Current HIV/AIDS Reports

, Volume 15, Issue 1, pp 72–83 | Cite as

Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders

Central Nervous System and Cognition (SS Spudich, Section Editor)
  • 174 Downloads
Part of the following topical collections:
  1. Topical Collection on Central Nervous System and Cognition

Abstract

Purpose of Review

The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS).

Recent Findings

Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal.

Summary

Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.

Keywords

Human immunodeficiency virus (HIV-1) HIV-1 envelope HIV-associated neurocognitive disorder (HAND) Central nervous system (CNS) Viral evolution Molecular signatures 

Notes

Acknowledgments

Dr. Evering would like to thank Martin Markowitz, M.D., for his thoughtful comments on an earlier version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

T.H. Evering declares no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of Particular Interest, Published Recently, Have Been Highlighted as: •• Of major importance

  1. 1.
    Centers for Disease Control and Prevention (CDC). HIV Surveillance Report, 2015. Diagnoses of HIV Infection in the United States and Dependent Areas. Vol 27. 2016.Google Scholar
  2. 2.
    Richman DD. HIV chemotherapy. Nature. 2001;410(6831):995–1001.  https://doi.org/10.1038/35073673.CrossRefPubMedGoogle Scholar
  3. 3.
    Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV outpatient study investigators. N Engl J Med. 1998;338(13):853–60.  https://doi.org/10.1056/NEJM199803263381301.CrossRefPubMedGoogle Scholar
  4. 4.
    (CDC) CfDCaP. Epidemiology of HIV/AIDS--United States, 1981-2005. MMWR Morb Mortal Wkly Rep. 2006;55(21):589–92.Google Scholar
  5. 5.
    Puhan MA, Van Natta ML, Palella FJ, Addessi A, Meinert C. Ocular complications of ARG. Excess mortality in patients with AIDS in the era of highly active antiretroviral therapy: temporal changes and risk factors. Clin Infect Dis. 2010;51(8):947–56.  https://doi.org/10.1086/656415.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McArthur JC. HIV dementia: an evolving disease. J Neuroimmunol. 2004;157(1–2):3–10.  https://doi.org/10.1016/j.jneuroim.2004.08.042.CrossRefPubMedGoogle Scholar
  7. 7.
    Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.  https://doi.org/10.1212/01.WNL.0000287431.88658.8b.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, et al. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS. 2007;21(14):1915–21.  https://doi.org/10.1097/QAD.0b013e32828e4e27.CrossRefPubMedGoogle Scholar
  9. 9.
    Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol. 2011;17(1):3–16.  https://doi.org/10.1007/s13365-010-0006-1.Google Scholar
  10. 10.
    McArthur JC, Brew BJ. HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS. 2010;24(9):1367–70.  https://doi.org/10.1097/QAD.0b013e3283391d56.CrossRefPubMedGoogle Scholar
  11. 11.
    Aquaro S, Svicher V, Ronga L, Perno CF, Pollicita M. HIV-1-associated dementia during HAART therapy. Recent Pat CNS Drug Discov. 2008;3(1):23–33.CrossRefPubMedGoogle Scholar
  12. 12.
    Brew BJ. Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS. 2004;18(Suppl 1):S75–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Grant I, Atkinson JH, Hesselink JR, Kennedy CJ, Richman DD, Spector SA, et al. Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Ann Intern Med. 1987;107(6):828–36.  https://doi.org/10.7326/0003-4819-107-6-828.CrossRefPubMedGoogle Scholar
  14. 14.
    Price RW. Neurological complications of HIV infection. Lancet. 1996;348(9025):445–52.  https://doi.org/10.1016/S0140-6736(95)11035-6.CrossRefPubMedGoogle Scholar
  15. 15.
    McArthur JC, Haughey N, Gartner S, Conant K, Pardo C, Nath A, et al. Human immunodeficiency virus-associated dementia: an evolving disease. J Neuro-Oncol. 2003;9(2):205–21.  https://doi.org/10.1080/13550280390194109.Google Scholar
  16. 16.
    Ellis RJ, Deutsch R, Heaton RK, Marcotte TD, McCutchan JA, Nelson JA, et al. Neurocognitive impairment is an independent risk factor for death in HIV Infection. San Diego HIV neurobehavioral research center group. Arch Neurol. 1997;54(4):416–24.  https://doi.org/10.1001/archneur.1997.00550160054016.CrossRefPubMedGoogle Scholar
  17. 17.
    Vivithanaporn P, Heo G, Gamble J, Krentz HB, Hoke A, Gill MJ, et al. Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology. 2010;75(13):1150–8.  https://doi.org/10.1212/WNL.0b013e3181f4d5bb.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ho DD, Rota TR, Schooley RT, Kaplan JC, Allan JD, Groopman JE, et al. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med. 1985;313(24):1493–7.  https://doi.org/10.1056/NEJM198512123132401.CrossRefPubMedGoogle Scholar
  19. 19.
