
    Moazami N, Pasque MK, Moon MR, Herren RL, Bailey MS, Lawton JS, et al. Mechanical support for isolated right ventricular failure in patients after cardiotomy. J Heart Lung Transplant. 2004;23(12):1371–5. doi: https://doi.org/10.1016/j.healun.2003.09.022.PubMedGoogle Scholar
  70. 70.
    Furukawa K, Motomura T, Nosé Y. Right ventricular failure after left ventricular assist device implantation: the need for an implantable right ventricular assist device. Artif Organs. 2005;29(5):369–77. doi: https://doi.org/10.1111/j.1525-1594.2005.29063.x.PubMedGoogle Scholar
  71. 71.
    Klima U, Ringes-Lichtenberg S, Warnecke G, Lichtenberg A, Strüber M, Haverich A. Severe right heart failure after heart transplantation. A single-center experience. Transpl Int. 2005;18(3):326–32. doi: https://doi.org/10.1111/j.1432-2277.2004.00059.x.PubMedGoogle Scholar
  72. 72.
    Cheung A, Freed D, Hunziker P, Leprince P. TCT-371 first clinical evaluation of a novel percutaneous right ventricular assist device: the Impella RP. J Am Coll Cardiol. 2012;60(17_S). doi: https://doi.org/10.1016/j.jacc.2012.08.399.Google Scholar
  73. 73.
    O’Neil WW. A prospective multicenter study to evaluate a new percutaneous ventricular assist device for right ventricular failure: the RECOVER right study. Presented at the Cardiovascular Research Foundation’s annual Transcatheter Cardiovascular Therapeutics 2014 scientific meeting in Washington, DC. 2014Google Scholar
  74. 74.
    Belohlavek J, Rohn V, Jansa P, Tosovsky J, Kunstyr J, Semrad M, et al. Veno-arterial ECMO in severe acute right ventricular failure with pulmonary obstructive hemodynamic pattern. J Invasive Cardiol. 2010;22(8):365–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Section of Cardiology, Department of MedicineUniversity of ChicagoChicagoUSA
  2. 2.Section of CardiologyUniversity of Chicago Medical CenterChicagoUSA
  3. 3.Section of CardiologyUniversity of Chicago Medical CenterChicagoUSA

Personalised recommendations