Advertisement

Multidrug-Resistant Bacterial Infection in Patients with Cirrhosis. A Review

  • Lukas Otero Sanchez
  • Thierry GustotEmail author
Management of Cirrhotic Patient (A Cardenas and P Tandon, Section Editors)
  • 10 Downloads
Part of the following topical collections:
  1. Topical Collection on Management of the Cirrhotic Patient

Abstract

Purpose of Review

The burden of multidrug resistance has become one of the world’s most urgent public health problems. Patients with infection caused by multidrug-resistant organisms (MDROs) have an increased risk for worse outcomes and death.

Recent Findings

Cirrhotic patients, mostly decompensated, are prone to developing infections caused by MDROs, particularly because they are in close contact with healthcare settings. During the last two decades, the first-line therapies recommended to treat infections in cirrhotic patients have become progressively less effective. Early identification of patients at high risk of MDRO infection is essential.

Summary

Considering the emergence and spread of MDROs, empirical first-line antibiotic treatment must be tailored according to the local prevalence of MDROs and risk factors for MDRO infection. New empirical strategies must include antibiotics that are active against MDROs followed by a well-standardized early de-escalation policy. Appropriate use of broad-spectrum antibiotics, restriction of antibiotic prophylaxis to high-risk populations, promotion of infection-control measures, and support of research into the development of new antibiotics are needed to control the worrisome spread of MDROs.

Keywords

Cirrhosis Bacterial infection Multidrug-resistant organism Antibiotic Carbapenem Glycopeptide 

Abbreviations

ACA

amoxicillin-clavulanic acid

ACLF

acute-on-chronic liver failure

AKI

acute kidney injury

CRE

carbapenem-resistant Enterobacteriaceae

ESBL

extended-spectrum β-lactamase

GNB

Gram-negative bacillus

GPC

Gram-positive coccus

HCA

healthcare-associated

HRS

hepatorenal syndrome

ICU

intensive care unit

MDRO

multidrug-resistant organism

MRSA

methicillin-resistant Staphylococcus aureus

MSSA

methicillin-susceptible Staphylococcus aureus

PDR

pan-drug-resistant

RCT

randomized controlled trial

SB

spontaneous bacteremia

SBP

spontaneous bacterial peritonitis

TGC

third-generation cephalosporins

UTI

urinary tract infection

VSE

vancomycin-susceptible Enterococcus

VRE

vancomycin-resistant Enterococcus

XDR

extensively drug-resistant

Notes

Acknowledgements

The authors acknowledge the contribution of a medical writer, Sandy Field, PhD, to the preparation of this paper.

Author’s Contributions

Lukas Otero Sanchez and Thierry Gustot designed the manuscript. Lukas Otero Sanchez wrote the first draft, and Thierry Gustot provided feedback. The final draft was accepted by all authors.