    Davis LE, Hjelle BL, Miller VE, Palmer DL, Llewellyn AL, Merlin TL, et al. Early viral brain invasion in iatrogenic human immunodeficiency virus infection. Neurology. 1992;42(9):1736–9.  https://doi.org/10.1212/WNL.42.9.1736.CrossRefPubMedGoogle Scholar
  20. 20.
    Corder EH, Robertson K, Lannfelt L, Bogdanovic N, Eggertsen G, Wilkins J, et al. HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med. 1998;4(10):1182–4.  https://doi.org/10.1038/2677.CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez E, Rovin BH, Sen L, Cooke G, Dhanda R, Mummidi S, et al. HIV-1 infection and AIDS dementia are influenced by a mutant MCP-1 allele linked to increased monocyte infiltration of tissues and MCP-1 levels. Proc Natl Acad Sci U S A. 2002;99(21):13795–800.  https://doi.org/10.1073/pnas.202357499.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    van Marle G, Power C. Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant? J Neuro-Oncol. 2005;11(2):107–28.  https://doi.org/10.1080/13550280590922838.Google Scholar
  23. 23.
    van Rij RP, Portegies P, Hallaby T, Lange JM, Visser J, de Roda Husman AM, et al. Reduced prevalence of the CCR5 delta32 heterozygous genotype in human immunodeficiency virus-infected individuals with AIDS dementia complex. J Infect Dis. 1999;180(3):854–7.  https://doi.org/10.1086/314940.CrossRefPubMedGoogle Scholar
  24. 24.
    Gorry PR, Bristol G, Zack JA, Ritola K, Swanstrom R, Birch CJ, et al. Macrophage tropism of human immunodeficiency virus type 1 isolates from brain and lymphoid tissues predicts neurotropism independent of coreceptor specificity. J Virol. 2001;75(21):10073–89.  https://doi.org/10.1128/JVI.75.21.10073-10089.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res. 2013;87:183–240.  https://doi.org/10.1016/B978-0-12-407698-3.00006-5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Filiano AJ, Gadani SP, Kipnis J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci. 2017;18(6):375–84.  https://doi.org/10.1038/nrn.2017.39.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schwartz M, Deczkowska A. Neurological disease as a failure of brain-immune crosstalk: the multiple faces of Neuroinflammation. Trends Immunol. 2016;37(10):668–79.  https://doi.org/10.1016/j.it.2016.08.001.CrossRefPubMedGoogle Scholar
  28. 28.
    Kleine TO, Benes L. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons. Cytometry A. 2006;69(3):147–51.  https://doi.org/10.1002/cyto.a.20225.CrossRefPubMedGoogle Scholar
  29. 29.
    Niederkorn JY. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. 2006;7(4):354–9.  https://doi.org/10.1038/ni1328.CrossRefPubMedGoogle Scholar
  30. 30.
    Persidsky Y, Poluektova L. Immune privilege and HIV-1 persistence in the CNS. Immunol Rev. 2006;213(1):180–94.  https://doi.org/10.1111/j.1600-065X.2006.00440.x.CrossRefPubMedGoogle Scholar
  31. 31.
    Pilcher CD, Shugars DC, Fiscus SA, Miller WC, Menezes P, Giner J, et al. HIV in body fluids during primary HIV infection: implications for pathogenesis, treatment and public health. AIDS. 2001;15(7):837–45.CrossRefPubMedGoogle Scholar
  32. 32.
    Schacker T, Collier AC, Hughes J, Shea T, Corey L. Clinical and epidemiologic features of primary HIV infection. Ann Intern Med. 1996;125(4):257–64.  https://doi.org/10.7326/0003-4819-125-4-199608150-00001.CrossRefPubMedGoogle Scholar
  33. 33.
    Haase AT. Pathogenesis of lentivirus infections. Nature. 1986;322(6075):130–6.  https://doi.org/10.1038/322130a0.CrossRefPubMedGoogle Scholar
  34. 34.
    Kim WK, Alvarez X, Fisher J, Bronfin B, Westmoreland S, McLaurin J, et al. CD163 identifies perivascular macrophages in normal and viral encephalitic brains and potential precursors to perivascular macrophages in blood. Am J Pathol. 2006;168(3):822–34.  https://doi.org/10.2353/ajpath.2006.050215.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Collman R. Human immunodeficiency virus type 1 tropism for human macrophages. Pathobiology. 1992;60(4):213–8.  https://doi.org/10.1159/000163725.CrossRefPubMedGoogle Scholar
  36. 36.
    Spudich S, Gonzalez-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harb Perspect Med. 2012;2(6):a007120.  https://doi.org/10.1101/cshperspect.a007120.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schnell G, Joseph S, Spudich S, Price RW, Swanstrom R. HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathog. 2011;7(10):e1002286.  https://doi.org/10.1371/journal.ppat.1002286.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science. 1986;233(4768):1089–93.  https://doi.org/10.1126/science.3016903.CrossRefPubMedGoogle Scholar
  39. 39.
    Williams KC, Hickey WF. Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci. 2002;25(1):537–62.  https://doi.org/10.1146/annurev.neuro.25.112701.142822.CrossRefPubMedGoogle Scholar
  40. 40.
    Garden GA. Microglia in human immunodeficiency virus-associated neurodegeneration. Glia. 2002;40(2):240–51.  https://doi.org/10.1002/glia.10155.CrossRefPubMedGoogle Scholar
