Immunotherapeutic Approaches for Multiple Myeloma: Where Are We Now?

  • Myo HtutEmail author
T-Cell and Other Lymphoproliferative Malignancies (J Zain, Section Editor)
Part of the following topical collections:
  1. Topical Collection on T-Cell and Other Lymphoproliferative Malignancies


Purpose of Review

The treatment landscape for multiple myeloma has evolved rapidly with the availability of multiple new drugs; however, although patient survival has improved, the disease remains incurable. Multiple myeloma is characterized by the unregulated growth of malignant plasma cells accompanied by immune dysfunction as well as disrupted immune surveillance mechanisms. Here, we analyze clinical modalities, with a focus on monoclonal antibodies and adoptive cellular therapy that enhance patients’ immune systems and overcome these defects.

Recent Findings

Early clinical trials with PD-1 inhibitors were promising, but randomized phase III trials with immunomodulatory drugs showed increased toxicities. Monoclonal antibodies targeting surface antigens led to substantial clinical efficiency in relapsed myeloma. Chimeric antigen receptor (CAR) T cell therapy for multiple myeloma represents a significant advance, as exciting and dramatic responses in early clinical trials have been seen.


Immunotherapeutic approaches are promising and can augment or replace the current standard of care, with the potential to offer extended survival for myeloma patients.


Adoptive cellular therapy CAR T cells Checkpoint inhibitors mAbs Multiple myeloma Vaccine 