Compliance with Ethical Standards

Conflicts of Interest

Thierry Gustot reports grants from Promethera Biosciences and grants from Martin Pharmaceuticals, outside the submitted work. Lukas Otero Sanchez has nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Jalan R, Fernandez J, Wiest R, Schnabl B, Moreau R, Angeli P, et al. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. J Hepatol. 2014;60(6):1310–24.Google Scholar
  2. 2.
    Bonnel AR, Bunchorntavakul C, Reddy KR. Immune dysfunction and infections in patients with cirrhosis. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2011;9(9):727–38.Google Scholar
  3. 3.
    •• Angeli P, Bernardi M, Villanueva C, Francoz C, Mookerjee RP, Trebicka J, et al. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol. 2018;1;69(2):406–60 These guidelines report the recommendations about antibiotic treatments in patients with decompensated cirrhosis and infection.Google Scholar
  4. 4.
    Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37 1437.e1–9.Google Scholar
  5. 5.
    Arroyo V, Moreau R, Jalan R, Ginès P, EASL-CLIF Consortium CANONIC Study. Acute-on-chronic liver failure: a new syndrome that will re-classify cirrhosis. J Hepatol. 2015;62(1 Suppl):S131–43.Google Scholar
  6. 6.
    Fernández J, Acevedo J, Castro M, Garcia O, de Lope CR, Roca D, et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatol Baltim Md. 2012;55(5):1551–61.Google Scholar
  7. 7.
    Merli M, Lucidi C, Giannelli V, Giusto M, Riggio O, Falcone M, et al. Cirrhotic patients are at risk for health care-associated bacterial infections. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2010;8(11):979–85.Google Scholar
  8. 8.
    Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care–associated infections. N Engl J Med. 2014;370(13):1198–208.Google Scholar
  9. 9.
    Tandon P, Garcia-Tsao G. Bacterial infections, sepsis, and multiorgan failure in cirrhosis. Semin Liver Dis. 2008;28(1):26–42.Google Scholar
  10. 10.
    Arvaniti V, D’Amico G, Fede G, Manousou P, Tsochatzis E, Pleguezuelo M, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology. 2010;139(4):1246–56 1256.e1–5.Google Scholar
  11. 11.
    Gustot T, Durand F, Lebrec D, Vincent J-L, Moreau R. Severe sepsis in cirrhosis. Hepatol Baltim Md. 2009;50(6):2022–33.Google Scholar
  12. 12.
    Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest. 2003 Sep;124(3):1016–20.Google Scholar
  13. 13.
    Gustot T, Felleiter P, Pickkers P, Sakr Y, Rello J, Velissaris D, et al. Impact of infection on the prognosis of critically ill cirrhotic patients: results from a large worldwide study. Liver Int Off J Int Assoc Study Liver. 2014;34(10):1496–503.Google Scholar
  14. 14.
    Fernández J, Gustot T. Management of bacterial infections in cirrhosis. J Hepatol. 2012;56(Suppl 1):S1–12.Google Scholar
  15. 15.
    Sargenti K, Prytz H, Nilsson E, Bertilsson S, Kalaitzakis E. Bacterial infections in alcoholic and nonalcoholic liver cirrhosis. Eur J Gastroenterol Hepatol. 2015;27(9):1080–6.Google Scholar
  16. 16.
    Sengupta S, Chattopadhyay MK, Grossart H-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol [Internet]. 2013. [cited 2018 Nov 10]; 4. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2013.00047/full. Accessed 12 Mar 2013.
  17. 17.
    Centers for Disease Control and Prevention (CDC). Antibiotic resistance threats in the United States. 2013. Online: 23 Apr 2013, Available from: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.
  18. 18.
    ECDC/EMEA. The bacterial challenge: time to react. A call to narrow the gap between mutlidrug-resistant bacteria in the EU and the development of new antibacterial agents. [Internet]. ECDC/EMEA; Available from: 17 September 2009.Google Scholar
  19. 19.
    Michele Cecchini, Julia Langer and Luke Slawomirski. Antimicrobial resistance in G7 countries and beyond: economic issues, policies and options for action. 2015.Google Scholar
  20. 20.