  41. 41.
    Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410(6831):988–94.  https://doi.org/10.1038/35073667.CrossRefPubMedGoogle Scholar
  42. 42.
    Kaul M. HIV's double strike at the brain: neuronal toxicity and compromised neurogenesis. Front Biosci. 2008;13(13):2484–94.  https://doi.org/10.2741/2860.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gelbard HA, James HJ, Sharer LR, Perry SW, Saito Y, Kazee AM, et al. Apoptotic neurons in brains from paediatric patients with HIV-1 encephalitis and progressive encephalopathy. Neuropathol Appl Neurobiol. 1995;21(3):208–17.  https://doi.org/10.1111/j.1365-2990.1995.tb01052.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Ohagen A, Ghosh S, He J, Huang K, Chen Y, Yuan M, et al. Apoptosis induced by infection of primary brain cultures with diverse human immunodeficiency virus type 1 isolates: evidence for a role of the envelope. J Virol. 1999;73(2):897–906.PubMedPubMedCentralGoogle Scholar
  45. 45.
    McGrath KM, Hoffman NG, Resch W, Nelson JA, Swanstrom R. Using HIV-1 sequence variability to explore virus biology. Virus Res. 2001;76(2):137–60.  https://doi.org/10.1016/S0168-1702(01)00271-4.CrossRefPubMedGoogle Scholar
  46. 46.
    Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science. 1998;280(5371):1884–8.  https://doi.org/10.1126/science.280.5371.1884.CrossRefPubMedGoogle Scholar
  47. 47.
    Kitrinos KM, Hoffman NG, Nelson JA, Swanstrom R. Turnover of env variable region 1 and 2 genotypes in subjects with late-stage human immunodeficiency virus type 1 infection. J Virol. 2003;77(12):6811–22.  https://doi.org/10.1128/JVI.77.12.6811-6822.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fauci AS. Host factors and the pathogenesis of HIV-induced disease. Nature. 1996;384(6609):529–34.  https://doi.org/10.1038/384529a0.CrossRefPubMedGoogle Scholar
  49. 49.
    Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17(1):657–700.  https://doi.org/10.1146/annurev.immunol.17.1.657.CrossRefPubMedGoogle Scholar
  50. 50.
    Koito A, Stamatatos L, Cheng-Mayer C. Small amino acid sequence changes within the V2 domain can affect the function of a T-cell line-tropic human immunodeficiency virus type 1 envelope gp120. Virology. 1995;206(2):878–84.  https://doi.org/10.1006/viro.1995.1010.CrossRefPubMedGoogle Scholar
  51. 51.
    Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996;85(7):1135–48.  https://doi.org/10.1016/S0092-8674(00)81313-6.CrossRefPubMedGoogle Scholar
  52. 52.
    Dimonte S, Mercurio F, Svicher V, D'Arrigo R, Perno CF, Ceccherini-Silberstein F. Selected amino acid mutations in HIV-1 B subtype gp41 are associated with specific gp120v(3) signatures in the regulation of co-receptor usage. Retrovirology. 2011;8(1):33.  https://doi.org/10.1186/1742-4690-8-33.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996;85(7):1149–58.  https://doi.org/10.1016/S0092-8674(00)81314-8.CrossRefPubMedGoogle Scholar
  54. 54.
    Kumar A, Herbein G. The macrophage: a therapeutic target in HIV-1 infection. Mol Cell Ther. 2014;2(1):10.  https://doi.org/10.1186/2052-8426-2-10.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lifson JD, Feinberg MB, Reyes GR, Rabin L, Banapour B, Chakrabarti S, et al. Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature. 1986;323(6090):725–8.  https://doi.org/10.1038/323725a0.CrossRefPubMedGoogle Scholar
  56. 56.
    Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell. 1986;47(3):333–48.  https://doi.org/10.1016/0092-8674(86)90590-8.CrossRefPubMedGoogle Scholar
  57. 57.
    Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW. Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A. 1999;96(9):5215–20.  https://doi.org/10.1073/pnas.96.9.5215.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    •• Joseph SB, Arrildt KT, Swanstrom AE, Schnell G, Lee B, Hoxie JA, et al. Quantification of entry phenotypes of macrophage-tropic HIV-1 across a wide range of CD4 densities. J Virol. 2014;88(4):1858–69.  https://doi.org/10.1128/JVI.02477-13. The authors identify a signature phenotype for M-tropic HIV-1 using cells with experimentally variable levels of CD4. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Peters PJ, Bhattacharya J, Hibbitts S, Dittmar MT, Simmons G, Bell J, et al. Biological analysis of human immunodeficiency virus type 1 R5 envelopes amplified from brain and lymph node tissues of AIDS patients with neuropathology reveals two distinct tropism phenotypes and identifies envelopes in the brain that confer an enhanced tropism and fusigenicity for macrophages. J Virol. 2004;78(13):6915–26.  https://doi.org/10.1128/JVI.78.13.6915-6926.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Thomas ER, Dunfee RL, Stanton J, Bogdan D, Taylor J, Kunstman K, et al. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion. Virology. 2007;360(1):105–19.  https://doi.org/10.1016/j.virol.2006.09.036.CrossRefPubMedGoogle Scholar