Compliance with Ethical Standards

Conflict of Interest

The author declares that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kristinsson SY, Tang M, Pfeiffer RM, Björkholm M, Goldin LR, Blimark C, et al. Monoclonal gammopathy of undetermined significance and risk of infections: a population-based study. Haematologica. Ferrata Storti Foundation. 2012;97(6):854–8.CrossRefGoogle Scholar
  2. 2.
    Koike M, Sekigawa I, Okada M, Matsumoto M, Iida N, Hashimoto H, et al. Relationship between CD4(+)/CD8(+) T cell ratio and T cell activation in multiple myeloma: reference to IL-16. Leuk Res. 2002;26(8):705–11.CrossRefGoogle Scholar
  3. 3.
    Ogawara H, Handa H, Yamazaki T, Toda T, Yoshida K, Nishimoto N, et al. High Th1/Th2 ratio in patients with multiple myeloma. Leuk Res. 2005;29(2):135–40.CrossRefGoogle Scholar
  4. 4.
    Dosani T, Carlsten M, Maric I, Landgren O. The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies. Blood Cancer J. 2015;5:e306.CrossRefGoogle Scholar
  5. 5.
    Brown RD, Pope B, Yuen E, Gibson J, Joshua DE. The expression of T cell related costimulatory molecules in multiple myeloma. Leuk Lymphoma. 1998;31(3–4):379–84.CrossRefGoogle Scholar
  6. 6.
    Romano A, Conticello C, Cavalli M, Vetro C, La Fauci A, Parrinello NL, et al. Immunological dysregulation in multiple myeloma microenvironment. Biomed Res Int. 2014;2014:198539.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Yousef S, Marvin J, Steinbach M, Langemo A, Kovacsovics T, Binder M, et al. Immunomodulatory molecule PD-L1 is expressed on malignant plasma cells and myeloma-propagating pre-plasma cells in the bone marrow of multiple myeloma patients. Blood Cancer J. 2015;5(3):e285.CrossRefGoogle Scholar
  8. 8.
    Gahrton G, Iacobelli S, Bjorkstrand B, Hegenbart U, Gruber A, Greinix H, et al. Autologous/reduced-intensity allogeneic stem cell transplantation vs autologous transplantation in multiple myeloma: longterm results of the EBMT-NMAM2000 study. Blood. 2013;121(25):5055–63.CrossRefGoogle Scholar
  9. 9.
    Sahebi F, Iacobelli S, Biezen AV, et al. Comparison of upfront tandem autologous-allogeneic transplantation versus reduced intensity allogeneic transplantation for multiple myeloma. Bone Marrow Transplant. 2015;50(6):802–7.CrossRefGoogle Scholar
  10. 10.
    Auner HW, Szydlo R, van Biezen A, et al. Reduced intensity-conditioned allogeneic stem cell transplantation for multiple myeloma relapsing or progressing after autologous transplantation: a study by the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2013;48(11):1395–400.CrossRefGoogle Scholar
  11. 11.
    Zhu YX, Kortuem KM, Stewart AK. Molecular mechanism of action of immune-modulatory drugs thalidomide, lenalidomide and pomalidomide in multiple myeloma. Leuk Lymphoma. 2013;54(4):683–7.CrossRefGoogle Scholar
  12. 12.
    Shuptrine CW, Surana R, Weiner LM. Monoclonal antibodies for the treatment of cancer. Semin Cancer Biol. 2012;22(1):3–13.CrossRefGoogle Scholar
  13. 13.
    Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric Immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121(4):482–8.CrossRefGoogle Scholar
  14. 14.
    Deaglio S, Vaisitti T, Billington R, Bergui L, Omede' P, Genazzani AA, et al. CD38/CD19: a lipid raft-dependent signaling complex in human B cells. Blood. 2007;109:5390–8.CrossRefGoogle Scholar
  15. 15.
    •• Lokhorst HM, Plesner T, Laubach JP, Nahi H, Gimsing P, Hansson M, et al. Targeting CD38 with Daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19 This study was one of the first to study daratumumab as single agent therapy and provided justification for the development of combinatorial therapies containing daratumumab. CrossRefGoogle Scholar
  16. 16.
    Lonial S, Weiss BM, Usmani SZ, Singhal S, Chari A, Bahlis NJ, et al. Phase II study of daratumumab (DARA) monotherapy in patients with >= 3 lines of prior therapy or double refractory multiple myeloma (MM): 54767414MMY2002 (Sirius). ASCO Meet Abstr. 2015;33(18_suppl):LBA 8512.Google Scholar
  17. 17.
    Plesner T, Arkenau H-T, Lokhorst HM, Gimsing P, Krejcik J, Lemech C, et al. Safety and efficacy of Daratumumab with Lenalidomide and dexamethasone in relapsed or relapsed, refractory multiple myeloma. Blood. 2014;124(21):84.Google Scholar
  18. 18.