    Ventola CL. The antibiotic resistance crisis. Pharm Ther. 2015;40(4):277–83.Google Scholar
  21. 21.
    Freire-Moran L, Aronsson B, Manz C, Gyssens IC, So AD, Monnet DL, et al. Critical shortage of new antibiotics in development against multidrug-resistant bacteria—time to react is now. Drug Resist Updat. 2011;14(2):118–24.Google Scholar
  22. 22.
    Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D, et al. Ready for a world without antibiotics? The Pensières antibiotic resistance call to action. Antimicrob Resist Infect Control. 2012;1(1):11.Google Scholar
  23. 23.
    Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–22.Google Scholar
  24. 24.
    Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30(10):972–6.Google Scholar
  25. 25.
    Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol. 2008;29(12):1099–106.Google Scholar
  26. 26.
    Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO. Extended-Spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis. 2001;32(8):1162–71.Google Scholar
  27. 27.
    Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–81.Google Scholar
  28. 28.
    Rossolini GM, Arena F, Pecile P, Pollini S. Update on the antibiotic resistance crisis. Curr Opin Pharmacol. 2014;18:56–60.Google Scholar
  29. 29.
    Tacconelli E, Cataldo MA, Dancer SJ, Angelis GD, Falcone M, Frank U, et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin Microbiol Infect. 2014;20:1–55.Google Scholar
  30. 30.
    www.ecdc.europa.eu. Surveillance of antimicrobial resistance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). 2017. Accessed 15 Nov 2018.
  31. 31.
    Orsi GB, Falcone M, Venditti M. Surveillance and management of multidrug-resistant microorganisms. Expert Rev Anti-Infect Ther. 2011;9(8):653–79.Google Scholar
  32. 32.
    Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;36(1):53–9.Google Scholar
  33. 33.
    Safdar N, Bradley EA. The risk of infection after nasal colonization with Staphylococcus aureus. Am J Med. 2008 Apr;121(4):310–5.Google Scholar
  34. 34.
    European Centre for Prevention and Control. Carbapenem-resistant Acinetobacter baumanii in healthcare settings. Available from https://ecdc.europa.eu/en/publications-data/rapid-risk-assessment-carbapenem-resistant-acinetobacter-baumannii-healthcare; 2016. Accessed 8 dec 1999.
  35. 35.
    Kluytmans-Vandenbergh MFQ, Kluytmans JAJW. Community-acquired methicillin-resistant Staphylococcus aureus: current perspectives. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2006;12(Suppl 1):9–15.Google Scholar
  36. 36.
    Ramsey AM, Zilberberg MD. Secular trends of hospitalization with vancomycin-resistant enterococcus infection in the United States, 2000–2006. Infect Control Hosp Epidemiol. 2009;30(2):184–6.Google Scholar
  37. 37.
    Leclercq R. Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2009;15(3):224–31.Google Scholar
  38. 38.
    • Fernández J, Tandon P, Mensa J, Garcia-Tsao G. Antibiotic prophylaxis in cirrhosis: good and bad. Hepatol Baltim Md. 2016;63(6):2019–31 Review of the indication of antibioprophylaxis in high-risk cirrhotic patients. Google Scholar
  39. 39.
    Fernández J, Navasa M, Planas R, Montoliu S, Monfort D, Soriano G, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology. 2007;133(3):818–24.Google Scholar
  40. 40.
    Fernández J, Navasa M, Gómez J, Colmenero J, Vila J, Arroyo V, et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatol Baltim Md. 2002;35(1):140–8.Google Scholar
  41. 41.
    Reuken PA, Pletz MW, Baier M, Pfister W, Stallmach A, Bruns T. Emergence of spontaneous bacterial peritonitis due to enterococci—risk factors and outcome in a 12-year retrospective study. Aliment Pharmacol Ther. 2012;35(10):1199–208.Google Scholar
  42. 42.
    Merli M, Lucidi C, Di Gregorio V, Falcone M, Giannelli V, Lattanzi B, et al. The spread of multi drug resistant infections is leading to an increase in the empirical antibiotic treatment failure in cirrhosis: a prospective survey. PLoS One. 2015;10(5):e0127448.  https://doi.org/10.1371/journal.pone.0127448. eCollection 2015.