  61. 61.
    Martin J, LaBranche CC, Gonzalez-Scarano F. Differential CD4/CCR5 utilization, gp120 conformation, and neutralization sensitivity between envelopes from a microglia-adapted human immunodeficiency virus type 1 and its parental isolate. J Virol. 2001;75(8):3568–80.  https://doi.org/10.1128/JVI.75.8.3568-3580.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Martin-Garcia J, Cao W, Varela-Rohena A, Plassmeyer ML, Gonzalez-Scarano F. HIV-1 tropism for the central nervous system: brain-derived envelope glycoproteins with lower CD4 dependence and reduced sensitivity to a fusion inhibitor. Virology. 2006;346(1):169–79.  https://doi.org/10.1016/j.virol.2005.10.031.CrossRefPubMedGoogle Scholar
  63. 63.
    Rossi F, Querido B, Nimmagadda M, Cocklin S, Navas-Martin S, Martin-Garcia J. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors. Retrovirology. 2008;5(1):89.  https://doi.org/10.1186/1742-4690-5-89.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Duenas-Decamp MJ, Peters PJ, Burton D, Clapham PR. Determinants flanking the CD4 binding loop modulate macrophage tropism of human immunodeficiency virus type 1 R5 envelopes. J Virol. 2009;83(6):2575–83.  https://doi.org/10.1128/JVI.02133-08.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Musich T, Peters PJ, Duenas-Decamp MJ, Gonzalez-Perez MP, Robinson J, Zolla-Pazner S, et al. A conserved determinant in the V1 loop of HIV-1 modulates the V3 loop to prime low CD4 use and macrophage infection. J Virol. 2011;85(5):2397–405.  https://doi.org/10.1128/JVI.02187-10.CrossRefPubMedGoogle Scholar
  66. 66.
    Salimi H, Roche M, Webb N, Gray LR, Chikere K, Sterjovski J, et al. Macrophage-tropic HIV-1 variants from brain demonstrate alterations in the way gp120 engages both CD4 and CCR5. J Leukoc Biol. 2013;93(1):113–26.  https://doi.org/10.1189/jlb.0612308.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Arrildt KT, LaBranche CC, Joseph SB, Dukhovlinova EN, Graham WD, Ping LH, et al. Phenotypic correlates of HIV-1 macrophage tropism. J Virol. 2015;89(22):11294–311.  https://doi.org/10.1128/JVI.00946-15.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dunfee RL, Thomas ER, Gorry PR, Wang J, Taylor J, Kunstman K, et al. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A. 2006;103(41):15160–5.  https://doi.org/10.1073/pnas.0605513103.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gray L, Roche M, Churchill MJ, Sterjovski J, Ellett A, Poumbourios P, et al. Tissue-specific sequence alterations in the human immunodeficiency virus type 1 envelope favoring CCR5 usage contribute to persistence of dual-tropic virus in the brain. J Virol. 2009;83(11):5430–41.  https://doi.org/10.1128/JVI.02648-08.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Albright AV, Shieh JT, Itoh T, Lee B, Pleasure D, O'Connor MJ, et al. Microglia express CCR5, CXCR4, and CCR3, but of these, CCR5 is the principal coreceptor for human immunodeficiency virus type 1 dementia isolates. J Virol. 1999;73(1):205–13.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Gorry PR, Taylor J, Holm GH, Mehle A, Morgan T, Cayabyab M, et al. Increased CCR5 affinity and reduced CCR5/CD4 dependence of a neurovirulent primary human immunodeficiency virus type 1 isolate. J Virol. 2002;76(12):6277–92.  https://doi.org/10.1128/JVI.76.12.6277-6292.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Peters PJ, Sullivan WM, Duenas-Decamp MJ, Bhattacharya J, Ankghuambom C, Brown R, et al. Non-macrophage-tropic human immunodeficiency virus type 1 R5 envelopes predominate in blood, lymph nodes, and semen: implications for transmission and pathogenesis. J Virol. 2006;80(13):6324–32.  https://doi.org/10.1128/JVI.02328-05.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sterjovski J, Roche M, Churchill MJ, Ellett A, Farrugia W, Gray LR, et al. An altered and more efficient mechanism of CCR5 engagement contributes to macrophage tropism of CCR5-using HIV-1 envelopes. Virology. 2010;404(2):269–78.  https://doi.org/10.1016/j.virol.2010.05.006.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Mefford ME, Kunstman K, Wolinsky SM, Gabuzda D. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5. Virology. 2015;481:210–22.  https://doi.org/10.1016/j.virol.2015.01.032.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Peters PJ, Duenas-Decamp MJ, Sullivan WM, Brown R, Ankghuambom C, Luzuriaga K, et al. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors. Retrovirology. 2008;5(1):5.  https://doi.org/10.1186/1742-4690-5-5.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Pillai SK, Pond SL, Liu Y, Good BM, Strain MC, Ellis RJ, et al. Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain. 2006;129(Pt 7):1872–83.  https://doi.org/10.1093/brain/awl136.CrossRefPubMedGoogle Scholar