    •• Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, for the POLLUX Investigators, et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med. 2016;375:1319–31. Potentially practice-changing data in RRMM patients treated with daratumumab/lenalidomide-based backbone treatment. CrossRefPubMedGoogle Scholar
  19. 19.
    •• Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, Bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375(8):754–66 Potentially practice-changing data in RRMM patients treated with daratumumab/bortezomib-based backbone treatment. CrossRefGoogle Scholar
  20. 20.
    Chari A, Suvannasankha A, Fay JW, Arnulf B, Kaufman JL, Ifthikharuddin JJ, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130(8):974–81. Scholar
  21. 21.
    Lonial S, San-Miguel JF, Martínez-Lopez J, Mateos M-V, Blade J, Benboubker L, et al. Daratumumab in combination with carfilzomib and dexamethasone in patients (pts) with relapsed multiple myeloma (MMY1001): an open-label, phase 1b study. Blood. 2017;130:1869.CrossRefGoogle Scholar
  22. 22.
    Jakubowiak AJ, Chari A, Lonial S, Weiss BM, Comenzo RL, Wu K, et al. Daratumumab (DARA) in combination with carfilzomib, lenalidomide, and dexamethasone (KRd) in patients (pts) with newly diagnosed multiple myeloma (MMY1001): An open-label, phase 1b study. J Clin Oncol. 2017;35(15_suppl):8000. Scholar
  23. 23.
    Chari A, Nahi H, Mateos M-V, Lokhorst HM, Kaufman JL, Moreau P, et al. Subcutaneous delivery of daratumumab in patients (pts) with relapsed or refractory multiple myeloma (RRMM): PAVO, an open-label, multicenter, dose escalation phase 1b study. Blood. 2017;130:838.CrossRefGoogle Scholar
  24. 24.
    • Martin TG, Hsu K, Strickland SA, Glenn MJ, Mikhael J, Charpentier E. A phase I trial of SAR650984, a CD38 monoclonal antibody, in relapsed or refractory multiple myeloma. J Clin Oncol. 2014;32(15_suppl):8532. This study highlighted that other CD38-targeting agents aside from daratumumab hold clinical potential. CrossRefGoogle Scholar
  25. 25.
    Mikhael J, Richardson PG, Usmani Z, Raje N, Bensinger W, Kanagavel D, et al. A phase Ib study of isatuximab in combination with pomalidomide (Pom) and dexamethasone (Dex) in relapsed/refractory multiple myeloma (RRMM). 2017 ASCO Annual Meeting Abstracts. JCO. 2017;(35 suppl):abstr 8007.Google Scholar
  26. 26.
    Martin T, Baz R, Benson DM, Lendvai N, Wolf J, Munster P, et al. A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017;129(25):3294–303. Scholar
  27. 27.
    Raab MS, Chatterjee M, Goldschmidt H, Agis H, Blau I, Einsele H, et al. A phase I/IIa study of the CD38 antibody MOR202 alone and in combination with pomalidomide or lenalidomide in patients with relapsed or refractory multiple myeloma. Blood. 2016;128:1152.CrossRefGoogle Scholar
  28. 28.
    Chapuy CI, Nicholson RT, Aguad MD, Chapuy B, Laubach JP, Richardson PG, et al. Resolving the daratumumab interference with blood compatibility testing. Transfusion. 2015;55(6 Pt 2):1545–54. Scholar
  29. 29.
    Veillette A, Guo H. CS1, a SLAM family receptor involved in immune regulation, is a therapeutic target in multiple myeloma. Crit Rev Oncol/Hematol. 2013;88:168–77.CrossRefGoogle Scholar
  30. 30.
    Zonder JA, Mohrbacher AF, Singhal S, Van Rhee F, Bensinger WI, Ding H, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120(3):552–9.CrossRefGoogle Scholar
  31. 31.
    Jakubowiak A, Offidani M, Brigitte P, La Rubia JD, Garderet L, Laribi K, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127(23):2833–41.CrossRefGoogle Scholar
  32. 32.
    Richardson PG, Jagannath S, Moreau P, Jakubowiak AJ, Raab MS, Facon T, et al. Elotuzumab in combination with lenalidomide and dexamethasone in patients with relapsed multiple myeloma: final phase 2 results from the randomised, open-label, phase 1b-2 dose-escalation study. Lancet Haematol. 2015;2(12):e516–27.CrossRefGoogle Scholar
  33. 33.
    •• Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med. 2015;373:621–31. Potentially practice-changing data in RRMM patients treated with elotuzumab-/lenalidomide-based backbone treatment. CrossRefPubMedGoogle Scholar
  34. 34.
    •• Dimopoulos MA, Dytfeld D, Grosicki S, Moreau P, Takezako N, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811–22 Potentially practice-changing data in RRMM patients treated with elotuzumab-/pomalidomide-based backbone treatment. CrossRefGoogle Scholar