  43. 43.
    Salerno F, Borzio M, Pedicino C, Simonetti R, Rossini A, Boccia S, et al. The impact of infection by multidrug-resistant agents in patients with cirrhosis. A multicenter prospective study. Liver Int. 2017;37(1):71–9.Google Scholar
  44. 44.
    Tandon P, Delisle A, Topal JE, Garcia-Tsao G. High prevalence of antibiotic-resistant bacterial infections among patients with cirrhosis at a US liver center. Clin Gastroenterol Hepatol Off Clin Pract J Am Gastroenterol Assoc. 2012;10(11):1291–8.Google Scholar
  45. 45.
    Ariza X, Castellote J, Lora-Tamayo J, Girbau A, Salord S, Rota R, et al. Risk factors for resistance to ceftriaxone and its impact on mortality in community, healthcare and nosocomial spontaneous bacterial peritonitis. J Hepatol. 2012;56(4):825–32.Google Scholar
  46. 46.
    Fernández J, Prado V, Trebicka J, Amoros A, Gustot T, Wiest R, et al. Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol. 2018.  https://doi.org/10.1016/j.jhep.2018.10.027.
  47. 47.
    Park YH, Lee HC, Song HG, Jung S, Ryu SH, Shin JW, et al. Recent increase in antibiotic-resistant microorganisms in patients with spontaneous bacterial peritonitis adversely affects the clinical outcome in Korea. J Gastroenterol Hepatol. 2003;18(8):927–33.Google Scholar
  48. 48.
    Campillo B, Dupeyron C, Richardet JP, Mangeney N, Leluan G. Epidemiology of severe hospital-acquired infections in patients with liver cirrhosis: effect of long-term administration of norfloxacin. Clin Infect Dis Off Publ Infect Dis Soc Am. 1998;26(5):1066–70.Google Scholar
  49. 49.
    Song K-H, Jeon JH, Park WB, Park S-W, Kim HB, Oh M, et al. Clinical outcomes of spontaneous bacterial peritonitis due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella species: a retrospective matched case-control study. BMC Infect Dis. 2009;9:41.Google Scholar
  50. 50.
    Fernández J, Bert F, Nicolas-Chanoine M-H. The challenges of multi-drug-resistance in hepatology. J Hepatol. 2016;65(5):1043–54.Google Scholar
  51. 51.
    Bartoletti M, Giannella M, Caraceni P, Domenicali M, Ambretti S, Tedeschi S, et al. Epidemiology and outcomes of bloodstream infection in patients with cirrhosis. J Hepatol. 2014;61(1):51–8.Google Scholar
  52. 52.
    Piroth L, Pechinot A, Di Martino V, Hansmann Y, Putot A, Patry I, et al. Evolving epidemiology and antimicrobial resistance in spontaneous bacterial peritonitis: a two-year observational study. BMC Infect Dis. 2014;14:287.Google Scholar
  53. 53.
    Ginés P, Rimola A, Planas R, Vargas V, Marco F, Almela M, et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatol Baltim Md. 1990;12(4 Pt 1):716–24.Google Scholar
  54. 54.
    Nicolas-Chanoine M-H, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61(2):273–81.Google Scholar
  55. 55.
    Song JY, Jung SJ, Park CW, Sohn JW, Kim WJ, Kim MJ, et al. Prognostic significance of infection acquisition sites in spontaneous bacterial peritonitis: nosocomial versus community acquired. J Korean Med Sci. 2006;21(4):666–71.Google Scholar
  56. 56.
    Alexopoulou A, Vasilieva L, Agiasotelli D, Siranidi K, Pouriki S, Tsiriga A, et al. Extensively drug-resistant bacteria are an independent predictive factor of mortality in 130 patients with spontaneous bacterial peritonitis or spontaneous bacteremia. World J Gastroenterol. 2016;22(15):4049–56.Google Scholar
  57. 57.
    Bert F, Andreu M, Durand F, Degos F, Galdbart J-O, Moreau R, et al. Nosocomial and community-acquired spontaneous bacterial peritonitis: comparative microbiology and therapeutic implications. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2003;22(1):10–5.Google Scholar
  58. 58.
    Cholongitas E, Papatheodoridis GV, Lahanas A, Xanthaki A, Kontou-Kastellanou C, Archimandritis AJ. Increasing frequency of Gram-positive bacteria in spontaneous bacterial peritonitis. Liver Int Off J Int Assoc Study Liver. 2005;25(1):57–61.Google Scholar