  77. 77.
    •• Evering TH, Kamau E, St Bernard L, Farmer CB, Kong XP, Markowitz M. Single genome analysis reveals genetic characteristics of neuroadaptation across HIV-1 envelope. Retrovirology. 2014;11(1):65.  https://doi.org/10.1186/PREACCEPT-1509273248119831. This study used a novel SGS-based method to identify correlates of neuroadaptation. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kearney M, Maldarelli F, Shao W, Margolick JB, Daar ES, Mellors JW, et al. Human immunodeficiency virus type 1 population genetics and adaptation in newly infected individuals. J Virol. 2009;83(6):2715–27.  https://doi.org/10.1128/JVI.01960-08.CrossRefPubMedGoogle Scholar
  79. 79.
    Lemey P, Kosakovsky Pond SL, Drummond AJ, Pybus OG, Shapiro B, Barroso H, et al. Synonymous substitution rates predict HIV disease progression as a result of underlying replication dynamics. PLoS Comput Biol. 2007;3(2):e29.  https://doi.org/10.1371/journal.pcbi.0030029.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Brown RJ, Peters PJ, Caron C, Gonzalez-Perez MP, Stones L, Ankghuambom C, et al. Intercompartmental recombination of HIV-1 contributes to env intrahost diversity and modulates viral tropism and sensitivity to entry inhibitors. J Virol. 2011;85(12):6024–37.  https://doi.org/10.1128/JVI.00131-11.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Shankarappa R, Gupta P, Learn GH Jr, Rodrigo AG, Rinaldo CR Jr, Gorry MC, et al. Evolution of human immunodeficiency virus type 1 envelope sequences in infected individuals with differing disease progression profiles. Virology. 1998;241(2):251–9.  https://doi.org/10.1006/viro.1997.8996.CrossRefPubMedGoogle Scholar
  82. 82.
    Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol. 2003;62(6):593–604.  https://doi.org/10.1093/jnen/62.6.593.CrossRefPubMedGoogle Scholar
  83. 83.
    Gartner S, Markovits P, Markovitz DM, Betts RF, Popovic M. Virus isolation from and identification of HTLV-III/LAV-producing cells in brain tissue from a patient with AIDS. JAMA. 1986;256(17):2365–71.  https://doi.org/10.1001/jama.1986.03380170081023.CrossRefPubMedGoogle Scholar
  84. 84.
    Shieh JT, Albright AV, Sharron M, Gartner S, Strizki J, Doms RW, et al. Chemokine receptor utilization by human immunodeficiency virus type 1 isolates that replicate in microglia. J Virol. 1998;72(5):4243–9.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Argyris EG, Acheampong E, Nunnari G, Mukhtar M, Williams KJ, Pomerantz RJ. Human immunodeficiency virus type 1 enters primary human brain microvascular endothelial cells by a mechanism involving cell surface proteoglycans independent of lipid rafts. J Virol. 2003;77(22):12140–51.  https://doi.org/10.1128/JVI.77.22.12140-12151.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ljunggren K, Chiodi F, Broliden PA, Albert J, Norkrans G, Hagberg L, et al. HIV-1-specific antibodies in cerebrospinal fluid mediate cellular cytotoxicity and neutralization. AIDS Res Hum Retrovir. 1989;5(6):629–38.  https://doi.org/10.1089/aid.1989.5.629.CrossRefPubMedGoogle Scholar
  87. 87.
    von Gegerfelt A, Chiodi F, Keys B, Norkrans G, Hagberg L, Fenyo EM, et al. Lack of autologous neutralizing antibodies in the cerebrospinal fluid of HIV-1 infected individuals. AIDS Res Hum Retrovir. 1992;8(6):1133–8.  https://doi.org/10.1089/aid.1992.8.1133.CrossRefGoogle Scholar
  88. 88.
    Gonzalez-Scarano F, Martin-Garcia J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5(1):69–81.  https://doi.org/10.1038/nri1527.CrossRefPubMedGoogle Scholar
  89. 89.
    de Almeida SM, Rotta I, Jiang Y, Li X, Raboni SM, Ribeiro CE, et al. Biomarkers of chemotaxis and inflammation in cerebrospinal fluid and serum in individuals with HIV-1 subtype C versus B. J Neuro-Oncol. 2016;22(6):715–24.  https://doi.org/10.1007/s13365-016-0437-4.Google Scholar
  90. 90.
    Staprans S, Marlowe N, Glidden D, Novakovic-Agopian T, Grant RM, Heyes M, et al. Time course of cerebrospinal fluid responses to antiretroviral therapy: evidence for variable compartmentalization of infection. AIDS. 1999;13(9):1051–61.  https://doi.org/10.1097/00002030-199906180-00008.CrossRefPubMedGoogle Scholar
  91. 91.
    Misra A, Ganesh S, Shahiwala A, Shah SP. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci: a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques. 2003;6(2):252–73.Google Scholar
  92. 92.
    Flynn G, Maru S, Loughlin J, Romero IA, Male D. Regulation of chemokine receptor expression in human microglia and astrocytes. J Neuroimmunol. 2003;136(1–2):84–93.  https://doi.org/10.1016/S0165-5728(03)00009-2.CrossRefPubMedGoogle Scholar
  93. 93.