  35. 35.
    Heffner LT, Jagannath S, Zimmerman TM, Lee KP, Rosenblatt J, Lonial S, et al. BT062, an antibody-drug conjugate directed against CD138, given weekly for 3 weeks in each 4 week cycle: safety and further evidence of clinical activity. Am Soc Hematol Annu Meet Proc. 2012;120(21):653.Google Scholar
  36. 36.
    Kelly KR, Chanan-Khan A, Heffner LT, Somlo G, Siegel DS, Zimmerman T, et al. Indatuximab Ravtansine (BT062) in combination with Lenalidomide and low-dose dexamethasone in patients with relapsed and/or refractory multiple myeloma: clinical activity in patients already exposed to Lenalidomide and Bortezomib. Blood. 2014;124(21):4736.Google Scholar
  37. 37.
    Kumar SK, Anderson KC. Immune therapies in multiple myeloma. Clin Cancer Res. 2016;22(22):5453–60.CrossRefGoogle Scholar
  38. 38.
    Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, et al. Treatment with AMG 420, an anti-B-cell maturation antigen (BCMA) bispecific T-cell engager (BiTEs) antibody construct, induces minimal residual disease (MRD) negative complete responses in relapsed and/or refractory (R/R) multiple myeloma (MM) patients: results of a first-in-human (fih) phase i dose escalation study. ASH Annual meeting. 2018:abstract 1010.Google Scholar
  39. 39.
    Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A, et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. Nature Publishing Group. 2012;27(2):464–72.Google Scholar
  40. 40.
    Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304.CrossRefGoogle Scholar
  41. 41.
    Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.CrossRefGoogle Scholar
  42. 42.
    Hallett WHD, Jing W, Drobyski WR, Johnson BD. Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant. 2011;17(8):1133–45.CrossRefGoogle Scholar
  43. 43.
    Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefGoogle Scholar
  44. 44.
    Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase ib study. J Clin Oncol. 2016;34(23):2698–704.CrossRefGoogle Scholar
  45. 45.
    Görgün G, Samur MK, Cowens KB, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 2015;21(20):4607–18.CrossRefGoogle Scholar
  46. 46.
    Benson DM Jr, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B, et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood. 2010;116:2286–94.CrossRefGoogle Scholar
  47. 47.
    Ocio EM, Mateos M-V, Orlowski RZ, et al. Pembrolizumab plus lenalidomide and low-dose dexamethasone for relapsed refractory multiple myeloma : Efficacy and biomarker analyses. J Clin Oncol. 2017;35(15_suppl):8015. Scholar
  48. 48.
    Badros A, Hyjek E, Ma N, Lesokhin A, Dogan A, Rapoport AP, et al. Pembrolizumab, pomalidomide, and low-dose dexamethasone for relapsed/refractory multiple myeloma. Blood. 2017;130(10):1189–97. Scholar
  49. 49.
    FDA news release: August 31, 2017.
  50. 50.
    Bae J, Song W, Smith R, Daley J, Tai YT, Anderson KC, et al. A novel immunogenic CS1-specific peptide inducing antigen-specific cytotoxic T lymphocytes targeting multiple myeloma. Br J Haematol. 2012;157(6):687–701.CrossRefGoogle Scholar
  51. 51.
    McCann KJ, Godeseth R, Chudley L, et al. Idiotypic DNA vaccination for the treatment of multiple myeloma: safety and immunogenicity in a phase I clinical study. Cancer Immunol Immunother. 2015;64(8):1021–32.CrossRefGoogle Scholar
  52. 52.
    Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Xu YY, Kalos M, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGEA3/Poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20(5):1355–65.CrossRefGoogle Scholar
  53. 53.
    Szmania S, Gnjatic S, Tricot G, Stone K, Zhan F, Moreno A, et al. Immunization with a recombinant MAGEA3 protein after high-dose therapy for myeloma. J Immunother. 2007;30(8):847–54.CrossRefGoogle Scholar
  54. 54.
    Tsuboi A, Oka Y, Nakajima H, Fukuda Y, Elisseeva OA, Yoshihara S, et al. Wilms tumor gene WT1 peptide-based immunotherapy induced a minimal response in a patient with advanced therapy- resistant multiple myeloma. Int J Hematol. 2007;86(5):414–7.CrossRefGoogle Scholar
  55. 55.
    Rosenblatt J, Vasir B, Uhl L, Blotta S, MacNamara C, Somaiya P, et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood. 2011;117(2):393–402.CrossRefGoogle Scholar
  56. 56.
    Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T, et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res. 2013;19(13):3640–8.CrossRefGoogle Scholar
  57. 57.
    • Garfall AL, Maus MV, Hwang W-T, Lacey SF, Mahnke YD, Melenhorst JJ, et al. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040–7 This study was one of the first to investigate CAR T cells for MM and demonstrated efficacy in a subset of patients despite the lack of CD19 expression in most MM cells. CrossRefGoogle Scholar
  58. 58.
    Guo B, Chen M, Han Q, Hui F, Dai H, Zhang W, et al. CD138-directed adoptive immunotherapy of chimeric antigen receptor (CAR)-modified T cells for multiple myeloma. J Cell Immunother. 2016;2(1):28–35.CrossRefGoogle Scholar
  59. 59.
    Ramos CA, Savoldo B, Torrano V, Ballard B, Zhang H, Dakhova O, et al. Clinical responses with T lymphocytes targeting malignancy-associated κ light chains. J Clin Invest. 2016;126(7):2588–96.CrossRefGoogle Scholar
  60. 60.
    Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, Grab A, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 2017;31(3):396–410.CrossRefGoogle Scholar
  61. 61.
    • Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36(22):2267–80. An early trial of BCMA-directed CAR T cells, demonstrating responses in the majority of patients. CrossRefPubMedGoogle Scholar
  62. 62.
    Berdeja JG, Lin Y, Raje N, Munshi N, Siegel D, Liedtke M, et al. Durable clinical responses in heavily pretreated patients with relapsed/refractory multiple myeloma: updated results from a multicenter study of bb2121 anti-BCMA CAR T cell therapy. Blood. 2017;130:740.Google Scholar
  63. 63.
    Zhao W-H, Liu J, Wang B-Y, Chen Y-X, et al. Updated analysis of a phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B-cell maturation antigen, in patients with relapsed/refractory multiple myeloma. 2018 ASH annual meeting. Abstract – 955.Google Scholar
  64. 64.
    Cohen AD, Garfall AL, Stadtmauer EA, Lacey SF, Lancaster E, Vogl DT, et al. Safety and efficacy of B-cell maturation antigen (BCMA)-specific chimeric antigen receptor T cells (CART-BCMA) with cyclophosphamide conditioning for refractory multiple myeloma (MM). Blood. 2017;130:505.CrossRefGoogle Scholar
  65. 65.
    Mailankody S, Ghosh A, Staehr M, et al. Clinical responses and pharmacokinetics of MCARH171, a human-derived BCMA targeted CAR T cell therapy in relapsed/refractory multiple myeloma: final results of a phase I clinical trial. 2018 ASH Annual meeting. Abstract 959.Google Scholar
  66. 66.
    Mailankody S, Htut M, Lee K, Bensinger W, DeVries T, Piasecki J, et al. First-in human multicenter study of JCARH125, anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma. 2018 ASH annual meeting. Abstract: 957.Google Scholar
  67. 67.
    Gregory T, Cohen AD, Costello CL, Ali SA, Berdeja JG, Ostertag EM, et al. Efficacy and safety of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM): ASH; 2018. abstract 1012Google Scholar
  68. 68.
    •• Noonan KA, Huff CA, Davis J, Lemas MV, Fiorino S, Bitzan J, et al. Adoptive transfer of activated marrow-infiltrating lymphocytes induces measurable antitumor immunity in the bone marrow in multiple myeloma. Sci Transl Med. 2015;7(288):288ra78 The first clinical trial using marrow infiltrating lymphocytes in MM, demonstrating feasibility and efficacy. CrossRefGoogle Scholar
  69. 69.
    •• Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21 Supports that encouraging clinical responses can be associated with T cells engineered to express an affinity-enhanced T cell receptor. CrossRefGoogle Scholar
  70. 70.
    Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkins lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified Tcells. Sci Transl Med. 2016;8(355):355ra116.CrossRefGoogle Scholar
  71. 71.
    • Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia. 2015;30(2):492–500 Suggests that CAR T cells derived from defined subsets may improve activity and provide uniform potency. CrossRefGoogle Scholar
  72. 72.
    Wang X, Walter M, Urak R, Weng L, Huynh C, Lim L, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma. Clin Cancer Res. 2018 Jan 1;24(1):106–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Hematology/Hematopoietic Cell TransplantationCity of Hope National Medical CenterDuarteUSA

Personalised recommendations