  59. 59.
    Arias CA, Mendes RE, Stilwell MG, Jones RN, Murray BE. Unmet needs and prospects for oritavancin in the management of vancomycin-resistant enterococcal infections. Clin Infect Dis. 2012;54(suppl_3):S233–8.Google Scholar
  60. 60.
    Ferstl PG, Filmann N, Brandt C, Zeuzem S, Hogardt M, Kempf VAJ, et al. The impact of carbapenem resistance on clinical deterioration and mortality in patients with liver disease. Liver Int Off J Int Assoc Study Liver. 2017;37(10):1488–96.Google Scholar
  61. 61.
    Umgelter A, Reindl W, Miedaner M, Schmid RM, Huber W. Failure of current antibiotic first-line regimens and mortality in hospitalized patients with spontaneous bacterial peritonitis. Infection. 2009;37(1):2–8.Google Scholar
  62. 62.
    Béjar-Serrano S, Del Pozo P, Fernández-de la Varga M, Benlloch S. Multidrug-resistant bacterial infections in patients with liver cirrhosis in a tertiary referral hospital. Gastroenterol Hepatol. 2018.  https://doi.org/10.1016/j.gastrohep.2018.07.017.
  63. 63.
    • Piano S, Fasolato S, Salinas F, Romano A, Tonon M, Morando F, et al. The empirical antibiotic treatment of nosocomial spontaneous bacterial peritonitis: Results of a randomized, controlled clinical trial. Hepatol Baltim Md. 2016;63(4):1299–309 In Italy, the combination of meropenem plus daptomycin is more effective than ceftazidime as empirical antibiotic treatment of nosocomial spontaneous bacterial peritonitis.Google Scholar
  64. 64.
    Pouriki S, Vrioni G, Sambatakou H, Alexopoulou A, Vasilieva L, Mani I, et al. Intestinal colonization with resistant bacteria: a prognostic marker of mortality in decompensated cirrhosis. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2018;37(1):127–34.Google Scholar
  65. 65.
    Yakar T, Güçlü M, Serin E, Alişkan H, Husamettin E. A recent evaluation of empirical cephalosporin treatment and antibiotic resistance of changing bacterial profiles in spontaneous bacterial peritonitis. Dig Dis Sci. 2010;55(4):1149–54.Google Scholar
  66. 66.
    Gustot T, Fernandez J, Szabo G, Albillos A, Louvet A, Jalan R, et al. Sepsis in alcohol-related liver disease. J Hepatol. 2017;67(5):1031–50.Google Scholar
  67. 67.
    Lheureux O, Trepo E, Hites M, Cotton F, Wolff F, Surin R, et al. Serum β-lactam concentrations in critically ill patients with cirrhosis: a matched case-control study. Liver Int Off J Int Assoc Study Liver. 2016;36(7):1002–10.Google Scholar
  68. 68.
    Smith NL, Freebairn RC, Park MAJ, Wallis SC, Roberts JA, Lipman J. Therapeutic drug monitoring when using cefepime in continuous renal replacement therapy: seizures associated with cefepime. Crit Care Resusc J Australas Acad Crit Care Med. 2012;14(4):312–5.Google Scholar
  69. 69.
    Fernández J, Acevedo J. New antibiotic strategies in patients with cirrhosis and bacterial infection. Expert Rev Gastroenterol Hepatol. 2015;9(12):1495–500.Google Scholar
  70. 70.
    • Merli M, Lucidi C, Di Gregorio V, Lattanzi B, Giannelli V, Giusto M, et al. An empirical broad spectrum antibiotic therapy in health-care-associated infections improves survival in patients with cirrhosis: a randomized trial. Hepatol Baltim Md. 2016;63(5):1632–9 A broad spectrum empirical antibiotic treatment in health care-associated infection improves survival in cirrhosis compared to standard antibiotic treatement. Google Scholar
  71. 71.
    Tzouvelekis LS, Markogiannakis A, Piperaki E, Souli M, Daikos GL. Treating infections caused by carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2014;20(9):862–72.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, CUB Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Laboratory of Experimental GastroenterologyUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Inserm Unité 1149Centre de Recherche sur l’inflammation (CRI)ParisFrance
  4. 4.UMR S_1149Université Paris DiderotParisFrance
  5. 5.The EASL-CLIF ConsortiumEuropean Foundation-CLIFBarcelonaSpain

Personalised recommendations