    Nickle DC, Jensen MA, Shriner D, Brodie SJ, Frenkel LM, Mittler JE, et al. Evolutionary indicators of human immunodeficiency virus type 1 reservoirs and compartments. J Virol. 2003;77(9):5540–6.  https://doi.org/10.1128/JVI.77.9.5540-5546.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Hughes ES, Bell JE, Simmonds P. Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. J Virol. 1997;71(2):1272–80.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Gatanaga H, Oka S, Ida S, Wakabayashi T, Shioda T, Iwamoto A. Active HIV-1 redistribution and replication in the brain with HIV encephalitis. Arch Virol. 1999;144(1):29–43.  https://doi.org/10.1007/s007050050483.CrossRefPubMedGoogle Scholar
  96. 96.
    Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalization and clonal amplification of HIV-1 variants in the cerebrospinal fluid during primary infection. J Virol. 2010;84(5):2395–407.  https://doi.org/10.1128/JVI.01863-09.CrossRefPubMedGoogle Scholar
  97. 97.
    Korber BT, Kunstman KJ, Patterson BK, Furtado M, McEvilly MM, Levy R, et al. Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences. J Virol. 1994;68(11):7467–81.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Power C, McArthur JC, Johnson RT, Griffin DE, Glass JD, Perryman S, et al. Demented and nondemented patients with AIDS differ in brain-derived human immunodeficiency virus type 1 envelope sequences. J Virol. 1994;68(7):4643–9.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Wong JK, Ignacio CC, Torriani F, Havlir D, Fitch NJ, Richman DD. In vivo compartmentalization of human immunodeficiency virus: evidence from the examination of pol sequences from autopsy tissues. J Virol. 1997;71(3):2059–71.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Strain MC, Letendre S, Pillai SK, Russell T, Ignacio CC, Gunthard HF, et al. Genetic composition of human immunodeficiency virus type 1 in cerebrospinal fluid and blood without treatment and during failing antiretroviral therapy. J Virol. 2005;79(3):1772–88.  https://doi.org/10.1128/JVI.79.3.1772-1788.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    McCrossan M, Marsden M, Carnie FW, Minnis S, Hansoti B, Anthony IC, et al. An immune control model for viral replication in the CNS during presymptomatic HIV infection. Brain. 2006;129(Pt 2):503–16.  https://doi.org/10.1093/brain/awh695.CrossRefPubMedGoogle Scholar
  102. 102.
    Gray LR, Gabuzda D, Cowley D, Ellett A, Chiavaroli L, Wesselingh SL, et al. CD4 and MHC class 1 down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates. J Neuro-Oncol. 2011;17(1):82–91.  https://doi.org/10.1007/s13365-010-0001-6.Google Scholar
  103. 103.
    Chang J, Jozwiak R, Wang B, Ng T, Ge YC, Bolton W, et al. Unique HIV type 1 V3 region sequences derived from six different regions of brain: region-specific evolution within host-determined quasispecies. AIDS Res Hum Retrovir. 1998;14(1):25–30.  https://doi.org/10.1089/aid.1998.14.25.CrossRefPubMedGoogle Scholar
  104. 104.
    Liu Y, Tang XP, McArthur JC, Scott J, Gartner S. Analysis of human immunodeficiency virus type 1 gp160 sequences from a patient with HIV dementia: evidence for monocyte trafficking into brain. J Neuro-Oncol. 2000;6(Suppl 1):S70–81.Google Scholar
  105. 105.
    Shapshak P, Segal DM, Crandall KA, Fujimura RK, Zhang BT, Xin KQ, et al. Independent evolution of HIV type 1 in different brain regions. AIDS Res Hum Retrovir. 1999;15(9):811–20.  https://doi.org/10.1089/088922299310719.CrossRefPubMedGoogle Scholar
  106. 106.
    Epstein LG, Kuiken C, Blumberg BM, Hartman S, Sharer LR, Clement M, et al. HIV-1 V3 domain variation in brain and spleen of children with AIDS: tissue-specific evolution within host-determined quasispecies. Virology. 1991;180(2):583–90.  https://doi.org/10.1016/0042-6822(91)90072-J.CrossRefPubMedGoogle Scholar
  107. 107.
    Sanjuan R, Codoner FM, Moya A, Elena SF. Natural selection and the organ-specific differentiation of HIV-1 V3 hypervariable region. Evolution. 2004;58(6):1185–94.  https://doi.org/10.1111/j.0014-3820.2004.tb01699.x.CrossRefPubMedGoogle Scholar
  108. 108.
    Ritola K, Robertson K, Fiscus SA, Hall C, Swanstrom R. Increased human immunodeficiency virus type 1 (HIV-1) env compartmentalization in the presence of HIV-1-associated dementia. J Virol. 2005;79(16):10830–4.  https://doi.org/10.1128/JVI.79.16.10830-10834.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Schnell G, Spudich S, Harrington P, Price RW, Swanstrom R. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia. PLoS Pathog. 2009;5(4):e1000395.  https://doi.org/10.1371/journal.ppat.1000395.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ohagen A, Devitt A, Kunstman KJ, Gorry PR, Rose PP, Korber B, et al. Genetic and functional analysis of full-length human immunodeficiency virus type 1 env genes derived from brain and blood of patients with AIDS. J Virol. 2003;77(22):12336–45.  https://doi.org/10.1128/JVI.77.22.12336-12345.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Caragounis EC, Gisslen M, Lindh M, Nordborg C, Westergren S, Hagberg L, et al. Comparison of HIV-1 pol and env sequences of blood, CSF, brain and spleen isolates collected ante-mortem and post-mortem. Acta Neurol Scand. 2008;117(2):108–16.  https://doi.org/10.1111/j.1600-0404.2007.00914.x.PubMedGoogle Scholar
  112. 112.
    Harrington PR, Schnell G, Letendre SL, Ritola K, Robertson K, Hall C, et al. Cross-sectional characterization of HIV-1 env compartmentalization in cerebrospinal fluid over the full disease course. AIDS. 2009;23(8):907–15.  https://doi.org/10.1097/QAD.0b013e3283299129.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, et al. Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology. 2000;54(4):927–36.  https://doi.org/10.1212/WNL.54.4.927.CrossRefPubMedGoogle Scholar
  114. 114.
    •• Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, et al. Early antiretroviral therapy is associated with lower HIV DNA molecular diversity and lower inflammation in cerebrospinal fluid but does not prevent the establishment of compartmentalized HIV DNA populations. PLoS Pathog. 2017;13(1):e1006112.  https://doi.org/10.1371/journal.ppat.1006112. This study idenfied compartmentalization of proviral C2-V3 HIV env quasispecies in the CSF despite the initiation of cART during primary infection. CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Eggers C, Muller O, Thordsen I, Schreiber M, Methner A. Genetic shift of env V3 loop viral sequences in patients with HIV-associated neurocognitive disorder during antiretroviral therapy. J Neuro-Oncol. 2013;19(6):523–30.  https://doi.org/10.1007/s13365-013-0207-5.Google Scholar
  116. 116.
    Wei F, Wang X, Liu L, Gao R, Shi Y, Zhang Y, et al. Characterization of HIV type 1 env gene in cerebrospinal fluid and blood of infected Chinese patients. AIDS Res Hum Retrovir. 2011;27(7):793–6.  https://doi.org/10.1089/AID.2010.0369.CrossRefPubMedGoogle Scholar
  117. 117.
    Vazquez-Santiago FJ, Rivera-Amill V. Envelope gene evolution and HIV-1 neuropathogenesis. J Neuroinfect Dis. 2015;6(Suppl 2)  https://doi.org/10.4172/2314-7326.S2-003.
  118. 118.
    Van Marle G, Rourke SB, Zhang K, Silva C, Ethier J, Gill MJ, et al. HIV dementia patients exhibit reduced viral neutralization and increased envelope sequence diversity in blood and brain. AIDS. 2002;16(14):1905–14.  https://doi.org/10.1097/00002030-200209270-00007.CrossRefPubMedGoogle Scholar
  119. 119.
    Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96.  https://doi.org/10.1212/WNL.0b013e318200d727.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Stansell E, Desrosiers RC. Functional contributions of carbohydrate on AIDS virus glycoprotein. Yale J Biol Med. 2010;83(4):201–8.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, et al. HIV vaccine design and the neutralizing antibody problem. Nat Immunol. 2004;5(3):233–6.  https://doi.org/10.1038/ni0304-233.CrossRefPubMedGoogle Scholar
  122. 122.
    Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, et al. Antibody neutralization and escape by HIV-1. Nature. 2003;422(6929):307–12.  https://doi.org/10.1038/nature01470.CrossRefPubMedGoogle Scholar
  123. 123.
    Dunfee RL, Thomas ER, Gabuzda D. Enhanced macrophage tropism of HIV in brain and lymphoid tissues is associated with sensitivity to the broadly neutralizing CD4 binding site antibody b12. Retrovirology. 2009;6(1):69.  https://doi.org/10.1186/1742-4690-6-69.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Dunfee RL, Thomas ER, Wang J, Kunstman K, Wolinsky SM, Gabuzda D. Loss of the N-linked glycosylation site at position 386 in the HIV envelope V4 region enhances macrophage tropism and is associated with dementia. Virology. 2007;367(1):222–34.  https://doi.org/10.1016/j.virol.2007.05.029.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Kaul M, Lipton SA. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A. 1999;96(14):8212–6.  https://doi.org/10.1073/pnas.96.14.8212.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Yeung MC, Pulliam L, Lau AS. The HIV envelope protein gp120 is toxic to human brain-cell cultures through the induction of interleukin-6 and tumor necrosis factor-alpha. AIDS. 1995;9(2):137–43.  https://doi.org/10.1097/00002030-199509020-00004.CrossRefPubMedGoogle Scholar
  127. 127.
    Zhang K, Rana F, Silva C, Ethier J, Wehrly K, Chesebro B, et al. Human immunodeficiency virus type 1 envelope-mediated neuronal death: uncoupling of viral replication and neurotoxicity. J Virol. 2003;77(12):6899–912.  https://doi.org/10.1128/JVI.77.12.6899-6912.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Ballester LY, Capo-Velez CM, Garcia-Beltran WF, Ramos FM, Vazquez-Rosa E, Rios R, et al. Up-regulation of the neuronal nicotinic receptor alpha7 by HIV glycoprotein 120: potential implications for HIV-associated neurocognitive disorder. J Biol Chem. 2012;287(5):3079–86.  https://doi.org/10.1074/jbc.M111.262543.CrossRefPubMedGoogle Scholar
  129. 129.
    Lannuzel A, Lledo PM, Lamghitnia HO, Vincent JD, Tardieu M. HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons. Eur J Neurosci. 1995;7(11):2285–93.  https://doi.org/10.1111/j.1460-9568.1995.tb00649.x.CrossRefPubMedGoogle Scholar
  130. 130.
    Rao VR, Ruiz AP, Prasad VR. Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther. 2014;11(1):13.  https://doi.org/10.1186/1742-6405-11-13.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Steuler H, Storch-Hagenlocher B, Wildemann B. Distinct populations of human immunodeficiency virus type 1 in blood and cerebrospinal fluid. AIDS Res Hum Retrovir. 1992;8(1):53–9.  https://doi.org/10.1089/aid.1992.8.53.CrossRefPubMedGoogle Scholar
  132. 132.
    Keys B, Karis J, Fadeel B, Valentin A, Norkrans G, Hagberg L, et al. V3 sequences of paired HIV-1 isolates from blood and cerebrospinal fluid cluster according to host and show variation related to the clinical stage of disease. Virology. 1993;196(2):475–83.  https://doi.org/10.1006/viro.1993.1503.CrossRefPubMedGoogle Scholar
  133. 133.
    Kuiken CL, Goudsmit J, Weiller GF, Armstrong JS, Hartman S, Portegies P, et al. Differences in human immunodeficiency virus type 1 V3 sequences from patients with and without AIDS dementia complex. J Gen Virol. 1995;76(Pt 1):175–80.  https://doi.org/10.1099/0022-1317-76-1-175.CrossRefPubMedGoogle Scholar
  134. 134.
    Reddy RT, Achim CL, Sirko DA, Tehranchi S, Kraus FG, Wong-Staal F, et al. Sequence analysis of the V3 loop in brain and spleen of patients with HIV encephalitis. AIDS Res Hum Retrovir. 1996;12(6):477–82.  https://doi.org/10.1089/aid.1996.12.477.CrossRefPubMedGoogle Scholar
  135. 135.
    Holman AG, Gabuzda D. A machine learning approach for identifying amino acid signatures in the HIV env gene predictive of dementia. PLoS One. 2012;7(11):e49538.  https://doi.org/10.1371/journal.pone.0049538.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Ouyang Y, Liu L, Zhang Y, Yuan L, Liu Z, Yang S, et al. Discordant patterns of tissue-specific genetic characteristics in the HIV-1 env gene from HIV-associated neurocognitive disorder (HAND) and non-HAND patients. J Neuro-Oncol. 2014;20(4):332–40.  https://doi.org/10.1007/s13365-014-0247-5.Google Scholar
  137. 137.
    Hoffman NG, Seillier-Moiseiwitsch F, Ahn J, Walker JM, Swanstrom R. Variability in the human immunodeficiency virus type 1 gp120 Env protein linked to phenotype-associated changes in the V3 loop. J Virol. 2002;76(8):3852–64.  https://doi.org/10.1128/JVI.76.8.3852-3864.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Korber BT, Allen EE, Farmer AD, Myers GL. Heterogeneity of HIV-1 and HIV-2. AIDS. 1995;9(Suppl A):S5–18.PubMedGoogle Scholar
  139. 139.
    Palmer S, Kearney M, Maldarelli F, Halvas EK, Bixby CJ, Bazmi H, et al. Multiple, linked human immunodeficiency virus type 1 drug resistance mutations in treatment-experienced patients are missed by standard genotype analysis. J Clin Microbiol. 2005;43(1):406–13.  https://doi.org/10.1128/JCM.43.1.406-413.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Chesebro B, Wehrly K, Nishio J, Perryman S. Mapping of independent V3 envelope determinants of human immunodeficiency virus type 1 macrophage tropism and syncytium formation in lymphocytes. J Virol. 1996;70(12):9055–9.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Sterjovski J, Churchill MJ, Ellett A, Gray LR, Roche MJ, Dunfee RL, et al. Asn 362 in gp120 contributes to enhanced fusogenicity by CCR5-restricted HIV-1 envelope glycoprotein variants from patients with AIDS. Retrovirology. 2007;4(1):89.  https://doi.org/10.1186/1742-4690-4-89.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D, Deller MC, et al. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science. 2013;342(6165):1477–83.  https://doi.org/10.1126/science.1245625.CrossRefPubMedGoogle Scholar
  143. 143.
    Satishchandra P, Nalini A, Gourie-Devi M, Khanna N, Santosh V, Ravi V, et al. Profile of neurologic disorders associated with HIV/AIDS from Bangalore, south India (1989-96). Indian J Med Res. 2000;111:14–23.PubMedGoogle Scholar
  144. 144.
    Griffin TZ, Kang W, Ma Y, Zhang M. The HAND database: a gateway to understanding the role of HIV in HIV-associated neurocognitive disorders. BMC Med Genet. 2015;8(1):70.  https://doi.org/10.1186/s12920-015-0143-8.Google Scholar
  145. 145.
    Holman AG, Mefford ME, O'Connor N, Gabuzda D. HIVBrainSeqDB: a database of annotated HIV envelope sequences from brain and other anatomical sites. AIDS Res Ther. 2010;7(1):43.  https://doi.org/10.1186/1742-6405-7-43.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Aaron Diamond AIDS Research CenterNew YorkUSA
  2. 2.The Rockefeller UniversityNew YorkUSA

Personalised recommendations